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Abstract: This research documents two innovative designs of septic tanks used for onsite wastewater
treatment. The designs were implemented and tested as part of a research project focused on
innovative decentralized wastewater treatment solutions. The modified septic tanks were tested at
different hydraulic loading rates for sufficient periods to effectively evaluate their performance.
The two systems were designed with successive anaerobic and aerobic chambers and were
differentiated between attached and suspended growth. The systems were operated at detention
times of 4.3, 3.2, and 2.6 days. High removal of organic load was achieved under all loading criteria
in both systems. Effluent BOD5 concentration at lower and higher loading rates were found to be less
than 15 and 25 mg/L, respectively, representing a removal rate of more than 95%. Nitrogen was also
removed but at a lower rate. The highest TN removal was achieved (59%) in the attached growth
system at the lowest loading rate. Although two logs of E. coli removal (99%) were achieved in all
systems, E. coli numbers were high enough to necessitate further tertiary treatment. The modified
septic tanks proved to be a cost-effective technology with low energy and O&M requirements.

Keywords: onsite wastewater treatment; decentralized wastewater; septic tank; aerobic; anaerobic;
attached growth; suspended growth

1. Introduction

There is a growing need for the development of sustainable and cost-effective technologies to
treat wastewater [1,2]. Within the context of adaptive water resources management, centralized
wastewater treatment is an appropriate approach for large communities [3]. In small communities,
however, centralized wastewater collection and treatment systems are not feasible because of the
relatively high cost of capital investment and intensive operation and maintenance requirements [4–6].
Decentralized solutions in wastewater management are recognized as cost-effective alternatives
to centralized systems, which could be effectively integrated into rural as well as urban settings.
This can significantly support future water resources management plans [7–9]. Moreover, extension
of wastewater management services to small communities is essential to address serious concerns in
water scarcity, pollution, and public health. Accordingly, decentralized wastewater treatment has been
recognized as an effective solution allowing the sanitation requirements to be met [10–12].

In Ontario, Canada, about 10% of the population uses onsite systems for wastewater sanitation,
where most of these systems are conventional septic systems (i.e., septic tank and leaching bed) [13].
Similarly, 12% of the population in Australia relies on septic systems [14]. In the United States, around
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60 million people are connected to onsite wastewater treatment systems with the majority use of
conventional onsite systems [15]. In Germany, about 15% of the population use onsite wastewater
treatment systems [16]. In Jordan, 32% of the population is not connected to a sewer system. Most of
them rely on cesspits for wastewater disposal [9]. Hence, onsite wastewater systems are common
and can be replicated to help serve smaller communities. Meuler et al. [16] described septic tanks
as a poor pretreatment system and a source of groundwater pollution, where dissolved pollutants,
nutrients and pathogens may remain in the effluent causing serious threat to human health and
accelerated deterioration to the environment including air, water and soil. One study has even
reported a significant increase in Escherichia coli (E. coli) concentration in the septic tank effluent [17].

It is evident that there is a need for more efficient and reliable decentralized wastewater treatment
solutions. Modifications of septic tank design have been proposed in different studies in order
to improve onsite wastewater system performance. For example, changing septic tank retention
times and including packing materials have been suggested [6,18,19]. Other studies investigated the
effects of baffles on the treatment process and the results showed that increased number of baffles
resulted in enhanced treatment performance [6,20,21]. Generally, most septic tank modifications were
suggested to enhance the performance of the septic system. However, if a septic tank is recognized
as a stand-alone treatment unit, rational modification should be considered. This paper aims at
evaluating the performance of two modified septic tanks (MSTs) designed as onsite systems for treating
domestic wastewater. This project demonstrates a modern low-cost onsite wastewater treatment
technology tested at varying hydraulic loading rates with both attached growth and suspended growth
biological treatment.

2. Materials and Methods

This paper reflects actual experimental work ranging from developing the idea, to designing and
constructing onsite systems, to testing and analyzing the performance of these systems. The two onsite
treatment units were designed and constructed within the Competence Facility for Decentralized
Wastewater Management—SMART Project in Jordan [22]. The two units were built using reinforced
concrete with proper mechanical and electrical connections. Each unit has a total working volume of
5700 L and consists of four equally sized chambers connected in series; with the first three chambers
operated under anaerobic conditions with a total volume of 4275 L. The fourth chamber consists
of an aeration chamber and settling tank with working volumes of 950 and 475 L, respectively.
Water depth in all chambers was 1.5 m. Air is supplied for 15 min intermittently (every other 15 min)
to the aeration chamber via a plate diffuser using a 0.18 KW blower. Figure 1 shows the general layout
of the MST system.
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Figure 1. Schematic diagram of the modified septic tank (MST) system.

The MST is designed to allow gravity flow between the compartments. The treatment in one
MST was designed as a suspended growth system (MST-S), while the other one was designed as
an attached growth system (MST-A). In the MST-A system, all chambers (except the first one) were
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filled with fixed bed media (corrugated plastic media with a specific area of 100 m2/m3) filled to 2/3
of the tank working capacity. Both of these MSTs were operated in parallel, so that their performances
can be compared.

The MST systems were initially designed to receive an average wastewater flow of 1.2 m3/d.
Raw wastewater was obtained from the forebay of a nearby centralized domestic wastewater treatment
plant after bar screening and grit removal. The wastewater dosing was controlled by an electromagnetic
flowmeter connected to programmable logic controller (PLC) SIEMENS-SIMATIC S7-200. Within the
MST, the water flow pattern between the chambers resembles the plug flow pattern to minimize short
circuiting. While oxygen is limited in the anaerobic chambers, oxygen concentration in the aeration
chamber was set to remain above 2 mg/L during the aeration period to ensure that oxygen is not
a limiting factor in the treatment process. The aerated chamber is equipped with an integrated settling
tank, so that the mixed liquor suspended solids are settled and the supernatant (effluent) is flowing
free of solid downstream to the irrigation tank. The configuration of aeration and settling tank was
designed such that the settled sludge is returned continuously to the aeration tank. The plants were
equipped with several by-passes, fittings, and valves, so that the mode of operation can be easily
changed and adjusted.

Initially, the MST systems were operated with a hydraulic loading of 1.2 m3/d (Phase 1). However,
the systems were further investigated under higher loading rates of 1.6 and 2.0 m3/d (Phases 2 and 3,
respectively). At each loading rate, the investigation was carried out for a period of 26 weeks. Between
any two loading phases MSTs were not sampled for a period of four weeks in order to allow the
systems to develop a steady state condition. Table 1 shows the summary of the hydraulic loading rates
and the detention times in the MST chambers for each investigation phase.

Table 1. Wastewater loading at different investigation phases.

Phase Loading Rate (m3/d)
Detention Time in Anaerobic

Chambers (d)
Detention Time in the
Aerobic Chamber (d)

1 1.2 3.56 0.79
2 1.6 2.67 0.59
3 2.0 2.14 0.47

Inflow and outflow of MST-S and MST-A were monitored weekly and evaluated for a number of
parameters. A wastewater sample volume of 500 mL from each system was collected and analyzed
for temperature, pH, electrical conductivity (EC), dissolved oxygen (DO), and Oxidation Reduction
Potential (ORP). A WTW multi-meter was used to measure ORP and DO, while a WTW ProfiLine-Cond
3110 (Xylem Analytics, Weilheim, Germany) probe was used to measure the EC, pH and temperature.
Subsequently, 25 mL of wastewater samples were filtered (using a 0.45 µm membrane filter) for further
analysis of chemical oxygen demand (COD), ammonia (NH4

+), nitrate (NO3
−), and orthophosphate

(PO4
3−) using LCK test kits and HACH spectrophotometer model 2800. Biochemical oxygen demand

(BOD5) was measured using OxiTop® manometric OC 100, following the German standard DIN 38
409 H52. Total suspended solid (TSS) concentration was analyzed according to the Standard Methods
for Examination of Water and Wastewater [23]. Finally, E. coli was measured using the IDEXXTM
Colilert-18 Quanti-tray method according to the manufacturer’s specifications.

3. Results and Discussion

The analysis results of pH, EC, DO, ORP, turbidity, and TSS for the three phases are summarized
in Table 2. Each value in this table represents an average of 26 weeks of investigation. Under all loading
conditions, pH values were found to be in an acceptable range for wastewater effluent (pH values of
6–9) [24]. It was also observed that no significant changes in pH values during the treatment process
were noted compared with raw wastewater pH values, indicating a good buffering capacity of the
wastewater. Effluent EC values also showed no reduction during treatment but consistently remained
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below the Jordanian Standards No. JS893/2006, for reclaimed domestic wastewater; indicating
acceptable salt content in the wastewater for reuse purposes (EC < 3000 µS/cm) [25].

Table 2 shows also the development and change of the ORP at the different phases. The higher
negative ORP values of raw wastewater indicate clearly the anaerobic character of the influent water.
Due to the aeration in the last chamber, ORP values in both systems were significantly increased
indicating a well aerated effluent. However, a slightly higher ORP values in MST-A compared to
MST-S indicates a higher treatment efficiency of MST-A [26]. Table 2 shows the temperature of
wastewater over the entire phases of investigation. The average temperature of raw wastewater during
the three phases (78 weeks) was 19.8 ± 3.8 ◦C. The location where the systems were installed and
tested exhibits moderate climate with low inter-annual variability in temperature. Thus, temperature
had minimal influence on the tested parameters.

The results in Table 2 also show that both systems were able to produce clear water based on
low TSS concentrations and turbidity as opposed to the conventional septic tank, where high effluent
solids represent the main cause for most dysfunctional septic systems [7]. The results show two trends
of solid concentration in the effluent. TSS concentrations and turbidity were significantly lower in
MST-A than in MST-S effluents, suggesting that the attached growth media plays a significant role in
either filtering or trapping suspended solids. Lower TSS concentrations were observed as hydraulic
loading increased for MST-A, but remained almost constant for MST-S. There was no clear correlation
between turbidity and hydraulic loading, however.

One of the main objectives of this investigation was to evaluate the MST systems for their capacity
to reduce the organic loading. Accordingly, the pilot plants were monitored for carbonaceous oxygen
demand in the effluents. Figures 2 and 3 show the results of BOD5 and COD concentrations for MST-A
and MST-S under a hydraulic loading rate of 1.2 m3/d over the entire investigation period. It is clearly
observed that both systems were able to significantly reduce carbonaceous content of wastewater
(BOD5 and COD) to a secondary treatment level [27]. The wastewater effluent quality even meets the
strict Jordanian Reuse Standards for Irrigation (JS893/2006) [25] of BOD5 and COD concentrations of
30 and 100 mg/L, respectively.

Table 2. Results of physical wastewater parameters for all treatment systems and phases.

Phase Parameter Raw Wastewater MST-A Effluent MST-S Effluent

1

pH 7.9 ± 0.1 8.0 ± 0.1 8.1 ± 0.2
EC (µS/cm) 1864 ± 516 1798 ± 588 1917 ± 542
DO (mg/L) 0.1 ± 0.1 3.7 ± 0.6 2.1 ± 1.0
ORP (mV) −236 ± 27 −57 ± 73 149 ± 65

TSS (mg/L) 314 ± 168 7 ± 4 18 ± 8
Turbidity (NTU) 997 ± 225 9 ± 6 59 ± 10
Temperature (◦C) 19.9 ± 3.3 19.5 ± 3.9 19.4 ± 3.7

2

pH 7.5 ± 0.2 7.7 ± 0.2 7.5 ± 0.3
EC (µS/cm) 2470 ± 399 2357 ± 578 2468 ± 389
DO (mg/L) 1.0 ± 1.3 3.6 ± 1.9 3.3 ± 1.3
ORP (mV) −208 ± 49 −1 ± 108 −107 ± 98

TSS (mg/L) 239 ± 107 13 ± 6 18 ± 10
Turbidity (NTU) 317 ± 161 30 ± 26 43 ± 61
Temperature (◦C) 18.2 ± 2.8 17.8 ± 3.5 17.6 ± 3.2

3

pH 7.2 ± 0.2 7.7 ± 0.2 7.5 ± 0.2
EC (µS/cm) 2016 ± 513 2125 ± 624 2011 ± 680
DO (mg/L) 0.8 ± 0.3 3.2 ± 1.5 3.5 ± 2.9
ORP (mV) −239 ± 31 −39 ± 126 −120 ± 110

TSS (mg/L) 267 ± 360 16 ± 4 19 ± 6
Turbidity (NTU) 283 ± 76 22 ± 17 34 ± 24
Temperature (◦C) 21.4 ± 3.3 21.4 ± 3.5 21.3 ± 3.3
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Moreover, Figures 2 and 3 show also that in spite of highly fluctuating quality of the influent
wastewater, the effluent quality remained stable over the period of investigation. This shows the
capacity of the MST systems to absorb the normal shock loading usually experienced in onsite
systems [28]. It is also clearly seen that the MST-A produced a slightly better quality effluent than
MST-S, which is attributed to the robustness of attached growth systems [29]. As opposed to the
conclusion of Meuler et al. [16], who stated that only about 40% of the BOD5 is removed in septic tanks,
both of MST systems have gone much further and achieved removal rates of more than 95%.
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Figure 2. BOD5 concentration with time in attached growth system (MST-A) and suspended growth
system (MST-S) at hydraulic loading of 1.2 m3/d.
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Figure 3. Chemical oxygen demand (COD) concentration with time in MST-A and MST-S at hydraulic
loading of 1.2 m3/d.

As a result of increased interest in nutrient concentrations in wastewater effluent, the monitoring
included both nitrogen and phosphorous constituents. Nitrate is a very important parameter that
indicates the efficiency of a treatment system to remove nitrogenous compounds from wastewater [30].
The results of nitrate (NO3-N) concentration for both systems under a hydraulic loading of 1.2 m3/d
over the entire investigation period are shown in Figure 4. The very low nitrate concentration in
the influent wastewater is expected in domestic wastewater as most of the nitrogen compounds are
present as organic nitrogen or ammonia nitrogen [30]. The increase in the nitrate concentration in the
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effluents reflects the nitrification capacity of both systems. Nitrification in the attached growth system
is, however, more stable than in the suspended growth system. This is attributed to the numerous
nitrifying bacteria in the biofilm in the attached growth systems compared to those in the bioflocs of
the suspended growth system [11]. Under a hydraulic loading of 1.2 m3/d, the average effluent nitrate
concentrations for MST-A and MST-S are 14.9 and 8.2 mg/L, respectively. Though these values seem
to be relatively low, some nitrate-vulnerable areas requires certain measures to further decrease the
nitrate concentration (i.e., denitrification). In many areas around the world, where water is scarce and
wastewater is deemed to be a resource for irrigation, high nitrate concentrations can be beneficial for
agriculture and reduce the dependence on chemical fertilizers [30].
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Total nitrogen (TN) concentrations were also monitored and the results for the two systems
operated at hydraulic loading of 1.2 m3/d are shown in Figure 5. The results clearly show that both
systems were able to reduce the total nitrogen concentration with higher (better) performance for the
MST-A. Nevertheless, if more TN reduction is required, measures to enhance denitrification should be
considered. As previously mentioned, each MST is equipped with a return line connecting the aerobic
chamber with the first anaerobic compartment. This line was not utilized in this investigation and
should be used in future research work.
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Similarly, phosphorous concentration was monitored and the results of total phosphorous (TP)
for both systems operated at hydraulic loading of 1.2 m3/d are shown in Figure 6. The results show
that there were small decreases in TP concentration in both systems. This can be seen by comparing
the average TP concentration in raw wastewater (12.9 ± 3.1 mg/L) with the effluent average of MST-A
and MST-B (9.7 ± 6.7 and 9.4 ± 1.9 mg/L, respectively). The 24–27% average reduction in TP is likely
due to the settling of organic phosphorus associated with TSS.
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Figure 6. Total phosphorous (TP) concentration with time in MST-A and MST-S at hydraulic loading of
1.2 m3/d.

Bacteriological load in the form of E. coli was another parameter used to evaluate the system’s
performance. The results of E. coli monitoring for both systems operated at 1.2 m3/d are shown in
Figure 7. Logarithmic values were plotted in order to graphically show the log reduction in E. coli
concentrations. The results show clearly that both MST systems were able to significantly decrease the
E. coli concentration. Two logs of E. coli reduction was achieved by MST-S, while only approximately
one log was achieved for MST-A. The higher E. coli reduction in MST-S could be attributed to the
formation of bioflocs that can agglomerate the free swimming bacteria, including E. coli, and settle
them out in the sedimentation tank. Though the MST-S showed higher performance compared to the
MST-A, E. coli concentrations in both effluents were very high and thus tertiary treatment is required.
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The investigations in Phases 2 and 3 are similar to those carried out in Phase 1 and were designed
to examine the capability of the treatment systems to operate under elevated hydraulic loadings (1.6
and 2.0 m3/d). The purpose of this investigation was to reveal the upper limits of the system at which
wastewater can be properly treated. This can significantly affect the construction cost and energy
consumption for the treatment systems.

The results of the three investigation phases for both systems are summarized in Table 3. Each
value in this table represents an average of 26 weeks of investigation. The results show that both
MST systems were able to operate under elevated hydraulic loadings with almost double the design
capacity. The quality of the wastewater effluent was found to comply with the Jordanian standards
except for E. coli [27]. This nonconformity is expected in most decentralized systems and, therefore,
tertiary treatment is usually suggested (ex. UV, hypochlorite or chlorine disinfection) whenever reuse
is required [31].

Table 3. Results of chemical and biological wastewater parameters for all treatment systems and phases.

Phase Parameter Raw Wastewater MST-A Effluent MST-S Effluent

1

BOD5 (mg/L) 481 ± 83 8 ± 3 14 ± 6
COD (mg/L) 918 ± 314 55± 18 84 ± 30
TN (mg/L) 114.0 ± 29.6 46.6 ± 26.5 81.1 ± 21.9

NH4-N (mg/L) 69.9 ± 32.3 8.8 ± 31.9 6.7 ± 18.7
NO3-N (mg/L) 0.7 ± 0.3 14.9 ± 6.7 8.2 ± 7.0

TP (mg/L) 12.9 ± 3.1 9.7 ± 6.7 9.4 ± 1.9
PO4-P (mg/L) 7.7 ± 3.7 8.1 ± 3.3 7.4 ± 2.7

E. coli (MPN/100 mL) 1.3 × 107 ± 5.6 × 106 2.6 × 105 ± 1.3 × 105 1.3 × 104 ± 1.2 × 103

2

BOD5 (mg/L) 336 ± 64 18 ± 15 14 ± 11
COD (mg/L) 627 ± 158 58 ± 20 70 ± 26
TN (mg/L) 64.7 ± 14.8 43.5 ± 15.4 73.9 ± 34.1

NH4-N (mg/L) 52.2 ± 14.0 23.2 ± 15.1 13.4 ± 11.7
NO3-N (mg/L) 0.4 ± 0.2 7.2 ± 5.1 13.1 ± 15.2

TP (mg/L) 7.1 ± 2.0 6.7 ± 1.5 6.6 ± 1.4
PO4-P (mg/L) 5.7 ± 2.2 6.8 ± 1.6 6.6 ± 1.4

E. coli (MPN/100 mL) 1.3 × 107 ± 3.0 × 105 4.2 × 105 ± 3.3 × 105 3.2 × 104 ± 4.3 × 104

3

BOD5 (mg/L) 469 ± 62 25 ± 5 23 ± 36
COD (mg/L) 770 ± 183 88 ± 35 95 ± 36
TN (mg/L) 84.6 ± 24.5 62.8 ± 17.1 66.1 ± 15.9

NH4-N (mg/L) 70.8 ± 15.6 39.8 ± 22.2 39.2 ± 19.6
NO3-N (mg/L) 0.5 ± 0.1 7.4 ± 6.7 9.3 ± 11.2

TP (mg/L) 9.8 ± 2.8 9.5 ± 2.5 9.0 ± 2.2
PO4-P (mg/L) 8.0 ± 2.9 8.3 ± 2.7 8.2 ± 2.3

E. coli (MPN/100 mL) 3.0 × 107 ± 3.0 × 106 2.2 × 105 ± 8.4 × 104 2.7 × 104 ± 1.5 × 104

Table 3 also shows that the effluent quality of the MST-A system was better than the MST-S
system. The difference in the system performance can be clearly seen in the nitrate and total nitrogen
concentrations. Under a hydraulic loading of 1.2 m3/d (Phase 1), the total nitrogen concentration
was almost 50% less in the attached growth system than in the suspended growth one. The enhanced
nitrogen removal suggests both nitrifying and denitrifying biofilm on the media [32].

The MSTs were also analyzed for their energy requirements. As wastewater flows by gravity in
and out of the systems, the only energy-consuming part in both tanks are the blowers. Equation (1) is
used to calculate the specific power consumption based on the capacity of the blowers and the served
population equivalent.

sPC =
PB·N
PE

(1)

where sPC is the specific power consumption per capita per year (KW/c.y), PB is the power capacity
of the blower (kW), N is the number of operational hours in a year (h), and PE is the population
equivalent.

The energy consumption in the different phases described as kilowatt hours per person per
year (kWh/c.y) was calculated using Equation (1) based on the blower capacity, time of operation,
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and population equivalent. The results are shown in Table 4. As clearly observed, energy requirement
for the modified septic system operated at elevated hydraulic loading can be notably reduced making
this system a low cost technology. The energy consumption of the MST under a hydraulic loading rate
of 2 m3/d is very well matched with accepted values in modern wastewater treatment facilities [33].
Beside the advantage of low energy requirement, the MST systems demonstrated less operation and
maintenance requirements and lower construction and operation costs than more mechanized systems.

Table 4. Comparison of energy requirements under different hydraulic loadings.

Hydraulic Loading, m3/d Energy Requirement, kWh/c.y

1.2 65
1.6 49
2.0 39

4. Conclusions

Two innovative modified septic tank systems were designed as stand-alone technologies to treat
domestic wastewater. Configurations with and without attached growth media were evaluated and
demonstrated significant treatment capacities with 95–98% BOD and 92–98% TSS removal observed
at hydraulic retention times ranging from 2.6 to 4.4 days. Significant nitrogen removal of 59% was
observed in the attached growth system at 2.6 d HRT, while results varied between 26–33% removal at
higher loading rates and between 0–29% in the suspended growth configuration. Effluent quality met
secondary wastewater quality criteria as well as the Jordanian standard for wastewater reuse for all
parameters except for E. coli, where further disinfection is required. Corrugated plastic fixed growth
media showed a slight improvement in system performance over the suspended growth alternative.
This study revealed that the modified septic tank system can be used as a low cost system due to its
low energy requirement.
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