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Abstract: Substantial research has been carried out on sustainable waste activated sludge (WAS)
management in the last decade. In addition to the traditional approach to reduce its production
volume, considering WAS as a feedstock to produce bio-products such as amino acids, proteins,
short chain fatty acids, enzymes, bio-pesticides, bio-plastics, bio-flocculants and bio-surfactants
represents a key component in the transformation of wastewater treatment plants into biorefineries.
The quality of these bio-products is a key factor with respect to the feasibility of non-conventional
WAS-based production processes. This review provides a critical assessment of the production
process routes of a wide range of value-added products from WAS, their current limitations,
and recommendations for future research to help promote more sustainable management of this
under-utilised and ever-growing waste stream.
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1. Introduction

Waste activated sludge (WAS) is a by-product of today’s activated sludge-based wastewater
treatment and presents a major ongoing disposal challenge for water management authorities
worldwide. For example, based on 2015 United Nations global population data, reported rates
of population sewerage and wastewater treatment [1] combined with per capita biosolids production
rates for the United States [2], Europe and Asia [3], current global biosolids production rates are
estimated at 25–60 Mt dry solids/year. With appreciable future expansion in global wastewater
collection and treatment expected over the coming decades in line with global development and
sanitation objectives [4] and in the face of burgeoning advanced wastewater treatment rollout across
Asia, the burden of WAS as a waste product is set to increase, such that more sustainable alternate
management paradigms are urgently needed.

Conventional WAS has long been reused in agriculture, such as land application or conditioning,
however, concerns about offensive odours and disease risks from pathogens and toxic chemicals
has restricted the scale and public acceptance of such practice [5]. Sustainable WAS management
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involves the recovery and reuse of valuable products and the minimisation of the possible adverse
impact of sewage sludge on both environmental and human health. Because of its high organic matter
and nutrient content, sustainable WAS management has traditionally been applied in agricultural
land or as the feedstock to produce methane via anaerobic digestion, in particular when mixed with
primary sludge. Despite its high organic content and potentially valuable constituents, WAS remains
an under-utilised resource and is often disposed of in landfills or given low value end-uses like mine
site rehabilitation [6]. The presence of detectable amounts of contaminants in treated sewage sludge
(concentrations of µg/kg to mg/kg) has led to the concerns that land application of WAS derived from
urban wastewater treatment activities may result in an accumulation of contaminants in the soil and
groundwater as secondary pollution and their subsequent translocation through the food chain may
impact public health [7]. Another popular sustainable route for WAS management is the generation of
electricity via incineration and thermal energy recovery [8]; however, due to high energy consumption
owing to high moisture content and low heating value of biosolids, additional fuel is required for
maintenance of incineration facilities [9]. Post-incineration carbon residues can also be utilised as
alternative construction materials (e.g., brick manufacture and turf production) or adsorbents for
environmental applications [10,11].

The composition of WAS can be typically characterised by six groups of components: (1) non-toxic
organic carbon compounds (approximately 60% on dry weight basis), including extracellular proteins
and polysaccharides (carbohydrates), either in pure form or in conjugation with other compounds,
such as glycoproteins, rhamnolipids, lipoproteins Kjeldahl-N and phosphorus containing components;
(2) heavy metals, such as Zn, Pb, Cu, Cr, Ni, Cd, Hg, and As (concentrations vary from <1 ppm to
>1000 ppm); (3) toxic organic compounds, PCBs, PAHs, dioxins, pesticides, endocrine disrupters,
linear-alkyl-sulfonates, nonyl-phenols, etc.; (4) bacteria and other higher organisms, microbial
pathogens and associated microbiological metabolites; (5) inorganic compounds such as silicates,
aluminates, calcium and magnesium containing compounds; and (6) water, varying from a few percent
to >95%.

The fundamental challenge to any successful biorefinery approach involving WAS is attributed to
the fact that all these compounds are present in a single complex and heterogeneous mixture. Therefore,
the aim of this review is to highlight the potential for recovering a range of value-added products from
WAS which we have categorised into six groups: (1) amino acids and protein; (2) short chain fatty
acids; (3) enzymes; (4) bio-pesticides; (5) bio-plastics; (6) bio-flocculants; and bio-surfactants.

2. Amino Acids and Proteins

WAS can be harvested as a protein or amino acid source, since the principal constituents of its
organic matter consist of complex compounds in the form of lipids, polysaccharides and proteins
(70–80% combined), of which the protein fraction accounts for around 50% of the dry weight for
bacterial cells [12]. Therefore, WAS-derived protein has significant potential to be utilised as the main
constituent for the production of animal feeds compared with traditional protein sources (see Table 1),
although effective detoxifications of sludge (i.e., sterilisation, removal of heavy metals and other
toxicants) should necessarily be carried out [13].

The key step in recovering protein from WAS is the effective solubilisation of intracellular
materials, on which a variety of extraction methods found in the literatures are based. One of the
simplest methods is thermal digestion followed by centrifugal separation. Thermal digestion can
increase WAS dewaterability, which results from breaking sludge flocs and lysing of microbial cell
walls. The most notable benefits are: (1) low treatment cost, particularly effective heat exchange;
(2) no additional reagents required; and (3) no additional waste stream generated. However, thermal
extraction has the inherent disadvantage of not being able to remove heavy metals and some toxic
organics present in WAS [14].
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Table 1. Comparison of amino acid distribution in WAS with the content in single cell proteins and
conventional feed meals (adapted from [15]).

Amino Acid WAS Soybean Meal White Fish Meal FAO Ref. Protein Wheat Whole Egg

Alanine 7.3 - - - - -
Glycine 4.9 - - - - -
Valine 4.1 5.2 4.7 4.2 4.4 7.3

Threonine 4.2 4.4 3.8 2.8 2.9 5.1
Serine 3.4 - - - - -

Leucine 5.6 7.6 6.5 4.8 6.7 8.9
Isoleucine 2.7 5.8 3.9 4.2 3.3 6.7

Proline 3.1 - - - - -
Methionine 1.45 1.3 2.9 2.2 1.5 3.2
Aspatic acid 8.3 - - - - -

Phenylalanine 3.1 5.3 3.5 2.8 4.5 5.8
Glutamic acid 8.1 - - - - -

Lysine 3.3 6.6 7.6 4.2 2.8 6.5
Tyrosine 2.4 4.1 3 2.8 - -
Arginine 2.9 7.3 6.8 - - -
Histidine 0.6 2.7 2 - - -
Cystine 2.1 1.2 0.7 2 2.5 2.4

Tryptophan 0.8 1.3 0.9 1.4 1.1 1.6

Accordingly, more chemically-sophisticated processes have been developed—to accommodate
increasingly stringent feed health and safety criteria. Early work by Chishti et al. studied alkali
solubilisation process using NaOH and NaCl followed by precipitation for protein extraction from
WAS [16]. Hydrochloric acid, sodium lignosulphate, sulphuric acid, acetic acid and ammonium
sulphate were tested as precipitants, among which ammonium sulphate (40%) was observed to be
most effective, providing maximum protein recovery (around 91%). Hwang et al. later applied a
hybrid process of ultrasonic-alkaline pretreatment followed by precipitation and drying to release and
subsequently recover the intracellular protein from WAS [17]. The supernatant protein concentration
was observed to be 3178 mg/L after pretreatment of WAS (5330 mg/L TSS) after treating the substrate
with ultrasound (1.65 × 1010 kJ/kg VSS) at pH 12 for 2 h. Zhang et al. reported a method of enzyme
(i.e., papain)-assisted hydrolysis to extract protein from WAS in the Shanghai Qingpu sewage treatment
plant, China [18]. Optimal conditions of the papain-assisted hydrolysis process were described as
having an enzyme/substrate ratio of 6%, pH 6.5, liquid-to-solid ratio 4:1, hydrolysis time of 5.5 h and
a hydrolysis temperature of 55 ◦C. These studies demonstrated that the recovered products contained
all the necessary amino acids as compared with commercially-available protein feeds and thus could
serve as an animal feed supplement. More importantly, all methods reported in these studies lowered
the heavy metal content of the original WAS considerably through alkaline precipitation. With the
ultrasonic-alkaline method, Hwang et al. even achieved non-detectable levels of other contaminants
of concern such as aflatoxin B1, ochratoxin A and Salmonella D group organisms [17]. Ras et al.
investigated the efficiency of mechanical (i.e., ultraturax or sonication) and chemical (i.e., cationic
exchange resin and triton) treatments on protein extraction from two activated sludges, as well as their
compatibility with usual quantification methods [19]. Comparison of various extraction protocols,
combining mechanical and/or chemical treatments, demonstrated that. by repeating a similar approach
or by employing a prior mechanical treatment, the efficiency can be increased. Proteins were preferably
extracted by triton treatments, which showed the importance of hydrophobic interactions linking
proteins to the extracellular polymer substance (EPS) matrix. The amount of extracted proteins
was, respectively, up to 182 and 148 mg eq. BSA g−1 VSS using triton/triton and ultraturax/triton
extractions. In addition, depending on extraction protocols, protease activity/extracted protein
ratios vary widely. Protease observed to be preferably extracted by ultrasound and triton treatments
(150–220 U mg−1 protein).

Detergents have also been observed to be effective protein extraction agents, but large amounts
are usually required, limiting their feasibility. For example, sodium dodecylsulfate (SDS) can extract up
to 3 mg protein/mL from sludge samples with 5% solids; however, the SDS requirement is >2% wt/vol
and SDS is also notoriously difficult to remove from protein preparations post-extraction. Sodium
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palmitate is another detergent that, unlike SDS, can be readily removed by organic solvent extraction
at low pH. Combined with alkali (e.g., 0.15 mM NaOH), sodium palmitate can achieve up to 15 mg
protein/mL from WAS with 5% solids solubilised [20].

Protein recovered from WAS has also reportedly been used to produce amino acid-chelated
trace element (AACTE) fertilizers, which at the moment is recognised as an environmentally friendly
fertilizer for cotton, fruits and other cash crops in China [18]; however, its production is restricted by
other limited protein sources such as animal hair, hoof, horn and leather [21]. Liu et al. reported a novel
process for bacterial protein extraction from sewage sludge to generate AACTE fertilizer involving
five critical steps: acidic hydrolysis; purification through activated carbon decolourisation and glacial
acetic acid dissolution; chelating with trace elements (i.e., Zn, Cu, Fe, Mn, Mo and B); centrifugal
separation; and evaporation [22]. Optimal conditions were obtained for protein extraction from WAS
at pH 0.5, a hydrolysis temperature of 121 ◦C for 5 h, while that for protein hydrolysis into amino acids
was 121 ◦C hydrolysis temperature for 10 h and the ratio of 6 mol/L HCl solution to 8 g dry sludge.
Under optimum hydrolysis conditions, 78.5% of protein was extracted from the sewage sludge and
the amino acids yield was 10–13 g/100 g of dry sludge.

One reportedly novel use of WAS-derived amino acids is as an environmentally-friendly corrosion
inhibitor for industrial pickling, due to their amphiphilic molecular structure containing amino and
carboxyl groups. Application of amino acids as effective inhibitors to control corrosive reactions
in several different metals in acidic media has been verified by a series of investigations [23–26].
Using an ultrasonic-assisted hydrochloric acid hydrothermal method, Su et al. reported a total of
50 different amino acids in the obtained hydrolysate, which can be readily adsorbed onto steel surfaces
through hydrophilic (-COOH) and hydrophobic (-NH2) groups and result in the stable formation of
protective film [27]. Corrosion testing of steel surfaces with and without amino acid surface coating
pre-treatment showed a reduction in surface roughness and a six-fold lower corrosion rate (Figure 1).
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Figure 1. SEM images of steel surfaces under different corrosion testing conditions: (a) polished
sample before testing; (b) sample immersed in the corrosion solution (HCl, 10 wt.%) without amino
acid pre-treatment; and (c) sample immersed in the corrosion solution with 0.090 g L−1 amino acid
pre-treatment for 2 h [27].

Protein recovery from secondary WAS from a paper mill can also be used as an eco-friendly source
of wood adhesive. For example, Pervaiz and Sain used an alkaline cell-disruptive technique—similar
to that of Hwang et al. (2008)—to extract protein, with the end product achieving up to 41% the
shear strength of traditional protein-based wood adhesive such as soy protein isolate and phenol
formaldehyde resin [28].

3. Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs) such as acetic acid, formic acid and propionic acids can be
recovered from WAS using anaerobic digestion, or thermal processes such as wet air oxidation and
hydrothermal treatment [29]. The recovered SCFAs can serve as a chemical feedstock and be converted
to a range of chemicals (e.g., ketones, carboxylic acids, esters, and ethers) and fuels (e.g., primary
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alcohols, secondary alcohols, and hydrocarbons). Research on SCFAs production from WAS-derived
media is summarised in Table 2.

During the anaerobic digestion of WAS, the following occur in sequence: (1) hydrolysis;
(2) acidogenesis; (3) acetogenesis; and (4) methanogenesis. The accumulation of SCFAs can be
increased if the first two steps are accelerated; temperature, sludge retention time and pH are
the main factors influencing the first two steps. Alkaline conditions are also beneficial by way of
increased sludge solubilisation (i.e., chemical effect), as well as increasing the abundance of major
bacteria involved in sludge hydrolysis and acidification (i.e., biological effect) [30,31], although no
consensus has been reached on which of these effects is the leading cause [32]. Liu et al. studied
the effect of ultrasonic pre-treatment of WAS and the impact of digestion temperature on SCFAs
accumulation during anaerobic digestion and examined during anaerobic digestion [33]. The authors
reported that a moderate temperature (35 ◦C) was optimal under alkaline conditions (pH 10) and
that the changes to protease activity showed that, in the initial phase, ultrasonic pre-treatment
and alkaline adjustment rather than biotic effects was the leading cause of SCFAs improvement
in alkaline conditions. Clostridium and Bacillus (phylum Firmicutes) and Gammaproteobacteria (phylum
Proteobacteria) were found to be the dominant functional bacteria for high SCFAs accumulation.
The last step of methanogenesis usually should be inhibited during the anaerobic digestion of
WAS to enhance the SCFAs production, which can be achieved by adding a methane analogue,
for example, iodoform [34]. Li et al. reported on the effect of CaO2 as an additive for enhanced
SCFAs production during anaerobic digestion of WAS. The promoting effect of CaO2 addition was
reported to be two-fold: (1) alkalinity increased by Ca(OH)2 formation; and (2) extra oxygen released
through its slow decomposition in aqueous environments, which can stimulate beneficial bacterial
growth and enhance their microbiological processes, while also potentially inhibiting anaerobic
methanogens [35]. For example, members of the phylum Firmicutes were found to increase significantly
with the addition of CaO2 and the fraction of acetic acids was observed to increase relative to the
total SCFAs produced (from 45.1 to 60.2%). In addition to the promoting effects on SCFAs production,
hydroxyl radicals released by CaO2 can also effectively remove refractory organic contaminants
(e.g., endocrine-disrupting chemicals [36]), which could further enhance its usefulness as a feedstock
for livestock production.

Jiang et al. examined a biological process for SCFAs production from WAS in the presence of
chemical surfactant (i.e., sodium dodecylbenzene sulfonate (SDBS)) [37]. They demonstrated the
impact of SDBS on SCFA generation from WAS, and consequently the potential of using fermentative
SCFAs to promote enhanced biological phosphorus removal. Results revealed that, in the presence of
SDBS at room temperature and a fermentation time of sox days, total SCFA production considerably
increased to 2599 mg COD/L compared to 339 mg COD/L without SDBS addition. The authors
suggested that during WAS fermentation, solubilisation and hydrolysis of sludge particulate organic
carbon as well as acidification of hydrolysed products were all enhanced in the presence of SDBS.
Thereafter, and because of reduced methanogenesis, the production of SCFAs was markedly enhanced.
The authors also verified that the observed improvement in SCFA generation with SDBS addition was
mainly due to biological effects, rather than by chemical effects and SDBS decomposition.

Hydrothermal recovery of SCFAs from WAS generally proceeds in two critical steps: (1) hydrolysis,
which results in the formation and accumulation of dissolved organics; and (2) oxidation
(e.g., by hydrogen peroxide), which can facilitate carbon abstraction and oxygenation involving
the hydroxyl radicals [38]. As a modification, the use of microwave radiation as an alternate heating
source combined with hydrogen peroxide and sulfuric acid as the oxidants for SCFAs recovery has also
been reported [39]. Microwave radiation can lead to a combination of thermal and non-thermal effects
on cell disruption, and possible release of cellular organic matter [40,41]. Intracellular liquid heating to
boiling point leads to the thermal effect, increasing kinetic energy as molecular rotation [42], while the
non-thermal effect causes the disruption of hydrogen bonds due to the polarisation of macromolecule
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chains aligning with electromagnetic poles [43]. The addition of hydrogen peroxide and acids during
this treatment can further help solubilize WAS solids, and release ammonia and phosphorus.

Lipid production from WAS has also attracted attention for biodiesel production. Dufreche et al.
(2007) emphasised the potential of sludge as a cheap feedstock for biodiesel due to its high amount
of lipids [44]. They have used solvents (i.e., n-hexane, methanol, acetone, and supercritical CO2) for
lipid extraction. They showed that use of polar solvents gave a considerably increased yield while the
gravimetric yield of oil was low for nonpolar solvents. Extraction of lipids with a mixture of n-hexane,
methanol, and acetone (i.e., polar solvents) gave the largest conversion to biodiesel (around 4.41%
based on total dry weight of sludge) compared with other nonpolar solvents. In their study, in situ
transesterification of dried sludge resulted in a yield of 6.23%. Based on data acquired, they claim
that outfitting 50% of municipal wastewater treatment plants for lipid extraction from sludge and
transesterification could contributed to replacement of 0.5% of the national petroleum diesel demand
in US (0.7 × 106 m3 year−1) by biodiesel produced. Huynh et al. (2010) profiled the amount of
neutral lipids and fatty acid in neutral lipids extracted from activated sludge pretreated with or
without sub-critical water (SCW) treatment [45]. Results indicated that the amount of neutral lipid
extracted from SCW-treated activated sludge was nearly four times more than the process without
SCW treatment. At least 14 kinds of fatty acids were identified in the neutral lipids of sludge oil,
although there was no considerable difference between the fatty acid profiles of neutral lipids obtained
from activated sludge with and without SCW treatment. Kwon et al. (2012), following a laboratory
assessment of biodiesel production from WAS using a thermochemical process under ambient pressure,
further demonstrated the high lipid yields and viability of WAS-based biodiesel production, with yields
in the order of 980,000 L ha−1 year−1 possible, some 100 to 1000-fold greater than other feedstocks
such as microalgal and soybean oil [46]. Based on the remarkably high oil yield and low cost of
WAS-derived oil (US$ 0.03 L−1) compared to conventional biofuel feedstocks as well as petroleum
diesel (US$ 0.80 L−1), the authors highlighted the considerable potential for sustainable WAS-based
biodiesel production [47].

Table 2. Reported laboratory-scale studies for SCFAs production from WAS-derived media.

SCFAs Composition Yield Fermentation Conditions Medium References

Acetic, butyric, valeric and
propionic acid Max 520.1 mg/g VSS 21 ± 1 ◦C, pH 8, 8 days Wastewater sludge [48]

Acetic, butyric, valeric and
propionic acid Max 2599.1 mg/L 21 ± 1 ◦C, pH 7.2, 6 days Wastewater sludge [37]

Acetic, butyric, valeric and
propionic acid Max 319.8 mg/g VSS 15–55 ◦C, pH 10 ± 0.3, 48 days Wastewater sludge [49]

Acetic, butyric, valeric and
propionic acid 450–790 mg/g VSS 55 ◦C, pH 7, 1 rpm, 28 days Wastewater and bagasse [34]

Acetic, butyric, valeric and
propionic acid Max 284 mg/g VSS 35 ± 1 ◦C, pH 7, 200 rpm, 7 days Wastewater sludge [35]

Acetic, butyric, valeric and
propionic acid 345.49–2708.02 mg/L 21 ± 1 ◦C, pH 4–11, 80 rpm, 20 days Wastewater sludge [31]

Acetic, butyric, valeric and
propionic acid Max 256.2 mg/g VSS 20–22 ◦C, pH 4–11, 20 days Wastewater sludge [30]

Acetic, butyric, valeric and
propionic acid Max 368.71 g/kg TS 35 ± 1 ◦C, C/N ratio 26 to 7, 24 days Wastewater sludge and

perennial ryegrass [50]

Acetic, butyric, valeric and
propionic acid 704.9–1994.7 mg/L 20 ± 2 ◦C, pH 7–10, 70 rpm, 15 days Wastewater sludge [33]

Acetic, butyric, valeric and
propionic acid 18.1–539.4 mg/L 21 ± 2◦C, 2 days

Wastewater sludge and
potato-processing

wastewater
[51]

4. Enzymes

A huge fraction of the organic matter in WAS (30–85%) is formed by particles larger than 0.1 µm
that cannot directly be assimilated by microorganisms [52]. Therefore, domestic WAS contains a
diversity of microbial enzymes (e.g., protease, lipases glycosidase, galactosidases, aminopeptidases,
dehydrogenase, catalase, peroxidase, phosphatases, α-amylase, and α-glucosidase) responsible for the
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breakdown of complex organic matter (i.e., lipids, proteins and carbohydrates) into smaller compounds
which are suitable substrates for biogas generation during anaerobic digestion [53]. If WAS-derived
enzymes could cost-effectively substitute the commercial medium ingredients in industries such as
detergents, food, pulp and paper, dairy, agrochemistry, cosmetics, pharmaceutical, diagnostics, and
fine chemicals, the economic benefits could be significant because 30–40% of the production costs in
these industries relate to the industrial enzymes [54]. Reported laboratory-scale studies for enzymes
production from WAS-derived media are summarised in Table 3.

To date, ultrasonication—either alone or combined with detergents, or ion exchange resins—is
considered one of the most widely reported methods allowing for the recovery of the abovementioned
enzymes, while maintaining their activity [55]. Ultrasonication enhances enzymatic activities and
promotes the shifts of extracellular proteins, polysaccharides and enzymes from inner layers of
sludge flocs (i.e., pellet and tightly-bound extracellular polymeric substances), to outer slime layers,
to increase the contact and interaction among extracellular proteins, polysaccharides and enzymes
that were originally embedded within sludge flocs, resulting in improved volatile solids destruction
efficiency during aerobic digestion [32]. Yu et al. (2007) compared five different extraction methods
(i.e., ultrasonication, cation exchange resin, ethylenediaminetetraacetic acid (EDTA), formaldehyde
(36.5% w/w at 4 ◦C for 1 h) and formaldehyde + NaOH (1 mol L−1 at 4 ◦C for 3 h)) and confirmed
ultrasonication to be the most effective [55]. Yu et al. (2009) later demonstrated an optimal
ultrasonication condition (i.e., 20 kHz and intensity of 552 W/g total suspended solids for 10 min) for
the recovery of α-amylase from WAS with protease, α-glucosidase, alkaline and acid phosphatase in
minor proportions [56]. Nabarlatz et al. (2010) reported on a more sophisticated extraction method
that consisted of ultrasonication, dialysis, precipitation with ammonium sulphate and lyophilisation
to recover the hydrolytic enzymes (i.e., protease and lipase) from WAS [57]. The effects of different
parameters, such as extraction time, concentration of additives (detergent Triton X100, Cation Exchange
Resin and Tris buffer), stirring velocity, ultrasonic power and sludge source, were investigated.
The authors subsequently reported that a power intensity of 3.9 W/cm2 and sonication time of
10–20 min was able to achieve a higher rate of enzyme recovery [58].

Due to the presence of salts (≈0.4–1.5 g/L) in urban wastewater, salinity effects on hydrolytic
enzymatic activities (i.e., acid phosphatase, alkaline phosphatase, glucosidase, protease and esterase)
in WAS have been reported in the literature, whereby increased salinity correlates negatively with
enzyme activities in the range of 0–44.1 g/L NaCl [59]. To obtain enzymes suitable for certain
industrial applications (e.g., as an additive for detergents or biocatalyst in esterification reactions)
requires high degree of purity and high specific enzymatic activity, and therefore further purification
and concentration procedure are usually required. The establishment of a protocol to purify and
concentrate all the enzymatic fractions present in WAS remains a key challenge to be overcome and
one that is frustrated by the inherent temporal variations in activated sludge composition (daily and
seasonally) and its relatively low enzyme concentration.

Table 3. Representative studies for enzymes extraction from WAS-derived media.

Enzymes Type and Activities Extraction Techniques and Conditions Medium References

Protease: max. ≈3 µmol min−1 g−1 VSS
α-amylase: max. ≈20 µmol min−1 g−1 VSS
α-glucosidase: max. >1 µmol min−1 g−1 VSS

Alkaline phosphatase: max. ≈9 µmol min−1 g−1 VSS
Acid phosphatase: max. ≈3 µmol min−1 g−1 VSS

Ultrasound 20–40 kHz, 2–20 min,
138–690 W/g VSS, pH 7 and EDTA 2% at

4 ◦C for 3 h
Wastewater sludge [56]

Protease: 1.06–28.2 µmol min-1 g-1 VSS
α-amylase: 10.2–14.9 µmol min−1 g−1 VSS

α-glucosidase: 188–319 µmol min−1 g−1 VSS

Ultrasound 40 kHz, 120 W, 2 min, 0–15 kW/L,
pH 8 and 2% EDTA, 36.5% formaldehyde,

CER 70 g/g VSS at 4 ◦C for 1 h
Wastewater sludge [55]

Protease: max. ≈37 µmol min−1 g−1 VSS
α-amylase: max. ≈34 µmol min−1 g−1 VSS
α-glucosidase: max. ≈3 µmol min−1 g-1 VSS

Alkaline phosphatase: max. ≈16 µmol min−1 g−1 VSS
Acid phosphatase: max. ≈16 µmol min−1 g−1 VSS

Ultrasound 20 kHz, 0–20 min, 0–15 kW/L,
pH 7, 4 ◦C Wastewater sludge [32]
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Table 3. Cont.

Enzymes Type and Activities Extraction Techniques and Conditions Medium References

Protease: max 52 units/g VSS
Lipase: max 22.9 ± 0.8 units/g VSS

Ultrasound 24 kHz, 3.9 W/cm2, 20 min,
5 ± 1 ◦C, and Triton X100 0.1 to 2% (v/v)

Wastewater sludge [58]

Protease: max 57.4 units/g VSS
Lipase: max 21.4 units/g VSS

Ultrasound 20–24 kHz, 3–8 W/cm2, 1–60 min,
pH 7–8, 5 ± 1 ◦C, TX 100 0.1 to 10% (v/v),

CER 0.24–0.8 g/mL
Wastewater sludge [57]

Protease: max. ≈4,000 units/g VSS
Lipase: 108.4–335 units/g VSS

1 h 900 rpm stirring followed by 30 min
sonication (200 W + 15 kHz), pH 8, 0–2%

Triton X-100 and EDTA, CER 60–70 g/g VSS
Wastewater sludge [60]

Protease: 3450 ± 124 units/g mixed
liquor suspended solids (MLSS)
Amylase: 111 ± 5 units/g MLSS

Glucosidase: 59.5 ± 2.9 units/g MLSS
Lipase: 8.8 ± 1.4 × 10−2 units/g MLSS

Dehydrogenase: 36.6 ± 3.8 × 10−3 units/g MLSS

Agitation 200–4200 rpm, 4 ◦C, 1–10 min and
ammonium sulphate

Wastewater and
laboratory-cultivated

sludge
[61]

5. Bio-Pesticides

Owing to an enriched makeup of carbon, nitrogen, phosphorus and other nutrients, WAS has
the potential to be an attractive alternative growth medium for industrial microorganisms to produce
valuable metabolic products. Organisms such as the aerobic spore-former Bacillus thuringiensis (Bt) have
long been known to possess the ability to produce a proteinaceous parasporal crystal inclusion during
sporulation called δ-endotoxin—by far the most popular bio-pesticide worldwide and used extensively
in agronomy, forestry and the public health sectors [62]. The production of these entomopathogenic
bacteria is conventionally carried out in synthetic medium containing carbon, nitrogen, yeast extracts
and protein sources (e.g., soybean meal, fishmeal, glucose, peptone and trace elements), of which the
respective cost represents 35–59% of the total production cost, depending on the plant production
capacity [63]. Reuse of WAS sludge as a low-cost “eco-alternative” medium for Bt production followed
by its utilisation in agricultural crops and forests for pest control appears economical and compatible
with existing sludge disposal exercises [53]. Typical reported studies for biopesticide production from
WAS-derived media are summarised in Table 4.

Bt production process from WAS consists of three key stages: (a) sludge fermentation; (b) product
recovery/harvesting; and (c) product formulation. During fermentation, several factors including
pH, C/N ratio, dissolved oxygen (DO) concentration, foaming, solids concentration and inoculum
sludge type can affect the process of bio-pesticide production [64,65]. Sachdeva et al. (2000) reported
on the effects of sludge solids and inoculum concentration on the fermentation production of Bt
(subsp kurstaki HD-1) [66]. Cell and spore counts were comparable to the industry standards, as well
as the production time. Sludge samples with lower solids concentration were observed to produce
considerably higher entomotoxicity while having no significant effect on cell and spore count. Lachhab
et al. (2001) further optimised two process parameters (i.e., sludge solids and inoculum concentration)
of the same process, based on cell, spore counts and entomotoxicity [67]. They concluded that an
inferior entomotoxicity under higher solids concentration resulted from the oxygen transfer limitation;
the optimum total solids and inoculum concentration were found to be 20–26 g/L and 2% (v/v), which
resulted in an improved potency of 12,970 IU/µL, cell and spore concentrations of 5.0 × 109 and
4.8 × 109 CFU/mL, respectively, and a sporulation rate of 96%. Vidyarthi et al. (2002) studied the
effect of C/N ratio in sludge medium on the sporulation and entomotoxicity yield of Bt subsp kurstaki,
with the optimal C/N ratio recommended as within 7.9–9.9 [68]. Montiel et al. (2003) examined the
effect of temperature, pH and agitation speed during the fermentation on Bt entomotoxicity, cell and
spore counts [69]. Higher agitation speed in the range of 50–350 rpm was observed to have positive
effects on all three parameters by increasing the oxygen transfer rate, and the optimum pH for Bt
production was reported to be around 7.

Sufficient aeration during fermentation is essential to maximize cell growth, sporulation and
δ-endotoxin production by Bt, which at the same time can cause severe foaming depending on the
solid contents. Therefore, investigations of foaming effects on Bt fermentation production from WAS
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and its subsequent control are required to optimize Bt productivity. Vidyarthi et al. (2000) investigated
the antifoaming effects of both synthetic (i.e., polypropylene glycol) and natural antifoaming agents
(i.e., corn, canola, olive, peanut, sesame, soybean and sunflower oils) on Bt productivity [70]. While all
agents provided effective foaming control, synthetic antifoaming agents influenced cell respiratory
activity and growth adversely by affecting transportation of nutrients though the cell walls, including
oxygen transport. On the other hand, foaming control using natural oils proved more favourable,
with less severe impacts on the cell growth and entomotoxicity yield.

The effect of sludge pretreatment schemes on the entomotoxicity production by Bt in secondary
and mixed sludge has also been investigated. Barnabe et al. (2006), for example, observed a significant
improvement of about 50% in the entomotoxicity for mixed and/or secondary sludge after alkaline and
thermo-alkaline pretreatment alone, or in combination with partial oxidation using H2O2 [71]. Montiel
et al. (2001) suggested that an acid-hydrolysis pretreatment step improved the sludge performance in
sustaining the growth, sporulation and δ-endotoxin production of Bt (subsp kurstaki HD-1) [72].

Table 4. Reported laboratory-scale studies for biopesticide production from WAS-derived media.

Type Entomotoxicity Fermentation Conditions Medium References

Bacillus thuringiensis 9534–13,020 IU/µL 30 ◦C, pH 6.9 ± 0.1, 400 rpm, inoculum concentration
2% (v/v)

Tryptic soy yeast
broth and sludge [70]

Bacillus thuringiensis 8300–10,813 IU/µL 30 ◦C, pH 7.0 ± 0.1, 300 rpm, inoculum concentration
2% (v/v), C/N ratio 7.9–9.9, total solids up to 33 g/L

Tryptic soy yeast
broth and sludge [68]

Bacillus thuringiensis 8115–12,970 IU/µL 31 ◦C, 250 rpm, inoculum concentration 1–5% (v/v),
total solids 10–46 g/L

Tryptic soy yeast
broth and sludge [67]

Bacillus thuringiensis 900–4100 IU/µL 30 ◦C, pH 7.0, 250 rpm Wastewater sludge [72]

Bacillus thuringiensis 3400–10,000 IU/µL 30–36 ◦C, pH 7.0, 50–350 rpm, inoculum concentration
5% (v/v), total solids up to 13 g/L Wastewater sludge [69]

Bacillus thuringiensis 4500–10,840 IU/µL 31 ◦C, pH 7.0, 250 rpm, inoculum concentration 1%
and 5% (v/v) Wastewater sludge [66]

Trichoderma sp. 6278–15,036
SBU/µL

28 ± 1 ◦C, pH 6.0 ± 0.01, 250 ± 5 rpm, total solids
10–50 g/L Wastewater sludge [73]

The potential of WAS regarding Bt production has the capability to be extended to generate other
beneficial metabolic products, such as endotoxins, spores and some other compounds (vegetative
insecticidal proteins, hemolysins, enterotoxins, chitinases, proteases, phospholypases and others)
which are insecticidal in nature and display entomotoxicity. For example, Verma et al. (2005)
demonstrated the use of WAS as a raw material for the production of Trichoderma sp.-based
bioherbicides/biopesticides, which have a broader spectrum activity in comparison to Bt [73]. Similar
to Bt fermentation production, thermal alkaline pretreatment was found to be beneficial by enhancing
solubilisation of organic matter; optimal solid concentration under conditions of the study was
reportedly to be 30 g/L.

6. Bio-Plastics

Polyhydroxyalkanoates (PHAs) (see Figure 2) are a group of biodegradable polyesters and
have received a lot of attention as an environmentally-friendly alternative to petroleum-based
plastics in applications such as packaging films, disposable utensils, diapers, cosmetic containers,
bottles, cups, etc. [74–76], and also innovative technologies such as tissue engineering, drug delivery,
and medical device implants [77]. Poly-β-hydroxybutyric acid (PHB) and its copolymer poly
(3-hydroxybu-tyrate-co-hydroxyvalerate [P(3HB-co-HV)]) are the most widely used PHAs, while other
forms have potential future uses [78]. PHB has the characteristics of increasing crystallinity, stiffness
and brittleness, while polyhydroxyvalerate (PHV) increases softness and flexibility. PHAs can be
synthesised by over 75 different bacterial genera, as an intracellular carbon and energy reserve and/or
as sink for reducing redundant power consumption or electrons under unfavourable environmental
and nutritional conditions [79]. Microbial PHAs can be produced in nature by bacterial fermentation
of sugar or lipids; however, their widespread application has so far been restricted due to the
relatively high production costs (i.e., ≈US$ 4–6/kg compared to US$ 0.6–0.9/kg for conventional



Water 2018, 10, 545 10 of 20

petroleum-derived plastics) [74,78]. Since the organic carbon growth substrate (i.e., carbohydrate)
accounts for around 50% of the overall microbial PHA production cost [80], future changes to
sugar production and associated commodity price fluctuations will directly impact the future
cost-effectiveness and viability of microbial PHA production. For example, increasing feedstock
competition from the bio-ethanol industry is likely to have a dominant influence, with global
biofuel ethanol production and consumption increasing by around 25% between 2009 and 2014 [81].
Such competitive changes may alter the future economics of bio-plastics production to make them
more cost-competitive.
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PHA-accumulating microorganisms are found naturally in WAS and can accumulate PHAs at
concentrations of 0.3–22.7 mg polymer/g sludge [82]. Polyphosphate- and glycogen-accumulating
organisms accumulate PHAs by taking up SCFAs under anaerobic conditions, which can be readily
sourced from agricultural, industrial and domestic WAS [83]. Microbial PHA production from WAS is
dependent on several process parameters, such as temperature, C/N ratio, pH, sludge retention time
(SRT) and DO concentration, with higher pH (≈8–9) and shorter SRT (three days) known to favour
higher PHA production rates [84]. A study by Krishna and Van Loosdrecht (1999) suggested that PHA
accumulation in WAS increased with a decrease in the temperature [85]. The effect of C/N ratio on
PHA production from different types of WAS derived medium has also been investigated [78,86,87],
with higher C/N ratio shown to restrict cell growth but favour PHA accumulation. Therefore,
optimal C/N ratio in a specific WAS-derived medium should be obtained with consideration of
these contradictory factors. Anaerobic–aerobic WAS processes have further been investigated for their
accumulation capacity of PHAs, which was ascertained to improve greatly by increasing the DO level
in anaerobic zones [88–90]. Literature-reported experimental (laboratory-scale) conditions for PHA
production from WAS-derived media are summarised in Table 5.

Table 5. Reported experimental (laboratory-scale) conditions for PHA production from
WAS-derived media.

Organism PHA Yield (mg/g Biomass) Fermentation Conditions Medium Additional
Carbon Source References

Unspecified -
pH 7, 25 ◦C, solids concentration

15 g/L, 0.3–0.5 vvm aeration, 60 h
SRT

Paper and pulp
wastewater Acetate [91]

Unspecified 111 pH 7, 30 ◦C, C/N ratio 20–140,
300 rpm shaking, 48 h SRT Domestic WAS Valeric acid [78,86]

Bacillus - 37 ◦C, 250 rpm shaking, 18 h SRT Beer brewery WAS None [80]

Unspecified 792
Solids concentration 3 g/L, C/N
ratio 144, 30 ◦C, 150 rpm shaking,

48 and 96 h SRT

Dairy and food
processing WAS Acetic acids [87,92]

Alcaligenes
eutrophus - pH 7, 30 ◦C, 50 rpm shaking, 0.15

vvm aeration Domestic WAS None [93]

Unspecified -
pH 7.5, 15–35 ◦C, 450 rpm

shaking, 0.29 vvm aeration, 60 h
SRT

Domestic WAS Acetate [85]

Halomonas
boliviensis - pH 7.5, inoculum size 2%, 35 ◦C,

850–1300 rpm stirring
Bakery WAS
and seawater None [94]

At present, sequencing batch reactors are reported to be promising for enhanced PHA production,
due to their highly flexible operation, ease of process control and biomass growth under transient
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conditions [95,96]; however, full- or pilot-scale studies are rarely reported in the literature [50].
The major technical challenge associated with bioplastics production from WAS remains the
economically lower yields [97], which requires extensive studies on the optimisation of organic loading
rate and efficacy of utilising mixed substrates (e.g., sewage sludge and agroindustry wastewater
sludge) with mixed cultures.

7. Bio-Flocculants and Bio-Surfactants

Another group of valuable metabolic by-products during microbial transformation of organic
substrates are bio-surfactants and bio-flocculants (i.e., extracellular macromolecules). Bio-flocculants
(i.e., extracellular bio-polymers such as functional proteins), polysaccharides, cellulose derivatives,
lipids, etc. secreted by microorganisms in synthetic growth media have been widely used in chemical
and mineral industrial fields such as wastewater treatment, dredging, downstream processing,
fermentation and food industries [98,99]. Efficient flocculating activities comparable to synthetic
flocculants have been demonstrated and they are also expected to be readily biodegradable and
non-toxic to both the environment and humans [100–102]. However, the wider use of these by-products
is currently limited by the high production cost, largely associated with the supply of organic substrates
(i.e., glucose and sucrose) as alluded to earlier.

Morgan et al. (1990) undertook a comparative study of the nature of biopolymers extracted from
anaerobic sludge (including UASB granules) and activated sludge [103]. They ascertained considerable
differences in terms of the total yield of ECP/(g SS), with activated sludge samples generating 70–90 mg
ECP/(g SS), much higher than granular sludge with 10–20 mg ECP/(g SS). Therefore, activated sludge
(i.e., WAS) was recommended as a potential source for biopolymer production even in comparison to
other biological wastewater streams like anaerobic granules. Their investigation also revealed that
protein was the most dominant fraction of the extracted polymers in anaerobic samples compared with
carbohydrate in the activated sludge. Therefore, utilising WAS as a cheap source of carbon, nitrogen
and phosphorus for microorganism growth and production of bio-flocculants has been explored as an
innovative strategy [104].

Frølund et al. (1996) studied the extraction of water soluble EPS from activated sludge using a
cation exchange resin (CER) implemented on activated sludge harvested from two different wastewater
treatment plants [105]. By increasing the stirring intensity and extraction time, EPS yield was found to
be enhanced to levels twice as high as other common procedures. The extracted EPS consisted mainly
of protein, even though, depending on how the extraction was performed, the extracted amounts and
relative fraction of the individual compounds varied considerably. Sesay et al. (2006) showed enzyme
hydrolysis to be a mild but effective method for EPS extraction from mixed culture activated sludge
flocs [106]. Using two carbohydrate-specific enzymes (α-amylase and cellulase), a protein-specific
enzyme (proteinase) and a consistent CER extraction method, enzymatic EPS extraction was relatively
quick, reaching equilibrium within a few hours. By increasing the doses of enzymes, extracted polymer
quantities were also enhanced.

WAS is known to be one of the best environmental reservoirs for the isolation of
bio-flocculant-producing microorganisms, since bio-flocculation naturally occurs in WAS during
aerobic processes. Various strains of bio-flocculants producing microorganisms have successfully been
isolated from WAS, including Achromobacter sp., Agrobacterium sp., Bacillus cereus, Exiguobacterium
acetylicum, Enterobacter sp., Acinetobacter sp., Haemophilus sp., Citrobacter sp., Galactomyces sp., Klebsiella
sp., Ochrobactium cicero, Pichia membranifaciens, Rhodococcus erythropolis, Saccharomycete spp., Solibacillus
silverstris, etc. [107–111].

Reported experimental conditions for bio-flocculants production from WAS-derived medium in
the literature are summarised in Table 6. Comparable or superior performance to synthetic flocculants
has generally been demonstrated among these studies based on flocculation tests using solutions
containing different dyes and suspended particles, such as kaolin, diatomite, cellulose powder,
bentonite, soil, dry yeast, activated sludge, etc. Some authors have even indicated high flocculation
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activity using digested WAS liquor (5.5 g/L acetic acid and 0.7 g/L propionic acid) and derived
chitosan-like polymers without adding any cations enhancement (e.g., K+, Na+, Ca2+, Mg2+, Fe2+, Al3+,
and Fe3+) [112]. More et al. (2012) studied the pretreatment effect (i.e., sterilisation, alkaline-thermal
and acid thermal treatment) on bio-flocculants production in Serratia sp., with alkaline-thermal
pretreatment achieving the highest concentration (3.4 g/L) of bio-flocculants through improved
sludge solubilisation.

Sponza (2003) assessed the impact of different wastewater compositions on the EPS (protein,
polysaccharide and DNA) production and physicochemical properties (surface charge, bound water
and contact angle) in five lab-scale stirred reactors under steady-state conditions [113]. Lower levels
of protein (≈38–42 mg g−1 VSS) and higher DNA content (≈11–17 mg g−1 VSS) were measured in
the pulp-paper, textile (cotton knit fabrics) and petrochemical floc EPS under steady-state conditions.
Contrastingly, higher protein levels (≈70 mg g−1 VSS) and a lower DNA content (≈6 mg g−1 VSS)
were measured in the EPS of the winery industry and municipal activated sludge. The work of Sponza
(2003) demonstrated that EPS composition is very dependent on wastewater type, something also
supported by the more recent findings [114].

Table 6. Reported experimental (laboratory-scale) conditions for bio-flocculants production from
WAS-derived media.

Bio-Flocculants Composition and Yield Organisms Medium Fermentation Conditions Reference

Polysaccharide, 2.58 g/L Klebsiella mobilis Dairy wastewater Inoculum size 5% (v/v),
pH 6.0, 30 ◦C [115]

Polysaccharide and protein, 15 g/L Staphylococcus sp. and
Pseudomonas sp. Brewery wastewater

Inoculum size 2% (v/v),
pH 6.0, 30 ◦C and shaking

speed 160 rpm
[116]

91.2% polysaccharide, 7.6% protein and
1.2% DNA, 1.6 g/L Rhodococcus erythropolis Livestock wastewater Inoculum size 2% (v/v),

pH 7, Na2HPO4 0.5 g/L [117]

Unspecified, 1.5–3.4 g/L Serratia sp. Pretreated WAS
Inoculum size 3% (v/v),
25 ◦C, shaking speeding

250 rpm, 72 h
[104]

Carbohydrates (91% w/w), 2.1 g/L Bacillus subtilis, Bacillus
fusiformis, Bacillus flexus WAS digestion liquor Inoculum size 10% (v/v),

pH 4–5, 24 h [118]

Chitosan-like polymer, 4.6 g/L Citrobacter sp. WAS digestion liquor pH 8.5, 30 ◦C, shaking speed
120 rpm [112]

Microorganisms release surface-active bio-surfactants to emulsify the hydrophobic substrates
of organic carbon sources during growth, at the expense of water-insoluble substrates. For example,
Gordonia amarae, a filamentous actinomycete found in foaming WAS, is well-known for its bio-surfactant
production capability [119]. Compared with chemically-produced surfactants, bio-surfactants are
more effective and efficient, and their critical micelle concentration is about 10–40 times lower,
i.e., less surfactant is necessary to get a maximal decrease in surface tension [120]. In addition,
they are also readily biodegradable, less toxic, antimicrobial and highly tolerant to physicochemical
changes (e.g., pH, temperature and ionic strength) [121]. Consequently, bio-surfactants have for
some time seen ever-increasing applications in food, personal-care products, and household/laundry
detergents as emulsifiers, humectants, dispersants and detergents [122]. The molecular structure
of bio-surfactants commonly features two portions: the hydrophobic end of long-chain fatty acids
or their derivatives; and the hydrophilic end of carbohydrate, amino acid, phosphate and cyclic
peptide. Bio-surfactants can further be divided into two sub-groups: low-molecular-weight substances
including glycolipids, lipopeptides and phospholipids; and high-molecular-weight substances
including polymers (e.g., emulsan, alsasan, liposan and lipomanan) and particulates (e.g., vesicles and
whole microbial cells) [123,124].

Similar to bio-flocculant production, expensive components of pure culture media (accounting for
10–30% of overall process costs) historically limited further development and widespread application of
bio-surfactants [125]. Therefore, the potential use of WAS-derived media as an economical alternative
to produce bio-surfactants by various routes has been the subject of interest for some time [126].
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The possibility of direct extraction through cell lysis and subsequent bio-surfactant release in domestic
WAS by alkaline treatment, has been demonstrated [127–129]; however, it should be noted that the
pathogenicity of certain microbes commonly found in domestic and industrial wastewaters may
affect its practicality. For example, mycobacterial glycolipids, produced by pathogenic mycobacteria,
such as M. avium intracellure, M. scrofulaceum and M. fortulitum [130], as well as methylrhamnolipids
from Pseudomonas aeroginosa [131], are well-known for their toxicity and antigenic properties. Instead,
the application of isolated non-pathogenic bacterial strains (Bacillus licheniformis and Bacillus subtilis)
may be preferred due to the mitigation of public health concerns. Nitschke and Pastore (2003) reported
that the performance of bio-surfactant produced by Bacillus sp. from cassava flour wastewater as a
culture medium was comparable to that produced using pure cultures under aseptic conditions
and with expensive high-purity organic substrates [132]. More recently, others have sought to
optimize and increase production of the bioflocculant MSBF17 during submerged fermentation
using more economical substrates (i.e., palm jaggery, NH4NO2, K2HPO4, NaCl, etc.) using marine
sponge-associated Bacillus subtilis MSBN17 [133].

After microbial cultivation in WAS-derived medium, bio-surfactants and bio-flocculants produced
by different microorganisms can be recovered using various physical (centrifugation, CER, heating
and sonication) and chemical methods (alkaline-NaOH, acid-H2SO4, trichloroacetic acid, boiling
benzene, crown ether, EDTA, ethanol precipitation, enzymes, glutaraldehyde, sulphide and NaCl
treatments). Combined physical–chemical methods have also been investigated (e.g., alkaline + heating,
ion exchange + stirring, formaldehyde + heating, CER + sonication) [134–136], with some authors
reporting optimum contaminant-free EPS extraction from WAS using sonication followed by chemical
treatment (formamide and NaOH) [137]. To date, reported yields and final concentrations of
bio-flocculants and bio-surfactants, cultivated from various WAS types, or its derivatives, remain
relatively low, even under optimal conditions. Therefore, further optimisation of cultivation processes
with the consideration of key process parameters is required to tackle future scale-up production
issues. Additionally, each bio-flocculant and bio-surfactant obtained should be characterised based on
their ionic properties and structure, as this should serve as the basis for selecting these operational
parameters to realize full process optimisations.

8. Current Challenges

Sewage sludge is today a growing waste stream, and one that is both costly to manage and largely
undervalued in terms of its constituents. For example, approximately 30~60% of sewage treatment
plant operating costs are estimated to relate to sludge treatment activities [138]. Biorefinery production
from WAS offers several key advantages for future sludge management, including: providing an
alternate treatment pathway for what is an ever-growing and problematic urban waste stream;
and recovering valuable resources and value-added bio-products which can potentially find application
as sustainable green product alternatives in a time when humanity is increasingly looking toward a
circular economy future. The technical feasibility, risks, costs and benefits all need to be assessed to
determine viability of each biorefinery development involving WAS, and this has been the subject of
much research to date. The quality of WAS-derived products and their market values are important
factors with respect to the future feasibility of these processes. At present, issues and challenges
associated with biorefinery production from WAS include:

(1) Biorefinery production of protein and enzymes are still considered to be higher cost routes
compared with agro-industry residues and animal health in terms of pathogenic and metals
toxicity, which has effectively stifled developments in this area [139].

(2) Recovery of metabolic WAS products (e.g., bio-plastics, bio-pesticides, bio-flocculants and
bio-surfactants) remains in its infancy and further optimisation of operational parameters and
selection of non-toxic strains are needed to progress this research area.
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(3) Important factors such as optimum growth environment or wastewater matrix for harvesting
WAS with the highest concentration of specific bio-products need to be further investigated
and refined.

(4) WAS bio-product production through biological processes such as fermentation, bioleaching or
enzymatic extraction, while an evolving area of research, still requires further optimisation.

(5) Anaerobic digestion as a potential option for enhancing the production of SCFAs and their
extraction from WAS through fermentation in the presence of key chemical surfactants deserves
further exploration.

(6) Simple and efficient purification procedures for certain bio-products recovered from WAS (in
line with the required purity for specific applications) need further development and would
contribute to improving the overall economics of biorefinery approaches.

(7) Scale of WAS-based biorefinery production is an important future challenge, since much of the
research so far has been at laboratory scale. To scale up the biorefinery approach using WAS,
further research must be carried out at larger scales (pilot- and ultimately full-scale) to optimize
each biorefinery process. Only then can the full techno-economic performance of these processes
be fully investigated and understood.
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