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Abstract: Since the concept of hydrological response units (HRUs) is used widely in hydrological
modeling, the land use change scenarios analysis based on HRU may have direct influence on
hydrological processes due to its simplified flow routing and HRU spatial distribution. This
paper intends to overcome this issue based on a new analysis approach to explain what impacts
for the impact of land use/cover change on hydrological processes (LUCCIHP), and compare
whether differences exist between the conventional approach and the improved approach. Therefore,
we proposed a sub-basin segmentation approach to obtain more reasonable impact assessment of
LUCC scenario by re-discretizing the HRUs and prolonging the flow path in which the LUCC occurs.
As a scenario study, the SWAT model is used in the Aksu River Basin, China, to simulate the response
of hydrological processes to LUCC over ten years. Moreover, the impacts of LUCC on hydrological
processes before and after model modification are compared and analyzed at three levels (catchment
scale, sub-basin scale and HRU scale). Comparative analysis of Nash–Sutcliffe coefficient (NSE), RSR
and Pbias, model simulations before and after model improvement shows that NSE increased by up
to 2%, RSR decreased from 0.73 to 0.72, and Pbias decreased from 0.13 to 0.05. The major LUCCs
affecting hydrological elements in this basin are related to the degradation of grassland and snow/ice
and expansion of farmland and bare land. Model simulations before and after model improvement
show that the average variation of flow components in typical sub-basins (surface runoff, lateral
flow and groundwater flow) are changed by +11.09%, −4.51%, and −6.58%, and +10.53%, −1.55%,
and −8.98% from the base period model scenario, respectively. Moreover, the spatial response of
surface runoff at the HRU level reveals clear spatial differences between before and after model
improvement. This alternative approach illustrates the potential bias caused by the conventional
configuration and offers the possible application.

Keywords: land use/cover change; SWAT model; hydrological response unit (HRU); discretization;
Aksu River

1. Introduction

In recent years, the Earth’s water cycle has changed due to the impact of global changes and
human activities [1], and many countries or regions worldwide are facing serious water problems and
crises [2,3]. Water problems have become a key factor restricting national and regional sustainable
development [4]. Current water problems are mostly related to irrational human development
activities, and various studies have shown that these impacts may outweigh the effects of other
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global changes [1,5]. Land use change is considered to be a direct reflection of human activities, which
have dramatically altered hydrological processes and spatio-temporal redistribution of regional water
resources [6,7]. Moreover, current hydrological and meteorological extremes appear more frequently
than in the last century due to land use/cover change (LUCC) [8,9]. Land use/cover change (LUCC)
has a significant effect on watershed hydrological processes by changing canopy interception, surface
roughness, the infiltration rate, soil moisture and surface evaporation. Thus, a thorough understanding
of the hydrological responses of LUCC is critical to the rational planning of land use patterns and the
sustainable development of watersheds.

In the 1980s, without the support of advanced computer technology, remote sensing and
geographic information system technology, it was very difficult to analyze the impact of LUCC on
hydrological processes (LUCCIHP). Some scholars used comparative test methods for watersheds to
study the effects of vegetation, especially the impacts of forest changes on hydrological elements [10,11].
These methods involved the selection of two small watersheds with different vegetation types but that
are similar in other aspects, and their runoff characteristics are compared. While experimental results
can be obtained using this type of approach, it is difficult to find two watersheds that are similar [12].

Since then, new studies have used many other conventional approaches for LUCCIHP such
as the watershed water balance principle [13,14], statistical approaches [15,16], and the distributed
hydrological modeling method. The first two approaches do not consider the multi-scale difference
of LUCCIHP and contain fewer physical process mechanisms of the water cycle. The distributed
hydrological modeling method is commonly used because of its physical basis, high precision
and various options. Many hydrological models have been used successfully. Table 1 presents a
summary of relevant representative literature for LUCCIHP based on the watershed water balance
principle, statistical approaches and the distributed hydrological modeling method, such as the
large-scale Variable Infiltration Capacity (VIC) hydrological model [17], the Soil and Water Assessment
Tool (SWAT) [18,19], the Geo-spatial interface for Water Erosion Prediction Project (GeoWEPP) [20],
the Regional Hydro-Ecological Simulation System (RHESSys) [21], and the MIKE SHE model [22].
The SWAT model is one of the most commonly used models because of its easy setup, moderate
data requirement and many other practical modules that include most water-related topics [23].
The SWAT model divides the sub-basins into multiple HRUs, which have unique land use, soil and
slope characteristics [18]. The conventional approach of considering LUCCIHP in the SWAT model is to
directly replace the land use/cover map with another for different periods [7,24,25]. The SWAT model
since version 2009 with LUP (land update) module can automatically update the land use/cover data
of different periods, and keep the same number of sub-basins and HRUs [23,26,27]. The SWAT_LUP
updated land use distribution by updating the HRU_FR (Proportion of HRU area in sub-basin) variable
during the model run. However, there is a significant drawback in the models based on the concept of
hydrological response unit (HRU) that the spatial distribution of LUCC is considered in watershed
discretization but not in runoff routing. In addition, the threshold specified in the HRU definition has
a small effect on LUCCIHP and does not consider different spatial distributions between land use
types [28]. Therefore, a severe over- or underestimation of LUCCIHP might occur when applying this
type of model structure.

This paper has three main aims: (a) to reveal the variation of land use/cover type transfer-in and
transfer-out; (b) to dissect the importance of coupling the spatial information of LUCC with watershed
discretization; and (c) to explain the impacts of LUCC on hydrological processes, and compare whether
differences exist between the conventional approach and the improved approach for LUCCIHP.

For Objective (a), defining a suitable land use/cover classification system is the basis for
LUCC analysis. There are also differences in the extent of land surface coverage information
reflected by different land use/cover classification systems [29]. At present, five units have been
released by the mainstream global land use/cover classification system: FAO (Food and Agriculture
Organization)/ UNEP (United Nations Environment Programme) [30], USGS (United States Geological
Survey) [31], CORINE (Co-ORdinated INformation on the Environment) [32], IGBP (International
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Geosphere-Biosphere Programme) [29] and IGSNRR (Institute of Geographic Sciences and Natural
Resources Research) [33]. The IGBP classification system includes 17 types, of which 11 are natural
vegetation types, three are land use types and three are non-vegetation growth land types [29];
this system can also consider synthetic land cover types and land use types. In response to the situation
in the study area, we further refined the vegetation types at different coverage levels to specify the
variation of hydrological processes. Similar to our research, many scholars also defined the land
use/cover classification system according to the actual situation of the study area [7,13,16–18]. Too few
classes may generalize the detailed information of land use/cover changes and further reduce its effect
on hydrological processes.

Table 1. Summary of relevant literature indicating LUCCIHP studies based on the watershed water
balance principle, statistical approach and distributed hydrological modeling methods in relation
to the aims of this study. We added the current study for completeness. The symbol “n.r.” means
“not reported”.

Study Approach to
LUCCIHP

Model/Minimum
Unit/Temporal Resolution

Location/Size of
Watershed/Spatial Resolution

Main Output with Regard to
Research Scale/Hydrology

Elements/(in Relation to the
Three Aims of This Study)

1. Zhang et al.,
2014 [13]

Watershed water
balance principle No model/n.r./n.r. China/1320 km2/n.r. Catchment scale/Streamflow (a, c)

2. Lørup et al.,
1998 [16] Statistical approach Lumped conceptual

model—NAM/Watershed/Daily Zimbabwe/3507 km2/1:1000000 Catchment scale/Streamflow/(a, c)

3. Zhang et al.,
2012 [17]

Replace land use/land
cover (LULC) data
directly

Fully distributed hydrological
model—VIC/Grid/Monthly

Southwest
China/8599 km2/1 km

Grid scale/Runoff, ET, Soil
moisture/(a, c)

4. Liu et al., 2013 [22] Enlarge farmland
surface areas

Fully distributed hydrological
model—MIKE SHE/Grid/Daily

Northwestern
China/< 10,000 km2/5 km

Catchment scale/Surface water
resources, groundwater storage/(c)

5. Maalim et al.,
2013 [20]

Replace LULC data
directly

Semi-distributed hydrological
model—GeoWEPP/HRU/Yearly

Minnesota,
USA/2880 km2/30 m

HRU scale/Runoff depth, soil loss
rate and sediment delivery
ratio/(c)

6. López-Moreno et al.,
2014 [21]

Replace two land cover
scenarios maps

Semi-distributed hydrological
model—RHESSys/HRU/Monthly

Spanish
Pyrenees/2181 km2/1 km Catchment scale/Streamflow/(c)

7. Baker et al.,
2013 [25]

Replace three LULC
scenarios

Semi-distributed hydrological
model—SWAT/HRU/monthly East Africa/272 km2/50 m

Sub-basin scale/Surface runoff,
groundwater recharge/(c)

8. Woldesenbet et al.,
2017 [7]

Replace three LULC
data directly

Semi-distributed hydrological
model—SWAT/HRU/monthly Ethiopia/15,000 km2/90 m

Sub-basin scale/Surface runoff,
actual evapotranspiration/(a, c)

9. Schmalz et al.,
2014 [18]

Replace five LULC
scenarios

Semi-distributed hydrological
model—SWAT/HRU/Daily China/6260 km2/90 m

Sub-basin scale and HRU
scale/Surface runoff, groundwater
flow/(a, c)

10. N. Pai and
D. Saraswat, 2007 [23]

Replace three LULC
data automatically

Semi-distributed hydrological
model—SWAT/HRU/Daily Arkansas/1963 km2/n.r.

Sub-basin scale and HRU
scale/Streamflow/(a, c)

11. This study

Analyze LUCC for
sub-basin
segmentation and
replace LULC data

Semi-distributed hydrological
model—SWAT/HRU/Daily China/42,900 km2/90 m

Catchment scale, sub-basin scale
and HRU scale/Streamflow,
surface runoff, lateral flow,
groundwater flow/(a, b, c)

In addition, we analyzed the land use/cover change from two aspects of time and space, which
can reflect changes in the amount of time and can reflect the distribution of the changes in space.
Some scholars only analyzed the main types of land use/cover change at the catchment scale and
qualitatively analyzed LUCCIHP based on the catchment scale [13,16]. Other scholars assumed some
land use/cover change scenarios to analyze the impact mechanism of land use/cover change [18,22,25].
Others temporal and spatial analyses of land use/cover changes were performed before carrying
out LUCCIHP [7,17]. However, most only analyzed the time variation at the river catchment scale,
including the conversion area, transformation ratio and degree of change of each land use/cover type
during the study period. Very few researchers have focused on the temporal and spatial changes in
land use/cover at the basin scale, and there is a lack of quantitative analysis at the sub-basin scale [18].
To analyze LUCCIHP accurately, this study not only analyzes the temporal and spatial changes of land
use/cover at the catchment scale, but also places the changed regions in the corresponding sub-basins.

For Objective (b), as everyone knows, the hydrological modeling method has a more solid
physical basis than traditional methods such as the watershed water balance principle and statistical
methods [34]. These conventional methods can only analyze the impact of land use/cover change on
runoff at the catchment scale [13]. In hydrological models, such as VIC, MIKE SHE, etc., the smallest
unit of computation is a grid, which has better accuracy in hydrological process spatial simulation.
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However, since grid computing increases computational complexity and runs for a long time, it is
suitable for smaller watersheds [35]. For large watersheds, hydrological models such as SWAT,
GeoWEPP, and RHESSys that use HRU as the minimum calculation unit have greater advantages,
and these models can well simulate the hydrological processes and reduce the computational load and
save model running time [20,21,25]. The SWAT model has more land use/cover related parameters
and options, so it has more capacities for analyzing LUCCIHP.

There are three scale units in the SWAT model: the watershed, sub-basin and HRU. A study
has shown that smaller catchment areas and more sub-basins have higher simulation accuracy [36].
However, another study showed that, if the catchment area is relatively small, the simulation accuracy
will not increase, but will stabilize [37]. However, more sub-basins cannot replace HRUs. In a sub-basin,
land use/cover data, soil data and slope data are superimposed to form a plurality of patches. There
is only one type of land use/cover, soil type and slope type in each patch, i.e., the HRU. Therefore,
as the smallest unit in the SWAT model, the HRU has a unique land use/cover type, and many
related parameters.

In addition to meeting the water balance, grasping the flood peak and guaranteeing base flow,
corresponding parameters should be given different values according to different land use/cover types
due to their impact on hydrological processes. The calculation of SWAT surface runoff is based on the
SCS curve method, in which a curve number (CN) is introduced, which is a comprehensive parameter
reflecting the characteristics of the basin before rainfall. Land use/cover types correspond to different
CN values, which also have differences in runoff generated under different rainfall conditions [25].
In addition, different types of land use/cover corresponding to the amount of evapotranspiration are
also quite different, e.g., the plant uptake compensation factor (EPCO) parameter values are specified
for different land use/cover types.

The following steps were performed in this study: (i) the temporal and spatial variation
characteristics of watershed land use/cover for the Aksu River Basin, China, were analyzed; (ii) DEM,
land use, soil, long term (2000–2007) streamflow and climate data were used to build the SWAT
model, and perform calibration and validation; (iii) the spatial distribution of LUCC was analyzed to
identify sub-basins with significant changes, and the sub-basins were segmented; (iv) the runoff
variation of the watershed was comparatively analyzed at the catchment scale; (v) the runoff
components were analyzed at the sub-basin scale; and (vi) the spatial difference in surface runoff
was analyzed at the HRU scale based on the conventional approach and the improved approach.
Following these steps, an alternative approach was designed to compare whether the differences exists
between the conventional approach and the improved approach for LUCCIHP using the modified
sub-basin segmentation to reveal the importance of considering the spatial distribution of LUCC before
watershed discretization.

2. Study Site and Materials

2.1. Study Area

The Aksu River Basin is located west of the Xinjiang Uygur Autonomous Region, east of the
Republic of Kyrgyzstan, and southeast of the Republic of Kazakhstan, enclosed between latitudes
40◦16′–42◦28′ N and longitudes 75◦4′–80◦18′ E with an area of 4.29 × 104 km2 (Figure 1). The Aksu
River is the largest water system on the southern slope of the Tianshan Mountains, with two main
headwater tributaries, the Kumalak River and Toxkan River. The Toxkan River originates from the
Artbash Mountains, with a length of 457 km and a catchment area of 2.91× 104 km2. The Kumalak River
is 293 km long and originates from the Hantengri Mountains, with a catchment area of 1.38 × 104 km2.
Each tributary has a hydrological gauging station: Shaliguilank (SLGLK) on the Kumalak River and
Xiehela (XHL) on the Toxkan River. The rivers are mainly fed by snow and glacier melt water from the
mountainous regions.
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Figure 1. Geographical location and water systems of the Aksu River Basin.

The Aksu River Basin has a complex regional climate because of the rugged terrain with
elevation between 1118 and 7126 m. The high mountainous areas (Elevation (E) > 3500 m) have
low temperature, moderate precipitation, and glaciers and seasonal snow. In the middle elevation
area (2000 m < E < 3500 m), there is a relatively clear boundary between warm and cold, and the
highest precipitation occurs here. The lower mountain areas (E < 2000 m) have low precipitation and
a large day–night temperature difference. Since the Aksu River Basin is embedded in the Tianshan
Mountains and is next to the Taklimakan Desert, the arid environment formed under a continental
climate. The downstream region is characterized by low precipitation, high potential evaporation,
large day–night temperature difference, and a high number of sunshine hours.

This river is the most important tributary of the Tarim River [38] and plays a vital role in food
security and the ecological health of the entire Tarim River Basin. Recent research examined the
temporal variation of climate variables [39], LUCC [40], and runoff variation [41,42], indicating that
LUCC has an impact on runoff variation in the Aksu River Basin.

2.2. Materials

Digital elevation map (DEM), soil map, land use/cover map and basic climate datasets are
required to build the SWAT model. DEM data at 90 m resolution were obtained via the Shuttle
Radar Topography Mission (SRTM, http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp) which can
provide watershed slope and elevation information. The soil map was derived from the Harmonized
World Soil Database version 1.1 (HWSD, http://westdc.westgis.ac.cn/data/611f7d50-b419-4d14-b4dd-
4a944b141175) at 1 km spatial resolution from the Food and Agriculture Organization (FAO) and
International Institute for Applied Systems Analysis (IIASA). The land use/cover maps for 2000 and
2010 were generated based on Landsat MSS/TM products, which were produced by the Xinjiang
Institute of Ecology and Geography, Chinese Academy of Sciences.

The basic climate data (daily precipitation, daily maximum and minimum temperatures) were
obtained from the China Meteorological Data Sharing Service System (http://data.cma.cn/). We used
daily discharge time series data which were measured in m3/s from 2000 to 2007 at the XHL and
SLGLK hydrological gauging stations. The data were acquired from the Xinjiang Tarim River Basin
Management Bureau for the purpose of SWAT model calibration and validation.

3. Methods

3.1. Land Use/Cover Change

Land use/cover change (LUCC) includes changes in both land use type and land cover type over
time, as well as in space. LUCC analysis can provide the basic information for LUCCIHP. We use
ARCGIS 10.2 software to analyze the spatial and temporal characteristics of LUCC by using functions
of Clip, Identify, and Zonal statistics as table. Then, the transition matrix of land use/cover change

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://westdc.westgis.ac.cn/data/611f7d50-b419-4d14-b4dd-4a944b141175
http://westdc.westgis.ac.cn/data/611f7d50-b419-4d14-b4dd-4a944b141175
http://data.cma.cn/
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in topical sub-basins were created [43] including the following standards and processes: (i) The two
periods of land use/cover maps were standardized based on the unified projection and geographic
coordinate system, which were foundation of LUCC analysis and model building. (ii) According to the
land use/cover classification system of the International Geosphere-Biosphere Programme (IGBP) [44],
we classified the two periods of land use/cover maps into thirteen categories: evergreen coniferous
forest, deciduous broadleaf forest, shrubland, meadows, grassland, sparse grass, water, permanent
snow and ice, upland, paddy field, bare land, built-up and wetland. This step reflects the conversion of
various land types, including conversions within the same vegetation type, such as the conversion of
sparse grasslands and grasslands. (iii) The number and spatial changes of watershed land use/cover
change, including location, area and type in sub-basins, were analyzed.

A LUCC map for the period between 2000 and 2010 was produced (Figure 2) to reveal the
characteristics of change, such as the extensive expanding in upland and bare land and the shrink
of sparse grass. The images suggest that LUCC had strongly disturbed the ecosystem and natural
balance in the local area. The extent of the LUCC distribution is presented in Figure 2b. A rapid
increase in bare land was observed, increasing from 15,014.94 km2 in 2000 to 15,937.65 km2 in 2010.
However, sparse grass declined during this period, from 13,075.71 km2 in 2000 to 12,549.99 km2

in 2010, together with an increase in the upland area (1199.55 km2 in 2000 to 1363.26 km2 in 2010).
Permanent snow and ice, meadows, grassland and sparse grass have different degrees of transfer-out,
and the areas are 503.81 km2, 224.72 km2, 839.68 km2 and 1105.97 km2, respectively. Upland, bare land,
meadows, grassland and sparse grass have a greater degree of transfer-in, and the areas are 188.78 km2,
589.23 km2, 400.45 km2, 748.95 km2 and 580.26 km2, respectively (Figure 2c).

Figure 2. Historical land use/cover change in the Aksu River Basin from 2000 to 2010: (a) change in
the spatial pattern of land use and land cover; (b) net variation in the quantity of land use/cover type;
and (c) gains and losses of land use/cover types.

To focus on the hydrological effects of grassland degradation, the lands of meadows, grassland
and sparse grassland are collectively referred to as grasslands. The spatial locations of the main LUCC
areas between 2000 and 2010 are shown in Figure 2a. The LUCC type with the greatest change was the
conversion of grassland to bare land, accounting for 26.28% of the total transfer area. Subsequently,
the conversion of grassland to upland counts for 7.79% of LUCC.
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Our results indicated that the largest increases in land use/cover from 2000 to 2010 were in bare
land and dryland, which originated mainly from snow/ice cover retreat, grassland degeneration,
and reclamation of grassland or shrubland. Since the 1990s, global warming has also affected the
snow/ice cover area through mechanisms such as decreasing the proportion of solid precipitation,
enhancing snowmelt [45,46], and increasing bare land. In addition, cultivated land in oases has
expanded rapidly since 1950, and made this basin one of the most important production areas for
grains, cotton, and fruits in Xinjiang [47]. The newly added cultivated land was mainly converted
from grassland [40]. Therefore, permanent snow, ice and grassland have become the main sources of
transfer-out to other land types.

3.2. SWAT Model Building and Improvement

3.2.1. Base Period Model Building and Calibration

The SWAT model [48] is a semi-distributed hydrological model that acts as a continuous simulator
of water, sediment, pesticide, and nutrient transport at multiple scales. The SWAT model is based on
physical algorithms to simulate surface and subsurface processes, such as precipitation interception,
snow fall and snow melt, plant uptake, evaporation, infiltration, percolation into aquifers, lateral
flows, ground flow, and surface runoff processes. In the SWAT model, a watershed can be segmented
into several sub-basins regarding the digital elevation and threshold value of the catchment area.
Soil maps, land use/cover maps and slope maps are overlaid to generate the HRUs, which are the
smallest calculated units in the sub-basin model with unique properties of land use, soil and slope [18].
Therefore, HRUs are lumped together and there is no interaction among HRUs in one sub-basin.
Only at the sub-basin level are the spatial relationships among sub-basins specified [48]. Therefore,
if the interaction of one land use area with another is important, rather than defining the relevant land
use areas as HRUs, they should be defined as sub-basins. To reduce the noise information of land
use/cover change, the HRU area ratio was set to 1%, which means that land use/cover patches up to
1% areas cannot be ignored.

We use the DEM data, soil data and 2000 land use/cover data to build the basic model (for the
traditional method analysis): the watershed was divided into 35 sub-watersheds within the catchment
area of 5000 hectares. The largest sub-basin area was 3149.81 km2, and the smallest sub-basin area
was 0.10 km2. If the HRU division is too large, many land use/cover patches that cover less area
than the specified proportion will be ignored, that is, only HRUs that meet the criteria are retained
in the sub-basin. A study has shown that, when the proportion of the HRU area is small based on a
certain threshold, there will be no significant distinction of land use/cover information [28]. To reduce
the loss of land use/cover change information in the model, the land use threshold was set to 1%,
the soil threshold to 5% and the slope threshold to 5% in the HRU definition step, and the watershed
was divided into 986 HRUs. Therefore, it is suggested that the catchment area and HRU area be set
proportionally according to the actual situation of the basin size and land use/cover change. After
entering the maximum temperature, daily minimum temperature and daily precipitation data from
2000 to 2007, we used the same period of daily discharge data at the SLGLK and XHL hydrological
stations to calibrate and validate the Aksu River Basin SWAT model. Among them, the first two years
(2000–2001) were set as the warm-up period, the middle four years (2002–2005) as the calibration
period, and the last two years (2006–2007) as the validation period. Based on the results of calibration
and validation, the SWAT model of Aksu basin performed satisfactorily. NSE values of calibration and
validation for the SLGLK gauging station (0.65 and 0.62) and XHL gauging station (0.65 and 0.62) were
acceptable (Please see Figure S1).

To ensure the reliability of model simulation and obtain a set of reasonable parameters, we adopted
the automated calibration method of sequential uncertainty fitting (SUFI-2) [49] based on SWAT-CUP
software to calibrate daily runoff data. The Latin hypercube sampling method is integrated into the
SUFI-2 procedure, which can generate the optimum solution from a multidimensional distribution
and ensure that it is not a local minimum [50]. This is referred to as the 95% prediction uncertainty, or
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95PPU. These 95PPUs are the model outputs in a stochastic calibration approach. Thus, an envelope
of good solutions is expressed by the 95PPU and a set of certain parameter ranges. The p-value is
an indicator to assess the parameter sensitivity by comparing the mean value between simulated
values and measurements [51]. This gives relative sensitivities based on linear approximations and,
hence, only provides partial information about the sensitivity of the objective function to model
parameters. For further details, refer to the SWAT-CUP manual (http://swat.tamu.edu/media/
114860/usermanual_swatcup.pdf). The smaller the average p value is, the more sensitive the parameter
is. The snowfall temperature (SFTMP, ◦C), snow melt base temperature (SMTMP, ◦C), melt factor
for snow on 21 June (SMFMX, mm H2O/◦C-day), melt factor for snow on 21 December (SMFMN,
mm H2O/◦C-day), precipitation lapse rate (PLAPS, mm H2O/km), temperature lapse rate (TPLAPS,
◦C/km), and baseflow alpha factor (ALPHA_BF, 1/days) are more sensitive than other parameters
in the Aksu River Basin SWAT model [38] (Table 2). In addition, we assigned different values to the
parameter curve number (CN) for each type of land use/cover (Table 2).

Table 2. Sensitivity rate, calibration range, initial value, sub-basin and final calibration estimate value
of top ten selected SWAT model oarameters.

Component Parameter
Name Description Sensitivity

Rate
Calibration

Range Sub-Basin Final Estimate
Value

Basin/snow

SFTMP Snowfall temperature 4 −5~5 Share −0.552

SMTMP Snow melt base
temperature 1 −5~5 Share −0.2478

SMFMX Melt factor for snow on 21
June 7 0~10 Share 6.8002

SMFMN Melt factor for snow on 21
December 10 0~10 Share 1.5104

TIMP Snow pack temperature
lag factor 8 0.01~1 Share 0.0873

PLAPS Precipitation lapse rate 2 0~500
SLGLK 70

XHL 280

TLAPS Temperature lapse rate 3 −10~10
SLGLK −6.5

XHL −4.5

Surface runoff

LAT_TTIME
Lateral flow travel time

(days) 5 0~180
SLGLK 7

XHL 3

CH_K2
Effective hydraulic

conductivity in main
channel alluvium (mm/h)

9 0~500
SLGLK 0.006

XHL 0.65

Ground water ALPHA_BF Baseflow alpha factor 6 0~1
SLGLK 0.5

XHL 1

Component Parameter
Name Description Code Initial

Value Sub-basin Final Estimate
Value

Land use and
land

management
CN Moisture constitution II

curve number

AGRL 87 Share 82

FESC 72 Share 71

FRSE 70 Share 70

RNGE 79 Share 78

RNGB 72 Share 73

WATR 92 Share 92

BARR 94 Share 90

FRSD 77 Share 76

PAST 79 Share 78

RICE 81 Share 80

URLD 85 Share 84

WETN 84 Share 78

http://swat.tamu.edu/media/114860/usermanual_swatcup.pdf
http://swat.tamu.edu/media/114860/usermanual_swatcup.pdf
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The Nash–Sutcliffe coefficient (NSE) [52], ratio of the root mean square error to the standard
deviation of measured data (RSR) and percent bias (PBias) were chosen to evaluate the “goodness-of-fit”
of modeled results [53,54]. The formulas of these indices are presented in Equations (1)–(3):

NSE = 1− ∑n
i=1(Qi,obs −Qi,sim)

2

∑n
i=1
(
Qi,obs −Qi,obs

)2 ; −∞ ≤ NSE ≤ 1, (1)

RSR =

√
∑n

i=1(Qi,obs −Qi,sim)
2√

∑n
i=1
(
Qi,obs −Qi,obs

)2
; 0 ≤ RSR ≤ 1, (2)

PBias =
∑n

i=1(Qi,obs −Qi,sim)

∑n
i=1 Qi,obs

;−∞ ≤ PBias ≤ +∞, (3)

where Qi,obs and Qi,sim are the average value of the observed and simulated values, respectively; Qi,obs
and Qi,sim are the observed and simulated values at time step i, respectively; and n is the number of
time steps. Normally, when NSE > 0.5%, RSR < 0.7% and PBias < 25%, the results of the modeling
discharge are supposed to be satisfactory [54].

3.2.2. Modified Approach for LUCCIHP

As mentioned in Sections 1 and 2.2, conventional analysis of LUCCIHP has a potential bias if
the changed land use pattern has a jigsaw and interlocking spatial pattern. In such cases, the original
parallel configuration of HRUs might not represent reality and may cause bias [55]. Because the
conventional SWAT analysis method lacks pertinent considerations in model building and parameter
calibration, a simplified analysis of LUCCIHP cannot effectively grasp the true hydrological effects of
LUCC. In particular, with respect to parameter configuration, if all land use/cover types are given the
same parameter values, the results of the simulated hydrological response will not be obvious after a
change in land use/cover type [25]. When land use/cover change occurs in a sub-basin, the type of
some HRUs may change. Since the hydrological processes between HRUs are calculated in parallel,
the flow elements of all HRUs are aggregated to the sub-basin outlet [55]. In the conventional approach,
the relative spatial location of changed HRUs is not considered in response to land use/cover change
types in the sub-basin.

A modified sub-basin segmentation approach was tested to assess this issue, quantify potential
bias, and provide a possible approach. We compared the impact results of LUCC using the conventional
approach and a modified approach. The land use/cover maps for 2000 and 2010 were used
for assessment.

Building and calibrating models as described in Section 3.2.1 will help to improve the accuracy
of LUCCIHP analysis. The improved method first provides the model base for analyzing LUCCIHP,
and can clearly reflect the response of hydrological processes when land use/cover change occurs.
By analyzing the spatial location of LUCC, we can identify sub-basins with significant changes that
refer to the percentage of the total area that underwent land use/cover change. Sub-basins with large
land use/cover change areas can be considered for segmentation. Segmenting a sub-basin is similar to
discretizing a watershed into more sub-basins, but there are essential differences when considering the
key nodes where the land use/cover changed dramatically. Setting the catchment area threshold to a
very small size can result in many small sub-basins. We used a similar idea to integrate the spatial
location of land use/cover change and to determine the location of nodes in the sub-basin. According
to this new idea, the HRU where land use/cover change occurred was segmented into different
sub-basins to fully consider LUCCIHP. A detailed description of the method is provided below.

a. The conventional analysis approach

The conventional analysis approach (Figure 3a) comprises three basic steps: (1) Set up the SWAT
model with general routing with calibration and validation processes based on the land use/cover map
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before LUCC, that is build the SWAT model using DEM, soil, and the base period of land use/cover
data and dividing HRUs, and then utilize existing climate data and runoff data to calibrate and validate
model. (2) Backup the base period model and replace the new periods of land use/cover map after
LUCC in the original model, and then carry out the standard procedure as previous step with previous
parameter and variable sets of base period model. (3) Analyze the hydrological processes by the results
from different land use/cover scenarios.

Figure 3. Schematics of: (a) original analysis approach of the LUCCIHP; and (b) improved sub-basin
segmentation approach of the LUCCIHP.

When land use/cover types in watershed changes, the number of sub-basins will not change.
However, due to the proportion change of the original land use/cover, the HRUs in sub-basin will
change accordingly in shape, size, location and number [26]. Some hydrological elements in HRU will
be calculated independently. Therefore, the LUCC in sub-basin altered to some extent the total water
of each of hydrological elements.

b. Improved sub-basin segmentation approach

According to the SWAT model structure, the hydrological process elements in each HRU in
certain sub-basins (i.e., surface runoff, lateral flow, ground flow, and evapotranspiration (ET)) are
computed in parallel at the HRU level and simultaneously routed to the outlet of this sub-basin [18].
When replacing the new land use/cover map, the previous HRUs in sub-basins were reconstructed
and redistributed, including in shape, size, number and location, because of the change of proportion
of every land use/cover type, but new HRUs are not routed with consideration of the spatial position
relationship among HRUs. Therefore, the improved sub-basin segmentation approach adds one step
before the watershed delineator. The whole analysis process of LUCCIHP is described in Figure 3b.
The improved analysis approach adds one more key step rather than original analysis approach. In this
step, the spatial position relation of the land use unit is pre-processed to locate the main areas of LUCC.
That is, we firstly analyzed the land use/cover change based on ARCGIS software in shape, position
and area; then selected some larger change proportion of land use/cover patches and identified which
sub-basins it belongs to; and then added notes between the changed land use/cover patches and
unchanged patches under watershed delineation. Based on the key zones of change and the existing
river network, more nodes (outlets of sub-basin) were added and specified to increase the complexity
of stream routing (Figure 4). Then, we again divided HRUs according DEM, soil, and the new period of
land use/cover data and run the model with previous parameter and input variable sets of base period
model. Finally, we analyzed the hydrological processes under different land use/cover scenarios.
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Figure 4. Sketch map of sub-basin segmentation considering the spatial relationship between land
use/cover change (LUCC) and the existing river network.

The principle of sub-basin segmentation is to use the relative spatial position of LUCC to divide the
sub-basin into further multi-sub-basins based on the relationship between upstream and downstream.
For example, although the land use/cover has changed (grassland HRU changed to farmland HRU),
the hydrological elements of all HRUs (e.g., surface runoff, lateral flow, and ground flow) will directly
collect at the outlet of sub-basin 1 without considering the spatial position relationship. After LUCC
occurred, the outlet of sub-basin 1 does not change, but the hydrological process elements of the
forest HRU and farmland HRU preferentially move toward the outlet of sub-basin 1-1, then pass
sub-basin 1-2 to the original outlet of sub-basin 1 (“Improved” in Figure 4). Therefore, this approach
can reallocate the hydrological elements in a sub-basin.

3.3. Impact of Land Use/Cover Change on Hydrological Processes

The impact of LUCC, such as cultivated land or bare land expansion, on the hydrological
response has already been studied in previous research [56]. The impact of land use/cover change on
hydrological processes is mainly reflected in the change in water cycle elements and water quality [7,24].
Land use/cover changes affect the surface and near-surface hydrological cycle elements, including
runoff, evaporation, interception, soil water, etc. [57]. Furthermore, land use/cover change influences
on hydrological processes at multiple scales, including the catchment scale, regional scale, sub-basin
scale, patch scale, HRU scale, grid scale, etc. According to Objective (c), combined with the model
characteristics, we chose to analyze LUCCIHP at the catchment scale, sub-basin scale and HRU scale,
and to analyze the difference between the conventional approach and the improved approach.

Based on the catchment scale, we analyzed the runoff variation of the outlet of the whole
watershed, which can reflect the comprehensive effect of LUCC. In addition, we analyzed the
runoff composition change resulting from surface runoff, lateral flow and groundwater flow at the
sub-basin scale, which can reflect how runoff composition is affected by typical land use/cover change
type. The first two scale analyses could reflect the comprehensive effect of LUCC on the amount of
water. Based on the HRU scale, LUCCIHP can be reflected from the spatial perspective. The spatial
distribution response of surface runoff was analyzed, and the response of evapotranspiration and
recharge entering aquifers during time step (total amount of water entering shallow and deep aquifers
during time step, mm H2O) distribution to LUCC can be found in the Supplementary Materials
(Figures S2 and S3). The multi-scale and multi-factor analyses can prove that the sub-watershed
segmentation approach has a significant effect on LUCCIHP from different scale angles.

4. Results

4.1. SWAT Model Building and Improvement

Using the spatial overlay analysis method to overlay the land use/cover change map and
watershed discretization map, we analyzed the intensity of land use/cover change for each sub-basin
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and identified some sub-basins with the most significant land use/cover change. The land use/cover
area ratio of 4, 17, 19, 20, and 22 sub-basins exhibited the greatest total change areas. Based on this
result, before the watershed discretization, we divided the original 35 sub-basins into 40 sub-basins
with five sub-basin segmentation nodes and obtained 1015 HRUs. The parameterization scheme
of the base period model (LU2010) was revised to that of the new period model (LU2010-im) to
ensure the two approaches were comparable. Through comparative analysis of NSE, RSR and Pbias,
model simulations before and after model improvement showed that NSE was increased by up to 2%
(from 0.46 to 0.47), while RSR decreased from 0.73 to 0.72, and Pbias decreased from 0.13 to 0.05.

The largest land use/cover change area in SUB19 was grassland to arable land. After segmentation
of SUB19, the change area was located upstream, and the downstream area did not change. In contrast,
the largest land use/cover change area in SUB4 was bare land, distributed in the downstream region.
After segmentation of SUB4, the upstream sub-basin did not change, whereas the downstream
sub-basin did. SUB22 was similar to SUB19, and SUB17 and SUB20 were similar to SUB4 (Figure 5 and
Tables S1–S5).

Figure 5. Typical sub-basin segmentation results based on land use/cover change in sub-basins (SUB)
4, 17, 19, 20, and 22 (the black arrow points to the direction of the flow).

4.2. Impact of Land Use/Cover Change on Hydrological Processes

4.2.1. Variation of Total Flow at the Basin Outlet

Peak flow in summer exceeded 1300 m3/s and low flow decreased to 20 m3/s in winter (Figure 6a).
Based on the comparison of simulated annual average daily streamflow results between the base
period model (LU2000, which is driven by land use/cover data for 2000) and the changed period
models (LU2010, which is driven by land use/cover data for 2010 (not improved); and LU2010-im,
which is driven by land use/cover data for 2010 (improved)), the latter (with less grassland cover
and more bare land) had higher streamflow in spring. The impact of LUCC was considerable in the
hydrographs (Figure 6). The LU2010-im with the same change trend (reduced grassland and expanded
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bare land) showed a different response: the peak flow (400 m3/s) in spring based on LU2010-im was
higher than that of the base period model (350 m3/s) and lower than that based on LU2010 (480 m3/s),
whereas the peak flow in summer based on LU2010-im was similar to that of LU2010 and much lower
than that of the base period model.

Figure 6. Simulated annual average daily streamflow at the basin outlet (SUB21) (m3s) (mean
2002–2007): comparison of the LU2000 model (base period model), LU2010 model and LU2010-im
model for (a) the annual average daily streamflow and (b) in April.

4.2.2. Variation of Flow Components at the Sub-Basin Level

To analyze the effects of LUCC on streamflow on the sub-basin level, we considered the variation
of surface runoff, lateral flow, and groundwater flow in detail. We selected sub-basins with clear LUCC
(sub-basins 4 and 22 in the upstream; sub-basin 17 in the mid-stream; and sub-basins 19 and 20 in the
downstream) as typical sub-basins to analyze LUCCIHP. The proportion of the flow components of
the LU2000 model can be summarized as follows: groundwater flow dominated in the mountainous
areas; lateral flow was the major flow component in the downstream; and the three flow components
were equally important in the mid-stream (Figure 7). The proportion of flow components was distinct
due to the various combination of the key factors, such as land use and land cover, slope and aspect,
soil properties, and rainfall intensity.

Compared with the LU2000 model, the LU2010 and LU2010-im models generated greater surface
runoff, less lateral flow and less groundwater flow (Figure 7). Larger changes in sub-basin 22 in the
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downstream region of the Aksu River were observed, with +19.73% surface runoff, +1.32% lateral
flow and −21.04% groundwater flow. These phenomena were clearly observed in the mid-stream
sub-basin, e.g., sub-basin 17, but there was only a small change in the upstream mountainous areas
(e.g., sub-basin 4). The opposite change trend was observed in sub-basin 19, with −0.62% surface
runoff, +0.01% lateral flow and +0.61% groundwater flow, but this was not severe.

Figure 7. Flow components (surface runoff, lateral flow and groundwater flow) within sub-basins
(represented as pie charts (%); annual values averaged over six years, 2002–2007).

Despite generally similar change trends between LU2010 and LU2010-im, the extent of change
varies greatly. The increased surface runoff based on LU2010-im was less than that based on LU2010
(e.g., sub-basins 17 and 20). However, a greater level of increase occurred in other sub-basins of
LU2010-im (e.g., sub-basins 4, 19, and 22). Consequently, compared with LU2010, there was an
increasing trend of lateral flow in most sub-basins of LU2010-im except sub-basin 4. There was no
substantial difference in groundwater flow.

4.2.3. Spatial Distribution of Surface Runoff at the HRU Level

The surface runoff at the sub-basin level was strongly influenced by LUCC, as shown in
the previous section. Since land use/cover is the most direct representation of the underlying
surface, its changes immediately influence the surface runoff processes and further affect streamflow
components. The spatial distribution of surface runoff at the HRU level (mean value of 2002–2007) for
the LU2000, LU2010, and LU2010-im models in typical sub-basins is illustrated in Figure 8. Spatial
distribution of surface runoff altered markedly between LU2000 and LU2010, and between LU2010
and LU2010-im, with strong geological effects. Surface runoff in high-elevation sub-basins increased
in some HRUs and decreased in other HRUs (e.g., sub-basins 4 and 22). In contrast, surface runoff
in low-elevation sub-basins was considerably lower. The spatial distribution of surface runoff at the
HRU level for the LU2010 model acted differently to that of the LU2010-im model after sub-basin
segmentation. The surface runoff volume for the LU2010-im model was higher than that of LU2010 in
some sub-basins (e.g., sub-basins 4, 17, and 22), which are mainly situated in high- and mid-elevation
areas. In contrast, the surface runoff at the HRU level for the LU2010-im model in the lower sub-basins
(e.g., sub-basin 19) showed overall decreasing trends. Furthermore, surface runoff at the HRU level for
LU2010-im was between that of LU2000 and LU2010, indicating that the LU2010 model without the
sub-basin segmentation approach overstated the LUCCIHP.

Spring snowmelt runoff in the Aksu River Basin is the major trigger of spring floods. Therefore,
analysis of the spatial distribution change of surface runoff at the HRU level in April is favorable for
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understanding the effects of LUCC on surface runoff and the water resources in spring. The increasing
trend of surface runoff volume in April for LU2010 and LU2010-im was clear in both the conventional
approach and the improved approach (Figure 9). The surface runoff volume based on the LU2010
model was greater than that of the LU2000 model in high- and mid-altitude areas (e.g., sub-basins 4,
17, and 22). However, since the surface runoff was not the dominant hydrological component in lower
sub-basins, the surface runoff in lower sub-basins (e.g., sub-basins 19 and 20) showed little change
in April. Although the LU2010-im model had a similar change trend to LU2010, the distribution
of surface runoff showed distinct differences. Following application of the sub-basin segmentation
approach, the spatial variation of surface runoff between LU2000 and LU2010-im was less than that
between LU2000 and LU2010. Furthermore, the surface runoff distributed in the upper region in the
LU2010-im model was higher than that based on the LU2010 model. In lower regions, surface runoff
based on LU2010-im was less than that based on LU2010. In mid-altitude areas, the surface runoff
based on the LU2010-im model was lower than that based on the LU2010 model.

Figure 8. Spatial distribution of surface runoff (mm/month) at the HRU level (mean 2002–2007) for the
LU2000, LU2010, and U2010-im models in sub-basins. The arrow indicates the flow direction.
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Figure 9. Spatial distribution of surface runoff (mm/month) at the HRU level in April (mean 2002–2007)
for the LU2000, LU2010, and LU2010-im models in sub-basins. The arrow indicates the flow direction.

5. Discussion

The results show the improved model slightly improves the simulation results (NSE < 0.5,
RSR > 0.7). This may be because land use/cover change in this basin is not very dramatic. According
to our study, the change ratio of land use/cover in this basin is less than 2%. The regions with
severe changes are mainly distributed in some sub-basins [40]. Moreover, this study does not focus
on improving the accuracy of model simulation, but improving the accuracy of LUCCIHP scenario
analysis. Therefore, the values of NSE and RSR are not satisfactory.

Our results also show a relationship between grassland cover degradation and streamflow
increase, which may reduce the surface roughness as well as strengthen the peak flow. In spring in
particular, the overflow from snowmelt is the main source of streamflow in this basin [41]. Vegetation
degradation promotes peak flow in spring.

Our model results reveal that the streamflow at the basin outlet was increased by the reduction in
grassland area and the increase in bare land and farmland. A similar hydrological response has been
verified in previous studies. Haregeweyn et al. (2015) showed that decreases in vegetated land and
increases in cultivated land in an Ethiopian highland catchment led to an increase in the annual runoff
yield by 101 mm [58].

There is no doubt that LUCC will alter hydrological processes; however, different simulation
approaches may produce different analysis results. In our study, the impact degree of LUCC on
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hydrological elements varied as a result of the consideration of the spatial position of LUCC between
2000 and 2010. Although the streamflow increased at the basin outlet in spring under LUCC, our results
show that the peak flow based on the LU2010-im model was slightly lower than that based on the
LU2010 model. This may be because conversion of grassland to bare land and grassland degeneration
in some sub-basins of the mid-stream increase surface runoff, but grassland and farmland remain the
dominant land use/cover types in these sub-basins (e.g., from 43.11%, 43.47% and 13.42% to 56.57%,
37.89% and 5.53% in surface runoff, lateral flow and groundwater at SUB17, respectively). Insertion of
the LUCC nodes before watershed discretization allows streamflow to pass through the sub-basin to
the outlet. The different routing scheme of channel flow and surface runoff might alter the arrival time
and amount of peak flow.

Our model results also reveal remarkable spatial changes in surface runoff at the HRU level.
With conversion of grassland to farmland or bare land, there were clear increasing trends of surface
runoff on the spatial distribution in most sub-basins. This phenomenon was more apparent in April
due to the water holding capacity of plants and roots of grassland in spring; however, this ability is lost
after conversion to bare land or farmland. In contrast, after sub-basin segmentation, the sub-basins with
grassland type HRUs in the LU2000 model were converted to sub-basins with bare land or cultivated
land in the LU2010-im model. These new sub-basins can clearly indicate the spatial relationship
between upstream and downstream areas, and overcome the drawback of the parallel relationship of
HRUs in the original sub-basin.

Some related studies have indirectly identified the above phenomenon using other
methods [18,25,59]. With respect to setting a different catchment size threshold value, Romanowicz et
al. (2005) divided the watershed into different numbers of sub-basin scenarios and determined that
the greater the number of sub-basins, the higher the NSE value is. However, optimal modeling results
were not obtained when the catchment size threshold value (CSTV) was minimized. Similar to this
study, some researchers analyzed the effect of LUCC on surface runoff at the catchment scale but did
not perform sub-basin segmentation [7,18,25]. The results of Baker and Miller indicated that, when the
proportion of land cover varied, the surface runoff did not change correspondingly [25], which may be
partly because the change of land cover in the sub-basin area was not properly described. However,
the impact of LUCC on the hydrological processes may have been better presented in this study after
sub-basin segmentation.

6. Conclusions

The improved sub-basin segmentation approach has potentially advanced the simulation accuracy
of how hydrological processes respond to LUCC in large-scale watersheds. In the current study, we first
divide the sub-basin into further multi-sub-basins by analyzing the relative spatial position of LUCC
and then improve the influence degree of LUCC on hydrological processes (NSE increased from 0.46
to 0.47, RSR decreased from 0.73 to 0.72, and Pbias decreased from 0.13 to 0.05) at three different scales:
watershed, sub-basin, and HRU. Our results indicate that grassland degeneration and expansion of
bare land/farmland resulted in higher surface runoff (from 43.10% to 56.57% in SUB17) and peak flows
in spring (from 350 m3/s to 480 m3/s), and less lateral flow (from 43.47% to 37.89% in SUB17) and
groundwater (from 13.42% to 5.53% in SUB17) than in the base period model, and a weaker change
trend in the LU2010-im model (400 m3/s, 53.47%, 42.20% and 4.33%). At the HRU level, although
an increasing trend of surface runoff was observed from 2000 to 2010 in the spatial distribution in
most sub-basins, the magnitude of change differed between the LU2010 model and the LU2010-im
model. The improved sub-basin segmentation approach is easy to perform and effectively overcomes
the limitation of HRUs to analyze LUCCIHP by purposefully adding some outlets based on LUCC
to improve the simulation accuracy. This method can serve as a reasonable approach for watershed
spatial management, sustainable land use planning and ecological environmental protection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/4/434/
s1.
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