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Abstract: Global warming is becoming more serious and causing changes in rainfall pattern and
runoff regime in most river basins. Exploration of the changes will help develop appropriate
management and adaptation strategies. This study presents an assessment of changes in rainfall
and runoff in the upper Thu Bon River basin in central Vietnam in the near-term (2026–2035)
climate using direct Coupled Model Intercomparison Project Phase 5 (CMIP5) high-resolution model
outputs. A nearly calibration-free parameter rainfall–runoff model was employed to explore the
runoff response in the study basin. Most model simulations have detected greater decreases in the
near-term runoff in the dry season compared with those of any preceding decades in the baseline
(1979–2008) climate, though the rainfall in this period is expected to increase slightly. Meanwhile,
monsoonal season flooding has the potential to become more severe, and Japanese models project
further increase in the intensity of such extreme weather events. The results also indicate that the
treatment of the model physical parameterization schemes tends to contribute more sensitivity to the
future projections.
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1. Introduction

Variability in runoff at a river basin greatly influences development and management practices.
Such variability is either the consequence of change in climate variables or land cover across the river
basin. However, it has been clearly documented in the recent literature that change in rainfall is
the main driver of variability in runoff (e.g., [1–4]). In line with rising surface temperature, which
is projected based on all greenhouse gas emission scenarios, rainfall is expected to increase in most
places around the globe, but its distribution is varying in time so that more extreme rainfall events
are projected during wet seasons; on the contrary, drought situations will be more critical during dry
seasons [4]. This will increase the risk of flooding in the wet seasons and exacerbate water scarcity in
the dry seasons [5,6]. Thus, assessing potential runoff response is critical to making informed decisions
for future river basin planning and management under a changing climate.
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Assessment of runoff response is primarily based on a coupling approach between general
circulation models (GCMs) and hydrological models (e.g., [1,2,7]). Benefiting from increases in
computational power, GCMs have improved quickly both in model structure and spatial resolution [8].
GCMs, therefore, can provide better simulations of small-scale (e.g., river basin scale) weather
phenomena [8,9]. At the same time, the ensemble size of the models has also been significantly
increased, taking into account new knowledge of future emission scenarios, so that the uncertainty of
climate modeling is better evaluated compared with that of other assessments using a single model or
downscaling methods [10,11].

This study, as an extension of a research series focusing on assessments of runoff response
to climate change in the mid- and long-terms [11–13], further explores climate change impacts on
hydrology and water resources on a decadal time scale (2026–2035) in the near-term climate of the
upper Thu Bon River basin in central Vietnam. The near-term runoff response assessment is based
on the outputs of the state-of-the-art high-resolution climate models by leading climate modeling
centers around the world in contribution to the Coupled Model Intercomparison Project Phase 5
(CMIP5). This high-resolution multi-model-based assessment is assumed to not only provide better
accuracies but to also help quantify the sensitivity of the projections, given the incompleteness of
model formulations, as well as the inaccurate estimations of greenhouse gas emissions. As a result,
this assessment shows advantages over assessments using a single model [11,12]. More importantly,
it is also hoped that the boundary conditions setup for GCMs are less uncertain in the near-term
compared with the setup for those in the longer-term; in addition, a near-term assessment of climate
change impacts on runoff is apparently not a long time lag to verify the climate modeling capabilities.

2. Materials and Methods

2.1. High-Resolution Climate Models

Providing a standard set of climate simulations (for the past and future climates) for the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change [4], the CMIP5 included
approximately 40 climate models used by climate modeling centers around the world. As compared
with those from the previous phase (CMIP3), the climate models of the CMIP5 showed significant
improvements in horizontal resolution as a result of increased computational power; in particular,
some of the models were categorized as high-resolution models with model horizontal resolutions of
the order of 20–60 km with attempts for further understanding future climate change on local scales.
Therefore, this study used the rainfall estimates by the high-resolution multi-model experiments
developed by the two leading climate modeling institutions, the Meteorological Research Institute
(MRI) of Japan and the Geophysical Fluid Dynamics Laboratory (GFDL) of the United States of America
(USA). In addition, a preliminary screening procedure was also performed to remove models that
exhibited significant underestimates of rainfall by comparing their estimates with actual observations.
As a result, the selected CMIP5 high-resolution climate models and experiments are presented in Table 1.
Experiments for two time periods, the baseline (1979–2008) climate and the near-term (2026–2035)
climate, were selected. The baseline climate experiments were diagnosed with mean monthly sea
surface temperatures (SST) observed in the same period. Meanwhile, future climate experiments were
performed using SST data based on the projections by the multi-model ensembles according to the A1B
emission scenario, prescribed SST (the multi-model mean over the four representative concentration
pathway scenarios), and sea ice concentration anomalies by the MRI and the GFDL, respectively.
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Table 1. Selected CMIP5 high-resolution climate models and experiments.

Name of Modelling Group CMIP5 Official Model-Name Spatial Resolution Experiment *

Meteorological Research Institute of Japan MRI-AGCM3.2S 20 km r1i1p1 (Expt. 1)
MRI-AGCM3.2H 60 km r1i1p1 (Expt. 2) r1i1p3 (Expt. 3)

Geophysical Fluid Dynamics Laboratory—USA GFDL-HIRAM-C360 25 km r1i1p1 (Expt. 4) r2i1p1 (Expt. 5)

* r, i, and p denote experiment number, initialization, and parameterization scheme of a model experiment,
respectively.

2.2. Hydrological Model

With respect to impact assessment, it is preferable to use less complex hydrological models,
which can accommodate the insufficient information of future watershed for rainfall–runoff analyses.
There are available several hydrological models that are capable of performing a runoff simulation
across various scales of time and space (e.g., [7,10,13–16]). However, a lack of long term rainfall
and streamflow monitoring data for many catchments is a common problem and a key constraint
for developing countries to formulate increasingly realistic catchment hydrological models that
can simulate future changes in rainfall patterns. As an advantage over previous works in this
research series, this study employed the super-tank model to perform the hydrological response
of the catchment to climate change impacts. With physically based features, the super-tank model has
demonstrated a great applicability in runoff simulations across a wide range of temporal and spatial
scales [17–19]. The model has been recognized as a robust tool for assessing the runoff response of a
catchment to climate change and has been considered particularly suitable for scattered/ungauged
catchments. The details of the model description and model setup for river basins with various
spatiotemporal scales can be found in the literature [11,12,19]. In short, the super-tank model is
a semi-distributed rainfall–runoff model that includes a complete hydrologic process within the
catchment scale. With respect to spatial representation, the whole basin is divided into sub-basins
composed of grid cells that have similar spatial parameter characteristics and hydrologic responses
and are represented by channel nodes. The vertical structure of the super-tank model consists of linear
cascade tanks, as schematized in Figure 1. The super-tank model has nearly calibration-free parameters,
as they have been internally calibrated using geo-topographical and land-surface information. Basically,
three parameters (interception storage capacity, a dimensionless modification coefficient on the
saturated hydraulic conductivity, and a coefficient used to determine the roughness coefficient in the
river) of the model are required for calibration. However, it is notable that these parameters have been
optimized through physical interpretation or similarity [17–19].

Figure 1. Schematic of the super-tank model, modified after [19].
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The evaluation of model performance was based on three recommended statistics [7,20] including:
(i) Nash–Sutcliffe efficiency (NSE), which measures the predictive power of a hydrological model [21];
(ii) observations standard deviation ratio (RSR), which standardizes root-mean-square error (RMSE)
using the observations standard deviation [20]; and (iii) percent bias (PBIAS), which determines
the average tendency of the simulated values to be larger or smaller than their observed ones [22].
The above recommended statistics are expressed in Equations (1), (2) and (3), respectively.
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where O is the observed streamflow; O is the mean observed streamflow; and S is the simulated
streamflow.

Statistical interpretation of the model performance statistics is as follows: the NSE ranges from
−∞ to 1, and the maximum value indicates a perfect match of the simulated streamflow and the
observed streamflow; the RSR is always greater than or equal to zero, and the lower the RSR, the lower
the RMSE, which implies the better performance of the model; and the optimal value of the PBIAS is
equal to zero, while positive and negative values of the PBIAS depict model under- and over-estimation
bias, respectively.

2.3. Assessment of the Changes

The common feature of climate models, even very high-resolution models, is that intrinsic model
errors will always exist. Presently, there are two main approaches applied to assess the climate
change impacts on meteorological and hydrological variables in future climates. The first approach
attempts to (i) implement dynamical downscaling [13] or statistically correct large-scale variables
simulated by GCMs using past climate data and then (ii) apply transfer functions to adjust future
simulations (e.g., [12,23–25]). The second approach adopts errors in model simulations and then
evaluates relative changes amongst the model simulations in past and future climates (e.g., [2,26–28]).
In this study, the latter method is adopted to estimate the climate change impacts on a catchment
runoff by comparing the runoff simulated by a hydrological model using direct GCM outputs for the
past climate with that of the future climate. By means of this method, the effects of both GCM and
hydrological model errors caused by incomplete model structures and parameterization estimates on
the direction of change in streamflow might become minimal [28].

2.4. Uncertainty Evaluation

Uncertainties are inherent in any climate change impact study. The uncertainties in runoff
responses arise from such sources as hydrological model structure and estimations of rainfall and
model parameters (e.g., [29–31]). Most studies have demonstrated that the major source of uncertainties
in runoff responses is the precipitation estimations by GCMs (e.g., [29,32,33]). The uncertainties are due
to limitations in defining the emissions scenario, climate model structure, downscaling method, and
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the internal variability of the climate system; however, the largest uncertainty can be attributed to the
configuration of the GCMs and model experiments [7,33]. So, the inclusion of various GCMs and model
experiments in the present study would be useful for quantifying the range of uncertainties in runoff
responses. It was then assumed that changes in streamflow are normal distribution; the confidence
intervals of the changes were computed as a function of the mean and standard deviation of changes
in streamflow projected by multi-model simulations [34].

2.5. Test Case Study Area

The upper Thu Bon River basin is selected as the test case study area, covering a drainage area
of 3150 km2, as delineated at the Nong Son stream gauge (Figure 2). The Thu Bon River belongs to
the Vu Gia-Thu Bon River system, one of the biggest river basins in central Vietnam, originating from
the Annam Range, then flowing through a narrow floodplain, and finally emptying into the East Sea.
As characterized by tropical monsoon climate and topographical features, the upper Thu Bon River
basin receives the highest rainfall (average 3300 mm/year) in the region, but rainfall distribution varies
significantly over time and space. Approximately 80% of annual rainfall occurs in a short wet period,
lasting from September to December; meanwhile, the remaining 20% of rainfall is distributed in a long
dry period (January–August), and as influenced by an orographic terrain, more rainfall is observed in
elevated areas than low-lying places. In addition, observation data has recently indicated that the wet
season tends to get more average rainfall; on the other hand, the dry period is getting drier. These
trends really influence the basin planning and management activities.

Figure 2. Map of the upper Thu Bon River basin as delineated at Nong Son stream gauge and locations
of hydro-meteorological observation, modified after [11].

Hydro-meteorological data available for hydrological model setup, calibration, and validation
is illustrated in Figure 2. Scattered rainfall observation points within or close by the study area
were selected to compute the area-average rainfall using the inverse distance weighting interpolation
method. A streamflow gauge located at the outlet of the basin provides discharge information for the
whole catchment. This hydro-meteorological data is on daily basis and available since the late 1970s,
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in line with the time period of the climate model experiment, we selected to represent the baseline
climate and also used for the hydrological model calibration and validation purposes.

3. Results and Discussion

3.1. Streamflow Simulation

The computational mesh of the super-tank model setup for the upper Thu Bon River basin was
1 × 1 km grid distance. Input datasets for the super-tank model included information on precipitation,
evapotranspiration, land use, soil type, and topographic features of the catchment. These input
datasets were defined for each model grid cell. The inverse distance weighting method was utilized
to interpolate the daily rainfall information from nearby rain-gauges and grid point outputs of the
GCMs into the computational mesh of the super-tank model. Evapotranspiration was merely set for
forest and urban land use types (Figure 3). Similarly, hydraulic conductivities in the range of 10−4 to
10−7 m·s−1 were defined for the three topsoil types: silt, loam, and clay loam, as illustrated in Figure 3.
Other catchment features (e.g., slope, flow direction, river network, etc.) were derived from a digital
elevation model, the Shuttle Radar Topography Mission with a spatial resolution of 90 m.

Figure 3. Distribution of (a) land use and (b) soil type in the upper Thu Bon River basin.

In previous works [11,12], the super-tank model calibration and verification were performed using
the daily rainfall and streamflow information of twenty years (1981–2000). The present study further
examined the model performance based on an extended dataset of thirty years (1979–2008); within
this dataset, the period of 1989–2008, during which most of the extreme events occurred, was used for
model calibration, and the remainder of the dataset was used for model validation.

The streamflow in this study was simulated on a daily interval and then aggregated into a monthly
basis for different time scale evaluations. The results are shown in Figures 4–6. Figure 4 demonstrates
the model calibration and validation based on the daily dataset in periods (1989–2008) and (1979–1988),
respectively. Figure 5 shows a scattered plot of daily observed and reproduced streamflow for both the
model calibration and validation. Meanwhile, the monthly reproduced streamflow is compared to that
observed by the stream gauge in Figure 6.

It has been found that the streamflow was reasonably reproduced by the super-tank model in
both the calibration and validation phases. As seen in those Figures, the reproduced hydrograph
shows very good agreement with the observed streamflow at the stream gauge. The scatterplot also
exhibits a quite close distribution of the streamflow reproduced by the model to the perfect line. Model
performance statistics are presented in Table 2. As classified in the literature [20], if 0.75 < NSE < 1.0,
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0.0 < RSR < 0.5, and PBIAS < ±10% for streamflow, the model performance can be evaluated as “very
good”; a “good” model performance is evaluated when 0.65 < NSE < 0.75, 0.5 < RSR < 0.6 and ±10% <
PBIAS < ±15%. Based on these criteria, the super-tank model shows “very good” performance in the
daily streamflow simulation for the calibration dataset and “good” performance in the case of model
validation. In the meantime, the monthly aggregated streamflow indicates “very good” performance
in both calibration and validation.

Figure 4. Time series of the daily observed and reproduced streamflow for the upper Thu Bon River
basin at Nong Son: (Upper) calibration period (1989–2008) and (Lower) validation period (1979–1988).

Figure 5. Scattered plot of daily observed and reproduced streamflow for the upper Thu Bon River
basin at Nong Son in the calibration period (1989–2008) and validation period (1979–1988).
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Figure 6. Time series of monthly observed and reproduced streamflow for the upper Thu Bon River
basin at Nong Son in the period of 1979–2008.

Table 2. Super-tank model performance statistics.

Criteria Time Scale Calibration (1989–2008) Validation (1979–1988)

Nash–Sutcliffe efficiency (NSE) Daily 0.77 0.71
Monthly 0.86 0.83

Observations standard deviation ratio (RSR)
Daily 0.48 0.54

Monthly 0.38 0.40

Percent bias (PBIAS)
Daily −2.87 −9.20

Monthly −2.06 −9.13

However, it is also found that the reproduced streamflow depicts over- and under-estimation
of low and high streamflow periods, respectively. These discrepancies are clearly seen in Figure 7,
showing the average monthly streamflow in period (1979–2008). The discrepancies are mainly subject
to inaccurate rainfall estimations. During the dry periods, the study area was dominant by highly
inconsistent rainfall, Some localized rainfall events were probably captured by the rain gauges, but it
did not represent for the entire basin; and on the contrary, rain might have fallen in other parts of
the basin but was not captured by the rain gauges. Meanwhile, relatively widespread consistent
rainfall only occurred as there was a combined influence by cold surges from the North and tropical
depressions from the East in the wet seasons [35]; therefore, high streamflow periods are more
reasonably reproduced by the super-tank model. With respect to the average annual streamflow
comparison (not showed), it is notable that relative errors of average annual runoff reproduced by the
model are insignificant. As a result, it is suggested that the calibrated and validated super-tank model
is suitable for studies on climate change impacts on the catchment runoff, especially in places where
ground observation is scattered.

Figure 7. Average monthly observed and reproduced streamflow for the upper Thu Bon River basin at
Nong Son in the period of 1979–2008.



Water 2018, 10, 477 9 of 15

3.2. Projection of Changes in Rainfall

Increasing surface temperature would promote extra rainfall as a result of more water vapor in the
atmosphere, and this was clearly addressed in the recent assessment reports by the Intergovernmental
Panel on Climate Change [4], which state that most places around the world will expect changes in
rainfall. In the context of this assessment as previously mentioned, the changes in rainfall over the
upper Thu Bon River basin in this study were assessed based upon the differences between model
experiments for the baseline and near-term climates. The results show that MRI experiments (Expt. 1
to Expt. 3) indicate a slight increase in rainfall in the near-term climate; on the other hand, GFDL
experiments (Expt. 4 to Expt. 5) tend to project a reduction of rainfall in that same period, as seen
in Figure 8, which illustrates changes in average monthly rainfall projected by the individual model
experiments. Although there are variations between the different model experiments, there are some
consistent patterns across all five experiments. The consistent pattern being that from December to
April, rainfall is going to be less than in the past, but in the months of May to November rainfall
is going to be more than in the past. The decrease and increase of rainfall in these two periods are
approximately 10 percent, respectively. These result in a 1.2% decrease in the average annual rainfall
(not showed) projected for the upper Thu Bon River basin in the near future.

Figure 8. Changes in average monthly rainfall for the upper Thu Bon River basin in the
near-term (2026–2035) climate projected by individual model experiments, relative to the baseline
(1979–2008) climate.

3.3. Projection of Changes in Runoff Response Projection

Changes in the catchment runoff are obviously influenced by climate and non-climate variability
factors. In fact, most climate change impact assessment studies have neglected the influence of
the non-climate variability factors, such as changes in land use and land cover (e.g., [5,11,31]).
With respect to the climate variability factors, rainfall and evapotranspiration variation are the principal
drivers of change in the catchment runoff. Increasing surface temperature is likely to enhance the
evapotranspiration process, so that a higher evapotranspiration rate is expected in the future. However,
in the near-term climate, it is found that the increasing surface temperature in the study area is likely
to increase the potential evapotranspiration rate of 6% and as a result, reduce the total runoff of 1%
(not showed) relative to the baseline period (1979–2008). Thus, this study merely performed the effect
of the rainfall variability on the catchment runoff; while the effect of the evapotranspiration variability
on the streamflow was omitted.

Similar to the assessment of changes in rainfall, changes in the catchment runoff were assessed
by comparing the differences between runoff simulations for the baseline and near-term climates.
Catchment runoff was simulated using daily rainfall diagnosed by GCMs and then aggregated to
a monthly basis for the comparison. Figure 9 demonstrates the changes in the average monthly
streamflow in the near-term climate for the upper Thu Bon River basin projected by all the runoff
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simulations, relative to the baseline period. It is apparent that most of the simulations show a
reduction of the average monthly streamflow in the near future. Among the three simulations
derived from the GCM experiments by MRI, Expt. 1 and Expt. 2, indicate a moderate decrease
in streamflow; in particular, these simulations project a remarkable increase of the streamflow in
November, which is known as the wettest period of the year. Meanwhile, Expt. 3 projects larger
decreases in streamflow throughout the year. It can be understood that Expt. 1 and Expt. 2 were
setup with the same model structure (except the difference of model resolution) and parameterization
scheme [36], which considerably enhances the climatology of tropical convection [8], and, therefore,
perform realistic estimates of tropical precipitation [37]. Meanwhile, Expt. 3 was examined with
another parameterization scheme [38] that was developed for application to a meso-scale convection
system. In the meantime, it is interesting to observe that the two model experiments (Expt. 4 and
Expt. 5) with the same parameterization scheme (a scheme for moist convection and large-scale
cloudiness based on the parameterization of shallow convection as described in the literature [39]),
but different initializations used by GFDL illustrate relatively consistent decreases in streamflow. These
findings indicate that the treatment of physical parameterization schemes of GCMs tend to contribute
more sensitivity to the projection of runoff responses.

Figure 9. Changes in average monthly streamflow in the near-term (2026–2035) climate simulated
using projected rainfall, relative to the baseline (1979–2008) climate.

Figure 9 also illustrates the multi-model mean of the runoff response in the near-term. It seems
that the catchment will be facing a year-round reduction in streamflow, and in particular, it will suffer
a greater reduction during the period of December–April as a result of the decreases in rainfall in this
period, which is almost certainly going to increase the severity of the current problem of saltwater
intrusion associated with low flow in the dry season months. This will have important economic
and social impacts on this key economic zone. It is notable that slight decreases in streamflow
are also projected for the period with increasing rainfall projection. The reduction of streamflow
during May–August is understood as the effect of the decrease in rainfall in the previous dry months
(December–April), which causes greater depletion of soil moisture and groundwater table and then
requires larger recharge to the ground in the following months. On the other hand, the rainfall in this
period is projected to increase, but it is apparently less than the initial loss; thus, it seems that there
will be no contribution to the basin runoff. So, a message that can be inferred from the assessment for
adaptation purposes is to invest in efforts that will strengthen retention and recharge at the landscape
scale (to increase baseflow), in combination with the promotion of drought-tolerant measures suited to
the local soils, climate, and market conditions.

3.4. Uncertainty

As mentioned earlier, uncertainties are always inherent in almost all assessments of climate change
impacts. The previous study presented an evaluation of the uncertainty caused by a downscaling
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method as showed in the literature [11]; however, it has been revealed that an artificial neural
network-based model bias correction technique exhibited insignificant uncertainties in the projection of
extreme events. The present study, employing five GCM experiments of different model formulations
and physical treatments, is worth describing in terms of the variation of the runoff responses. Figure 10
shows the 95% confidence interval of the changes in the near-term runoff responses. It seems that
monsoonal season flooding has the potential to become more severe, though the severity of these
storms varies according to different simulations. The MRI experiments pay arguably the greatest
attention to these types of climate processes and phenomena. These experiments, specifically used
by MRI to explore extreme phenomena occurring at small scales [8], predict further increases in the
intensity of such extreme weather events. Therefore, as per most other predictions to date, Vietnam’s
central coast region needs to further strengthen its capacity to manage the impacts of monsoonal storm
events and associated flooding, erosion, landslides, and sedimentation of estuaries.

Figure 10. The 95 percent confidence interval of changes in the average monthly streamflow
in the near-term (2026–2035) climate simulated using projected rainfall, relative to the baseline
(1979–2003) climate.

With respect to the seasonal runoff variation, Figure 11 presents a box-and-whisker plot of dry
season, wet season, and annual streamflow derived from all the runoff simulations for decadal-based
time periods in the baseline and near-term climate. It is interesting to see that high-resolution climate
models show reasonable estimates of the means of annual and wet season streamflow, with the
average absolute relative error at less than 10%; meanwhile, the mean streamflow in dry periods was
overestimated (by more than 50%) in the baseline climate. The near-term projections of the runoff
responses indicate an obvious reduction in the means of annual, wet season, and dry season streamflow
compared with any preceding decade in the baseline climate. All the simulations show the convergent
projections of the runoff in dry periods; meanwhile, it is likely that more extreme events are projected
for wet seasons, though the indication of the high streamflow in this decade is less than that of any
preceding decade in the baseline.
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Figure 11. Box-and-whisker plot of (a) dry season, (b) wet season, and (c) annual streamflow simulated
using high-resolution multi-model simulations for each decade in the baseline and near-term climates;
the red circles represent mean streamflow simulated using observed rainfall.

4. Conclusions

The results of the CMIP5 high-resolution climate model experiments provide a potential source
of input data for modeling rainfall–runoff responses of small-scale catchments under the influence
of a changing climate. Using the Thu Bon River basin, located in the central coast region of Vietnam,
this study has sought to quantify the variability of streamflow simulated using the rainfall derived
from five different CMIP5 models. The Thu Bon River basin is a good choice for this study as it is
one of the larger catchments in the vast central coast region of Vietnam, it is home to the economic
center of Da Nang, it has a history of extreme weather events (both monsoonal flooding and low
water flow induced estuary salinization), and there is an existing calibrated super-tank model for
the upper Thu Bon River basin developed and applied by the authors [11,12,19] that has reasonable
performance characteristics.

The results exhibit that, although rainfall is projected with a slight variation compared to that in
the baseline climate, the runoff is very likely to decrease in the near-term decade. Decreases in runoff
in the dry season are detected by most model simulations with a high level of confidence, though the
rainfall in this period is expected to increase slightly compared with that of any preceding decades in
the baseline climate. The results also show that the treatment of the model physical parameterization
schemes tends to contribute more sensitivity to future projections. Experiments by MRI seem to project
increases in streamflow, particularly during the high streamflow period; while models used by GFDL
project consistent decreases of the basin runoff. As a result, this exploration is believed to be critical to
making informed decisions for the implementation of proper adaptation strategies in this river basin
and the downstream areas as well. In addition, this near-term assessment is also considered a good
reference to verify the attempts of the climate modeling community in providing climatic knowledge
to the public, because there is not a long wait to see what will be happening in the coming decades.
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However, it is worth noting that the effects of increasing evapotranspiration and non-climate
variability factors have not been included in this assessment, given the assumption of minor changes
in surface temperature in the near-term climate and the fact that climate variability factors dominate
the others in contributing to changes in runoff. More importantly, this work is merely the first attempt
to explore the pattern of change based on simulation datasets in the past and future. Thus, we plan to
apply model bias correction to the projected rainfall, the principal driver of runoff variability, to obtain
a better simulated runoff. So, following publication of this research series, the performance of model
bias concretion will be explored.
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