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Abstract: Droughts are a frequent occurrence in Xinjiang, China, and therefore fundamental
to determining their hydrologic characteristics is low flow analysis. To that end, 11 probability
distribution functions and 26 copulas functions were employed to analyze the changing characteristics
of low flow regime (defined as seven-day low flow) of the Tarim River Basin. Results indicated that:
(1) The Wakeby distribution satisfactorily described the probabilistic behavior of the low flow regime.
According to Akaike Information Criterion (AIC), Bayesian Information Criterions (BIC), maximum
likelihood, and other residual-based metrics, Tawn copula, Farlie–Gumbel–Morgenstern copula and
Frank copula were the best choice and used in this current study. (2) After 1987, hydrological droughts
of longer return periods were prone to higher occurrence frequency. (3) The low flow volume has
been increasing in recent years due to the temperature-induced increase of snowmelt and increasing
precipitation. However, hydrological droughts can be expected to occur due to the massive increase
in water demand from the development of irrigated agriculture, increasing arable land and livestock
farming. As a result, the water shortage in the lower Tarim River Basin will be increasingly severe
under the influence of climate change and human activities. To alleviate the shortage would call for
the development of water-saving agricultural irrigation, water-saving technology, conservation of
eco-environment and sustainable development of local socio-economy.

Keywords: probabilistic behavior; probability distribution function; copula function; low flow regime;
Tarim River Basin

1. Introduction

Traditionally, hydrologists have paid greater attention to floods that are normally associated
with more visible and dramatic hazards, damages and economic losses [1]. This has been especially
true in China, partially due to the recurrence of severe floods in major river basins in the past few
decades [2–4]. However, low-flow information for both gauged and ungauged sites is critical for
a wide range of applications, including the planning and design of water supply systems, analysis
of environmental and economic impacts, modeling of stream water quality, and determination of
optimum maintenance flow for instream use and hydropower operation [5,6]. Low flow regime is also
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a major component in the drought conception [7,8]. Gumbel (1963) defined a drought as the smallest
annual value of daily streamflow [9]. Palmer (1965) described a drought as a significant deviation
from the normal hydrologic condition of an area [10]. Therefore, an understanding and estimation of
low-flow characteristics are vital to the sustainable development and management of water resources
and also for monitoring practices of drought hazards [11–13].

Northwest China is characterized by arid and semi-arid climate. Availability and variability
of water resources have a direct influence on local eco-environmental conservation and sustainable
socio-economic development. The Tarim River (Figure 1), with an annual flow of 4–6 billion cubic
meters, is the longest inland river in China. The basin has a population of about 10 million, including
ethnic minorities, such as Uyghurs and Mongolians. The climate of the basin is characterized by
low precipitation and high evaporation characteristic of arid climate. The temporal distribution
of precipitation throughout the year is strongly heterogeneous. More than 80% of the total annual
precipitation falls between May and September in the high flow season and less than 20% of the
total falls from November to the following April [14]. Precipitation in the mountainous regions can
exceed 300 mm per year in some areas and is mostly in the form of snowfall [15]. Water resources
play a key role in the conservation of ecological environment and sustainable development of social
economy and agriculture is heavily dependent on irrigation. Sustainable water distribution depends
on average multi-year discharges and water requirements for ecological and economic development
in the Tarim River Basin [16]. This requires an investigation of the hydrological processes and water
resources availability in the basin where the supply of water resources is a major constraint for further
socio-economic development and ecological protection.

There have been several studies dealing with climate change and water resources in the Tarim
River Basin. Using 50 years of data on hydrology, temperature, and precipitation, Chen et al. (2007)
investigated the effect of climate change on water resources [14]. Xu et al. (2008) analyzed the
relationship between ecological change and agricultural development and discussed water resources
management and its ecological significance [16]. Analyzing the characteristics of hydro-climatic
changes, Tao et al. (2011) found that local human activities since the 1970s led to a decrease of the water
volume diverted into the main stream of the basin, which was aggravated in the 2000s [15]. Based on
daily precipitation and temperature dataset of 23 gauging stations and annual streamflow data of five
hydrological stations covering 1960–2005, Zhang et al. (2010) analyzed spatio-temporal variations
of climatic change and associated impacts on water resource and found that annual streamflows
of headstream rivers, except Aksu River, did not exhibit significant trends [17,18]. Gu et al. (2016)
analyzed the intra-annual, seasonal and inter-seasonal clustering of floods and investigated possible
impacts of climate indices on the occurrence rates of floods [19,20]. Li et al. (2016) developed a new
agricultural drought index, which is based on the Variable Infiltration Capacity (VIC) model coupled
with an irrigation scheme and a reservoir module. The new drought index was derived from the
simulated soil moisture data from a retrospective VIC simulation from 1961 to 2007 over the irrigated
area [21].

Sources of streamflow in the Tarim River Basin are precipitation and glacial melting, and hence
an increase in streamflow is the result of increasing precipitation and/or accelerating ice melting.
Xu et al. [22] detected trends in major hydrometeor-hydrological variables during the period of
1960–2007. Results showed that both mean annual air temperature and precipitation experienced an
increasing trend, while annual streamflow demonstrated a mixed trend of decreasing and increasing:
The mountainous region upstream showed an increasing trend and the region downstream exhibited a
decreasing trend.

However, despite its importance to the development of agriculture and conservation of
eco-environment, only a few reports are available addressing the changing properties of low flow
regimes. This constitutes the motivation of this study and therefore the objective of this study was
to investigate the probabilistic behavior of hydrological droughts represented by low flows and to
discuss the possible causes behind the changing properties of low flows.
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2. Data

The hydrological data analyzed in this study were daily streamflow for the period of 1962–2008
from eight major hydrological stations, as shown in Table 1: Tongguziluoke (TG), Yuzimenleke (YZ),
Kaqun (KQ), Shaliguilanke (SL), Xiehela (XH), Huangshuigou (HS), Dashankou (DS) and Alaer (AL).
The streamflow data were obtained from the Management Bureau of the Tarim River Basin. The missing
data were processed based on the method by Zhang et al. [17,18]. Specifically, the missing values of
1–2 days were replaced by the average of neighboring days. Adequate consecutive days with missing
data were filled by the long-term average of the same days of other years. In this study, the low flow
regime was defined as the seven-day low flow [17,23,24]. In addition, information on water reservoirs
and irrigated areas was also collected. Locations of the hydrological stations, water reservoirs and
irrigated areas are shown in Figure 1.

Figure 1. Locations of hydrological stations, water reservoirs and irrigation areas in the Tarim
River Basin.

Table 1. Information of seven-day low flow at eight stations of the Tarim River Basin.

No. Stations Abbreviation Streamflow Series Basin

1 Tongguziluoke TG 1962–13 December 2008 Hotan river
2 Yuzimenluoke YZ 1 January 1962–13 December 2008 Yarkand river
3 Kaqun KQ 1 January 1962–13 December 2008 Yarkand river
4 Shaliguilanke SL 1 January 1962–13 December 2008 Aksu river
5 Xiehela XH 1 January 1962–13 December 2008 Aksu river
6 Dashankou DS 1 January 1972–13 December 2008 Kaidu river
7 Huangshuigou HS 1 January 1972–13 December 2008 Kaidu river
8 Alaer AL 1 January 1962–13 December 2008 Mainstrean of Tarim river

3. Methods

3.1. Frequency Analysis

First, an autocorrelation analysis was conducted to confirm the independence of observations.
Then, the probabilistic behavior of hydrological extremes was analyzed using the following steps:
(1) Eleven probability distribution functions (PDFs), commonly used in extreme value analysis,
were used [25,26]. (2) For each individual station, these 11 probability distribution functions were fitted
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to the seven-day low flow series with their parameters estimated using the L-moment estimation [27].
(3) Goodness-of-fit was judged by the Kolmogorov–Smirnov statistic D (K-S D). Here, 95% confidence
level was accepted to reject or accept a fit. (4) Based the on K-S D value, the PDF better describing the
probabilistic behavior of seven-day low flow was selected for each station. The PDF that fitted the
seven-day low flow series of the most of the stations was adopted as the best choice.

3.2. Copula Function

The copula functions have been used in the analysis of hydro-meteorological extremes [28–32].
In some studies, the Archimedean copula family was used to analyze the joint probabilistic behavior
of hydrological extremes [30]. The reason for choosing this copula family is that it can be easily
constructed, a large variety of copulas belong to this family, and it can be applied when the correlation
amongst hydrologic variables is positive or negative [30,33]. The copula functions considered in this
study were the 26 Copulas in Table 2 [34]. The Ali–Mikhail–Haq family is similar to the Frank family
but is limited by the correlation structure of two hydrological variables [35,36]. Sadegh et al. (2017)
empirically estimated the marginal distribution of each hydrological variable and constructed the
joint distribution of precipitation and soil moisture anomalies using the 26 copulas. They found that
only the Tawn and Marshall–Olkin copulas are capable of characterizing the asymmetric dependence
structure of this dataset. Neither is among the commonly used copulas in the hydrological literature.
The Tawn copula provides a very good fit to the data [34,37]. Therefore, in this study, we construct the
joint distribution of low flow based on 26 copulas.
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Table 2. Copula Families and Their Closed-Form Mathematical Description [34].

Name Abbreviation Mathematical Descriptiona Parameter Range Reference

Gaussian Gau
∫ φ−1(u)
−∞

∫ φ−1(v)
−∞

1
2π
√

1−θ2 exp( 2θxy−x2−y2

2(1−θ2)
)dxdyb θ ∈ [−1, 1] [38]

t t
∫ t−1

θ2
(u)

−∞
∫ t−1

θ2
(v)

−∞
Γ((θ2+2)/2)

Γ(θ2/2)πθ2
√

1−θ2
1

(1 + x2−2θ1xy+y2

θ2
)
(θ2+2)/2

dxdyc θ1 ∈ [−1, 1] and θ2 ∈ (0, ∞) [38]

Clayton Cla max(u−θ + v−θ − 1, 0)
−1/θ θ ∈ [−1, ∞]\0 [39]

Frank F − 1
θ ln
[
1 + (exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1

]
θ ∈ R\0 [38]

Gumbel Gum exp
{
−
[
(− ln(u))θ + (− ln(v))θ

]1/θ
}

θ ∈ [1, ∞) [38]

Independence I uv [40]
Ali–Mikhail–Haq AMH uv

1−θ(1−u)(1−v) θ ∈ [−1, 1) [41]

Joe Joe 1−
[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
θ ∈ [1, ∞) [38]

Farlie–Gumbel–Morgenstern FGM uv[1 + θ(1− u)(1− v)] θ1 ∈ (0, ∞), θ2 ∈ (1, ∞) [40]
Gumbel–Barnett GB u + v− 1 + (1− u)(1− v) exp[−θ ln(1− u) ln(1− v)] θ ∈ [0, 1] [42,43]

Plackett P 1+(θ−1)(u+v)−
√
[1+(θ−1)(u+v)]2−4θ(θ−1)uv

2(θ−1)
θ ∈ (0, ∞) [44]

Cuadras-Auge CA [min(u, v)]θ(uv)(1−θ) θ ∈ [0, 1] [45]

Raftery R

{
u− 1−θ

1+θ u
1

1−θ (v
−θ

1−θ − v
1

1−θ ), i f u ≤ v

v− 1−θ
1+θ v

1
1−θ (u

−θ
1−θ − u

1
1−θ ), i f v ≤ u

θ ∈ [0, 1) [40]

Shih-Louis SL

{
(1− θ)uv + θmin(u, v), i f θ ∈ (0, ∞)
(1 + θ)uv + θ(u + v− 1)Ψ(u + v− 1), i f θ ∈ (−∞, 0]

Ψ(a) = 1 if a ≥ 0 and Ψ(a) = 0 if a<0
[46]

Linear-Spearman LS

[u + θ(1− u)]v, if v ≤ u and θ ∈ [0, 1]
[v + θ(1− v)]u, if u<1 and θ ∈ [0, 1]
(1 + θ)uv, if u + v<1 and θ ∈ [−1, 0]
uv + θ(1− u)(1− v), if u + v ≥ 1 and θ ∈ [−1, 0]

θ ∈ [−1, 1] [47]
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Table 2. Cont.

Name Abbreviation Mathematical Descriptiona Parameter Range Reference

Cubic Cu uv[1 + θ(u− 1)(v− 1)(2u− 1)(2v− 1)] θ ∈ [−1, 2] [48]

Burr B u + v− 1 +
[
(1− u)−1/θ + (1− v)−1/θ − 1

]−θ
θ ∈ (0, ∞) [49]

Nelsen N −1
θ log

{
1 + [exp(−θu)−1][exp(−θv)−1]

exp(−θ)−1

}
θ ∈ (0, ∞) [40]

Galambos Ga uv exp
{
(− ln(u))−θ + (− ln(v))−θ

}−1/θ
θ ∈ [0, ∞) [50]

Marshall–Olkin MO min
[
u(1−θ1)v, uv(1−θ2)

]
θ1, θ2 ∈ [0, ∞) [50]

Fischer–Hinzmann FH
{

θ1[min(u, v)]θ2 + (1− θ1)[uv]θ2
}1/θ2

θ1 ∈ [0, 1], θ2 ∈ R [51]

Roch–Alegre RA exp

{
1−

[
(((1− ln(u))θ1 − 1)

θ2
+ ((1− ln(v))θ1 − 1)

θ2
)

1/θ2

+ 1
]1/θ1

}
θ1 ∈ (0, ∞), θ2 ∈ [1, ∞) [52]

Fischer–Kock FK uv
[
1 + θ2(1− u1/θ1 )(1− v1/θ1 )

]θ1
θ1 ∈ [1, ∞), θ2 ∈ [−1, 1] [34]

BB1 BB1
{

1 +
[
(u−θ1 − 1)

θ2 + (v−θ1 − 1)
θ2
]1/θ2

}−1/θ1

θ1 ∈ (0, ∞), θ2 ∈ (1, ∞) [35]

BB5 BB5 exp

{
−
[
(− ln(u))θ1 + (− ln(v))θ1 − ((− ln(u))−θ1θ2 + (− ln(v))−θ1θ2 )

−1
θ2

] 1
θ1

}
θ1 ∈ [1, ∞), θ2 ∈ (0, ∞) [35]

Tawn Tawn exp
{

ln(u(1−θ1)) + ln(v(1−θ2))−
[
(−θ1 ln(u))θ3 + (−θ2 ln(v))θ3

] 1
θ3

}
θ1, θ2 ∈ [0, 1], θ3 ∈ [1, ∞] [50]
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3.3. Determination of the Generating Function and the Resulting Copula

The first step in determining a copula is to obtain its generating function from bivariate
observations. The procedure to obtain the generating function and the resulting copula was introduced
by Genest and Rivest [53] and it was followed in this study. The two variables here are (X, Y): (x1, y1),
(x2, y2), . . . , (xn, yn). X and Y are the seven-day low flow series analyzed in this study. The procedure
can be described here:

(1) Determination of Kendall’s τ based on the observed series:

τN =

(
N
2

)−1

∑
i<j

sign[(xi − xj)(yi − yj)] (1)

where N is the length of the series; sign = 1 when xi ≤ xj and yi ≤ yj, otherwise, sign = −1; i, j = 1, 2,
. . . , N; and τN is the estimate of τ from the observed series.

(2) The copula parameter, θ, can be estimated based on Markov Chain Monte Carlo (MCMC)
simulation within a Bayesian framework [54,55]. MCMC simulation estimates the posterior distribution
of parameter values, which are then translated into uncertainty ranges for the copula probability
isolines. The MCMC simulation searches for the region of interest with multiple chains are running in
parallel. Chains share information on the fly, characterize the posterior region (even in the presence of
multimodality), and estimate the global optimum [34,56,57].

3.4. Selection of Copula Family

The computation procedure for copula-based analysis of hydrological extremes involves the
following steps [30]: (a) determination of marginal distributions based on the conventional statistical
approach; (b) identification of generator and parameter of copulas; (c) determination of the joint
probability distribution; and (d) application to real data. The marginal probability distribution function
was evaluated using the Kolmogorov–Smirnov goodness-of-fit statistics (K-S D statistics). We use
several goodness of fit measures to evaluate the performance of different copula models, including
likelihood value, AIC, BIC, RMSE, and NSE [34]. Higher model complexity (more degrees of freedom)
provides the advantage of greater model flexibility and hence usually results in a better fit to the
observed data. However, this might stimulate over-conditioning of the model. AIC, in contrast to the
ad hoc likelihood value, considers both complexity of the model and minimization of error residuals
and provides a more robust measure of quality of model predictions. AIC avoids the problem of
over-conditioning by adding a penalty term based on the number of parameters. AIC is formulated
as [34,58–60]:

AIC = 2D− 2` (2)

in which D is the number of parameters of the statistical model and ` is the log-likelihood value of the
best parameter set. This equation can be simplified to:

AIC = 2D + n ln


n
∑

i=1
[yi − yi(θ)]

2

n

− 2cs (3)

` = −n
2

ln(2π)− n
2

ln σ2 − 1
2

ln σ−2
n

∑
i=1

[ỹi − yi(θ)]
2 (4)

Given the Gaussian assumption of error residuals, σ2 =

n
∑

i=1
[ỹi−yi(θ)]

2

n , θ is Copula parameter and
cs is a constant. A lower AIC value associates with a better model fit.
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Similar to AIC, BIC is presented as [34,61]:

BIC = D ln n− 2` (5)

which similarly simplifies to:

BIC = D ln n + n ln


n
∑

i=1
[yi − yi(θ)]

2

n

− 2cs (6)

If residuals are independent and identically distributed following a Gaussian distribution centered
around zero, then, similar to AIC, a lower BIC value associates with a better model fit.

NSE and RMSE are also two widely used measures of goodness of fit, which only focus on
minimization of residuals,

RMSE =

√√√√√ n
∑

i=1
[ỹi − yi(θ)]

2

n
(7)

NSE = 1−

n
∑

i=1
[ỹi − yi(θ)]

2

n
∑

i=1

[
ỹi − ỹi

]2 . (84)

A perfect model fit is associated with RMSE = 0, RMSE ∈ [0, ∞), and NSE = 1. All these
metrics evaluate, in different ways, the performance of copulas in terms of how close modeled
bivariate probabilities (y) are to their empirical observed counterparts (ỹ). Although number of copula
parameters (model complexity) impacts some of the evaluation metrics, parameter ranges have zero
impact on them.

4. Results

4.1. Selection of the Marginal Distributions and Copula Functions

Parameters of the PDFs were estimated using the L-moment technique and the goodness-of-fit
was tested by the K-S method (Table 3). It can be observed in Table 3 that, at the 95% confidence
level, the Wakeby, gamma, lognormal, log-logistic and general extreme value distribution functions
well described the probabilistic behavior of the seven-day low flow regime. However, comparatively,
the Wakeby function had the smallest K-S statistic D values (Table 3) and Table 4 lists the estimated
Wakeby distribution parameters. Figure 2 reinforces this point by the distribution and cumulative
distribution curves. Thus, the Wakeby functions were used to describe the probabilistic behavior of
the seven-day low flow regime in the Tarim River Basin. It should also be noted that the Wakeby
distribution is a more flexible distribution than other distributions and is widely used in extreme
value analysis practice [62]. Therefore, the Wakeby distribution is usually regarded as a first option in
extreme value analysis [63].

Table 3. K-S statistic D for 11 probability distribution functions describing the statistical properties of
extreme streamflow.

Probability Functions

Hydrological Stations
TG YZ KQ SL XH DS HS AL

Wakeby (5P) 0.043 0.058 0.059 0.046 0.057 0.089 0.060 0.071
Weibull (3P) 0.042 0.096 0.055 0.063 0.094 0.144 0.076 0.162
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Table 3. Cont.

Probability Functions

Hydrological Stations
TG YZ KQ SL XH DS HS AL

Gamma (3P) 0.041 0.083 0.054 0.058 0.085 0.130 0.070 0.128
Lognormal (3P) 0.041 0.075 0.049 0.057 0.081 0.106 0.075 0.182
Log-logistic (3P) 0.046 0.067 0.055 0.054 0.070 0.102 0.075 0.193
General Pareto (3P) 0.081 0.088 0.097 0.056 0.119 0.119 0.064 0.111
Gen. Extreme Value (3P) 0.045 0.062 0.055 0.057 0.083 0.094 0.077 0.074
Maximum Extreme Value (3P) 0.062 0.070 0.105 0.048 0.098 0.107 0.079 0.153
Beta (4P) 0.072 0.084 0.052 0.063 0.086 0.132 0.081 0.401
Gumbel Max Distribution (2P) 0.072 0.078 0.082 0.073 0.092 0.085 0.081 0.099
Gumbel Min Distribution (2P) 0.123 0.194 0.111 0.181 0.158 0.224 0.204 0.122

Note: The threshold values of K-S D are: 0.198 (n = 47, 1-α = 0.95); 0.200 (n = 46, 1-α = 0.95); 0.224 (n = 37, 1-α = 0.95).
Smaller K-S D indicates better goodness-of-fit of probability functions describing the seven-day low flow regimes.
Bold numbers in Table 3 denote higher goodness-of-fit degree when compared to alternative functions.

Figure 2. Theoretical and observed of probability density function (A) and probability distribution
functions (B) for the seven-day low flow at the XH station.

Table 4. Estimated parameters of the Wakeby function describing the probabilistic behavior of
seven-day low flow regime using the L-moment technique.

Stations α β γ δ ξ

TG 18.90 9.08 3.02 −0.41 2.63
YZ 41.28 31.35 1.02 −0.05 0.53
KQ 70.26 9.52 6.20 −0.35 29.67
SL 935.35 131.39 5.82 −0.24 0
XH 16.82 5.44 1.48 0.09 18.55
DS 1836.5 61.10 14.15 −0.22 0
HS 47.92 58.27 1.20 10.37 1.06
AL 21.78 1.99 2.57 0.19 −1.35

During the 1980s, climatic experienced abrupt changes [64,65], as characterized by increasing
temperature and precipitation and also by the decrease in dust storm days [64]. Besides, after the 1990s,
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the net increase of arable land reached 68.75 × 104 hm2 with an increasing magnitude of 3.8% [66].
Therefore, 1987 was taken as the demarcation line and the probabilistic behavior of the seven-day
low flow regime was studied before and after 1987 (Figure 3 and Tables 5 and 6). It can be observed
in Figure 3 and Tables 5 and 6 that no evident differences could be found in the seven-day low flow
magnitudes with return periods of <20 years. The seven-day low flow increased after the end of
the 1980s at the Shaliguilanke, Alaer, Huangshuigou and Yuzimenleke stations, and decreased at the
Kaqun, Xiehela, Dashankou, and Tongguziluoke stations. Besides, the magnitude of the seven-day low
flow with return periods of <20 years after the end of the 1980s was larger than that after the 1980s at
the Kaqun, Dashankou, Xiehela stations, and the reverse was expected for the seven-day low flow with
return periods of >20 years. These changes imply a decreasing magnitude of the seven-day low flow
or increasing probability of hydrological droughts at the Kaidu and Yarkand River Basins (Figure 1).
However, increased magnitude of the seven-day low flow could be detected at the Tongguziluoke,
Alaer, Huangshuigou, and Shaliguilanke stations, implying a decreasing probability of hydrological
droughts in the river basins these hydrological stations are located in (Figure 1).

Figure 3. Return periods and related seven-day low flow before and after 1987 ((A): KQ, SL, XH and
DS sations; (B): TG, YZ, HS and AL staions).

Table 5. Designed seven-day low flow (m3/s) and related return periods before 1987.

Stations T = 2 T = 3 T = 5 T = 7 T = 10 T = 20 T = 30 T = 50 T = 70 T = 100

TG 5.53 4.94 4.33 3.98 3.67 3.23 3.06 2.91 2.85 2.80
YZ 2.26 2.09 1.92 1.78 1.63 1.33 1.20 1.07 1.01 0.97
KQ 39.5 37.8 36.5 35.9 35.5 35.0 34.8 34.7 34.5 33.8
SL 10.3 9.05 7.87 7.28 6.80 6.20 5.98 5.81 5.73 5.67
XH 22.1 21.3 20.5 20.1 19.8 19.4 19.3 19.2 19.14 19.11
DS 36.7 34.3 31.9 30.6 29.5 28.0 27.5 27.0 26.8 26.6
HS 2.36 2.15 1.99 1.92 1.87 1.81 1.79 1.77 1.73 1.66
AL 4.95 2.83 1.20 0.51 0 0 0 0 0 0

Table 6. Designed seven-day low flow (m3/s) and related return periods after 1987.

Stations T = 2 T = 3 T = 5 T = 7 T = 10 T = 20 T = 30 T = 50 T = 70 T = 100

TG 7.93 7.18 6.62 6.38 6.12 5.93 5.78 5.62 5.53 5.46
YZ 3.14 2.71 2.42 2.30 2.22 2.12 2.09 2.06 2.03 1.94
KQ 43.6 41.8 39.4 37.5 35.3 31.4 29.7 28.1 27.4 26.8
SL 13.0 10.8 9.16 8.50 8.02 7.47 7.29 7.14 7.08 7.04
XH 23.6 22.9 22.3 21.9 21.2 19.7 18.8 17.9 17.5 16.2
DS 44.9 39.1 34.7 32.8 31.4 28.1 24.8 19.4 15.7 12.2
HS 3.34 2.95 2.57 2.39 2.24 2.07 2.01 1.96 1.94 1.92
AL 13.0 11.2 10.0 9.31 8.41 6.10 4.69 3.18 2.39 1.75
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4.2. Joint Probabilistic Behavior of Seven-Day Low Flow Regimes at Different Stations

The joint distributions of seven-day low flow at all the stations are determined by copulas. In total,
26 copulas (Table 2) were selected as candidate copulas for the joint distribution of seven-day low
flow in Tarim River Basin. The association between seven-day low flow is measured using Kendall’s
τ coefficient, while the parameters of the corresponding copulas distributions are estimated based
on Markov Chain Monte Carlo (MCMC) simulation within a Bayesian framework. Based on the
goodness-of fit test introduced in Section 3.4, selection of copula functions was based on the AIC,
BIC, and Maxi-Likelihood, and results are illustrated in Figure 4. It is worth noting that a visual inspection
of the 26 copulas fitted to the seven-day low flow shows that the Tawn copula provides a very good fit to
the data with a NSE = 0.9978 (NSE = 1 is associated with a perfect fit) and is selected as the best copula
according to AIC, BIC, maximum likelihood, and other residual-based metrics in Yarkand River Basin.
Farlie–Gumbel–Morgenstern copula is a very good fit to the data with minimum value of AIC, BIC and
Maximum likelihood in Aksu River Basin. Moreover, Frank copula, with minimum value of AIC, BIC and
Maximum likelihood, is the best copula and will be used for the further analysis in Kaidu River Basin.
The parameters of best copulas in Tarim River Basin based on MCMC are shown in Table 7.

Figure 4. The value of goodness-of fit based on AIC, BIC, Max-Likelihood, NSE and RMSE in the Tarim
River Basin.

Table 7. Estimated parameters of the copula functions with the highest modelling performance.

Joint Distribution of Seven-Day Low Flow Copula θ1 θ2 θ3

YZ and KQ stations Tawn 0.394 0.931 3.014
SL and XH stations Farlie–Gumbel–Morgenstern 1.874 - -
DS and HS stations Frank 6.715 - -

The joint probabilistic behavior of seven-day low flow regimes was analyzed for Yuzimenleke
vs. Kaqun stations (with time interval of 1962–2008), Shaliguilanke vs. Xiehela stations (with the time
interval of 1962–2008), and Dashankou vs. Huangshuigou stations (with time interval of 1972–2008).
The marginal distribution function was the Wakeby function, with parameters estimated using the
L-moment technique (Table 4). Figures 5–7 show the joint probabilistic behavior of the seven-day
low flow in the Yarkand River Basin, i.e., the Kaqun and the Yuzimenleke stations. The results of
joint distribution, joint return periods and concurrent return periods are illustrated in Figures 5–7,
respectively. Results for other river basins considered in this study showed similar features and are
not be given here. It can be seen in Figures 5–7 that the probability was relatively small when low flow
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regimes with small streamflow magnitudes occurred simultaneously in both tributaries, so did the
case when a large magnitude of low flow occurred in one tributary and a small magnitude of low flow
in another tributary. However, the probability was increasingly higher when the magnitude of low
flow increased in both tributaries.

Figure 5. Joint probability distribution function and related contours for the seven-day low flow regime
at the Kaqun and the Shaliguilanke stations.

Figure 6. Joint return periods and related contours for the seven-day low flow regime using the GH
Copula function.

Figure 7. Concurrence return periods and related contours for the seven-day low flow regime using
the GH Copula function.

Table 8 shows joint return periods (JRP) and concurrence return periods (CRP) with different
groups of hydrological stations and different groups of return periods. It can be observed from the
table that the JRP was smaller than the designed return period, and CRP was larger than the designed
return period. Changes in JRP and CRP of low flows at the Yarkand and Aksu Rivers were largely in
agreement. On the premium of the same occurrence frequency, JRP of low flows at the Kaidu River was
larger than that at the Yarkand and Aksu Rivers; however, CRP of low flows at the Kaidu River was
smaller than that at the Yarkand and Aksu Rivers. The concurrent occurrence probability was higher
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for the hydrological droughts with return periods of < 2 years at the Yarkand and Aksu Rivers, and for
the hydrological droughts with return periods of < 5 years at the Kaidu River. In general, the Joint
return periods (JRP) of hydrological droughts at the Kaidu River was smaller than that at the Yarkand
and Aksu Rivers, implying a higher frequency of hydrological droughts in the Kaidu River Basin when
compared to the Yarkand and Aksu River Basins. However, the concurrence return periods (CRP)
of hydrological droughts at the Kaidu River was larger than that at the Yarkand and Aksu Rivers,
implying a lower risk of hydrological droughts in the all Kaidu River Basin when compared to the
Yarkand and Aksu River Basins.

Table 8. Joint return periods (JRP) and concurrence return periods (CRP) with different groups of
hydrological stations and different groups of return periods.

Designed Return Periods T
YZ and KQ Stations SL and XH Station DS and HS Stations

JRP T0 CRP Ta JRP T0 CRP Ta JRP T0 CRP Ta

2 1.5 3.1 1.6 2.7 1.4 3.6
5 3.1 13.7 3.4 9.6 2.9 19.9

10 5.7 42.5 6.2 25.5 5.4 74.7
20 10.8 131.4 11.7 67.6 10.4 288.8
30 15.9 254.3 17.2 119.5 15.4 641.9
50 26.1 584.3 27.8 245.1 25.4 1765.3
70 36.3 1010.6 38.4 393.4 35.4 3445.1
90 46.4 1521.6 48.9 560.2 45.4 5681.2
100 51.4 1806.4 54.2 649.6 50.4 7007.9

5. Discussion

The low flow of the same return period at the Tongguziluoke, Yuzimenleke, Shaliguilanke,
Huangshuigou and Alaer stations was larger in magnitude after 1987 than that before 1987. The low
flow regime at the Kaqun station with return periods of larger than 10 years was smaller in magnitude
after 1987 than that before 1987. At the Xiehela and Dashankou stations, however, the low flow regime
with return periods of larger than 30 years was larger before 1987 than that after 1987. This observation
is in agreement with the published results [18,64,67] that shifts occurred from warm-dry to warm-wet
climatic conditions which may trigger increased volume of low flow regimes at most of the hydrological
stations within the Tarim River Basin, except the Kaqun, the Xiehela and Dashankou stations which are
dominated by decreased low flow volumes after about 1987. Streamflow of the Yarkand River is mainly
from snow melt, which accounts for about 64% of the total streamflow measured at the Kaqun station;
and 22.6% of streamflow is from ground water supply. Streamflow at the Kaqun station is mainly from
snow melt and streamflow at the Yuzimenleke station is mainly due to snow melt and rainfall [68].
The temperature and precipitation in Xinjiang are increasing in general. In the Yarkand River Basin, the
increase in temperature is evident in autumn when compared to other seasons. No observed changes in
temperature can be found in winter. However, the increasing tendency of precipitation is obvious [68].
In this case, the increase in streamflow due to snowmelt is not evident. Thus, hydrological droughts
are not alleviated, although precipitation is increasing because the streamflow of the Yarkand River
Basin is mainly from snowmelt. The irrigation demand in the Yarkand River Basin is the largest within
the Tarim River Basin (Figure 1). The water consumption by livestock farming and agriculture can
reach 2.17 billion cubic meters per year, accounting for 28.4% of the total streamflow availability [69].
Although precipitation in the Yarkand River Basin is slightly on the increase, the increase in irrigation
demand is even more significant. Thus, increase of precipitation cannot satisfy the water demand from
agriculture and livestock farming.

The Shaliguilanke and Xiehela stations control the hydrological processes of the Aksu River
Basin. The streamflow of the Aksu River Basin is mainly from rainfall and snowmelt. After 1987,
precipitation in spring and winter was increasing and temperature in winter was evidently increasing.
Thus, an increase of the low flow volume can be expected after the 1970s. The water demand within the
Aksu River Basin is also large, although it is smaller than that in the Yarkand River Basin. The water
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consumption by livestock farming and agriculture irrigation can reach 1.49 billion m3, accounting for
17.6% of the total streamflow of this river basin. The streamflow supply of the Kaidu River depends
heavily on rainfall and snow melting. The increase of streamflow due to snow melting accounts
for 23.2% of the total streamflow [70]. The mean temperature during December, January, February,
and March is −20.4 ◦C with weak evaporation and water supply of this river is mainly from ground
water. However, precipitation changes in summer and autumn will directly impact the low flow
amount in winter [71]. The increase of precipitation may alleviate the water deficit; however, increasing
water demand due to massive agricultural irrigation may call for the mitigation of hydrological
droughts to face new challenges if water-saving agriculture technology cannot be developed in due
time (Figure 1).

It should be noted here that the low flow volume increased after 1987, and the occurrence frequency
after 1987 also decreased when compared to that before 1987. However, Figure 8 shows that the
drought-affected area was increasing at a rate of 2.3 thousand ha per year. The low flow changes are not
in agreement with those of the drought-affected areas. It is attributed to the significant improvement
in irrigation facilities and seepage prevention of the irrigation canal (Figure 1 and Tables 9 and 10).
The agriculture of Xinjiang is heavily dependent on irrigation. The arable land for agriculture has
increased within three time intervals: the increase of the arable land is about 0.449 million ha during
1949–1960; 0.265 million ha during 1963–1978; and 0.689 ha during 1990–2008 [66,72]. The irrigated arable
land in the upper Tarim River Basin has increased from 0.348 million ha in 1950 to 1.645 million ha in 2007.
The water consumption due to the significant increase of the irrigated arable land cannot be satisfied
by the increase of streamflow as a result of increased precipitation in recent years. Thus, streamflow
within the main stem of the Tarim River Basin is increasing correspondingly due to increased streamflow
as a result of temperature-induced increase of snowmelt and increase of precipitation. Precipitation is
increasing and snowmelt is also increasing due to increased temperature; however, water demand is
significantly increasing due to the rapid development of agricultural irrigation. Therefore, droughts in
Xinjiang are still increasingly serious and severe and have no signal of alleviation under the influence
of climate change and human activities, particularly the increasing water demand due to the booming
development of irrigated agriculture and livestock farming.

Figure 8. Temporal variations in drought-destroyed crop areas and seven-day low flow regimes in
Xinjiang during 1964 and 2007.
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Table 9. Detailed information of water reservoirs within the Tarim River Basin.

River
Number of

Water
Reservoirs

Total Storage
Capacity/108m3

Utilizable
Capacity/108m3

Cumulative
Irrigated

Areas/hm2

Effective
Irrigated

Areas/hm2

Designed
Flood

Volum/108m3

Hetian River Basin 20 2.35 2.05 36,263.04 33,268.3 2.20
Yarkand River Basin 37 14.20 11.57 303,816.3 201,283.4 19.97

Aksu River Basin 6 4.90 4.20 105,116.2 80,870.7 4.14
Kaidu River Basin 5 0.77 0.52 - - 0.48
Mainstem of the

Tarim River Basin 8 5.86 4.76 66,326.7 49,969.2 9.20

Total 76 28.08 23.10 511,522.2 365,391.6 35.99

Table 10. Detailed information of water supply facilities within the Tarim River Basin.

River
Number of

Water Supply
Facilities

Designed
Irrigated

Areas/hm2

Effective
Irrigated

Areas/hm2

Designed
Water Supply
Capacity/m3/s

Standing
Water Supply
Capacity/m3/s

Standing
Water Supply

Rate/%

Hetian River Basin 27 62,903.15 48,402.42 81.40 62.60 76.90
Yarkand River Basin 26 1,155,391 329,349.8 220.30 169.50 76.94

Aksu River Basin 63 702,035.1 570,028.5 198.60 165.50 83.33
Kaidu-Kongque

River Basin 32 244,945.6 201,343.4 89.12 74.26 83.33

Mainstem of the
Tarim River Basin 138 a 85,370.94 79,937.33 293.00 293.00 100.00

Total 286 2,250,646 1,229,061 882.42 764.86 86.68
a: Provisional water withdrawal place.

6. Conclusions

In summary, some important and interesting conclusions can be drawn as follows:

(1) The Wakeby distribution can be used to describe the probabilistic behavior of the seven-day low
flow regimes within the Tarim River Basin. Tawn copula provides a very good fit to the data with
a NSE = 0.9978 and is selected as the best copula according to AIC, BIC, maximum likelihood,
and other residual-based metrics in Yarkand River Basin. Farlie–Gumbel–Morgenstern copula
and Frank copula is the best copula and should be used for further analysis in Aksu River Basin
and Kaidu River Basin.

(2) After 1987, the increase of temperature and precipitation enable the low flow volume to increase
to a certain degree. However, the climate change within the Tarim River Basin is uneven in both
space and time. Water supply sources in different tributary basins of the Tarim River are different.
Hence, the increasing magnitude of the low flow regime is different in different tributaries.
However, the massive increase of water demand due to increased irrigated agriculture and
livestock farming greatly reduces the streamflow input into the main stem of the Tarim River
Basin. Thus, water shortage in the lower Tarim River will not be alleviated.

(3) Hydrological droughts of longer return periods are prone to increasing occurrence frequency.
The water supply cannot satisfy the increasing water demand due to significantly increased
irrigated arable land and growing population, although the precipitation is increasing and the
snowmelt is also increasing due to increased temperature in recent years. The water shortage in
Xinjiang is still a challenge for the sustainable development of the local socio-economy. In this
case, the development of water-saving technology for irrigated agriculture and effective water
resources management is necessary for the sustainable development of regional social economy
and conservation of the eco-environment.
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