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Abstract: Suspended sediment concentration is a key aspect in the forecasting of river evolution
dynamics, as well as in water quality assessment, evaluation of reservoir impacts, and management
of water resources. The estimation of suspended load often relies on empirical models, of which
efficiency is limited by their analytic structure or by the need for calibration parameters. The present
work deals with a simplified fully-analytical formulation of the so-called entropic model in order
to reproduce the vertical distribution of sediment concentration. The simplification consists in the
leading order expansion of the generalized spatial coordinate of the entropic velocity profile that,
strictly speaking, applies to the near-bed region, but that provides acceptable results also near the
free surface. The proposed closed-form solution, which highlights the interplay among channel
morphology, stream power, secondary flows, and suspended transport features, allows reducing
the needed number of field measurements and, therefore, the time of field activities. Its accuracy
and robustness were successfully tested based on the comparison with laboratory data reported
in literature.

Keywords: entropic model; suspended sediment; concentration profile; near-bed approximation;
laboratory experiments

1. Introduction

The study of suspended load in open channels has a central role in the analysis of river dynamics,
in which suspended particles affect both the flow field and the interaction between flow and river-bed.
Humans can alter fine sediment supply to river networks and solid transport processes within
them via activities, such as agriculture, mining, forestry operations, and the construction of dams.
Particularly, a dam creates an upstream area with low water velocity, which affects solute/sediment
dynamics and river morphology and induces sedimentation in reservoirs that gradually lose their
useful capacity [1–8]. Even reservoir sediment trapping reduces the supply of sediments to the
downstream river, where modifications of peak flow rate and sediment load impact on channel
morphological equilibrium, and on the stability of river banks and fluvial engineering works (e.g.,
bridges, embankments, etc.). Moreover, reservoir rehabilitation strategies, i.e., flushing operations, may
alter water turbidity and suspended sediment load, with unpreventable negative effects on the ecology
of downstream rivers and the conservation of its biological components, such as fish communities,
benthic invertebrates, and aquatic plants. Finally, suspended load can be a pollution source for rivers
and channels because of toxic substances absorbed by fine sediment particles [9,10]. As a consequence,
knowledge and forecasting of sediment concentration distributions, both along the depth and in the
cross-section of channels, are relevant in the monitoring of regulated fluvial reaches for engineering
and ecological reasons.
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The advection-dispersion equation (ADE) for suspended load in river flows is [11]:

∂C
∂t

+∇·(Cvs) = ∇·(E : ∇C) (1)

where C indicates the turbulent ensemble-mean concentration, vs is the sediment migration velocity,
and E indicates the dispersion tensor defined by:〈

c′v′s
〉
= −E : ∇C (2)

In Equation (2), c′ and v′s represent the fluctuation of concentration and sediment migration
velocity, respectively, and the angle brackets stand for turbulent ensemble mean.

In steady and uniform conditions for flow and sediment distribution in very large rivers (2-D flow
domains in the longitudinal-vertical plane), the turbulent ensemble mean concentration C is assumed
to be governed by the following equation:

− εs
dC
dy

= wsC (3)

where y is the vertical coordinate, εs = Eyy represents the vertical dispersion coefficient and ws ≈ −vsy

indicates particle settling velocity. Based on Reynolds’ analogy, the dispersion coefficient εs is typically
estimated as βεm, where β is a constant of proportionality and εm is the corresponding coefficient for
momentum transfer:

εm =
τ

ρ

(
du
dy

)−1
= u2

∗
τ

τ0

(
du
dy

)−1
(4)

In Equation (4), ρ indicates fluid density, u is the local longitudinal turbulent-mean velocity of
water, u∗ the shear velocity, du/dy the velocity gradient, τ the shear stress at the generic depth y, and
τ0 = τ(0).

The integration of Equation (3) based on Equation (4) yields:

C(y)
C0

= exp

− ws

βu2∗

y∫
0

(
τ

τ0

)−1 du
dy

dy

 (5)

where C0 = C(0). Equation (5) can be solved by resorting to different approximate closures for velocity
and shear stress distribution. A classic example that is based on the use of Prandtl’s logarithmic
velocity profile is the well-known Rouse equation [12]:

C(y)
Ca

=

(
D− y

y
a

D− a

) 1
kβFr∗

(6)

where Ca = C(a) is a reference value (a is a conventional lower limit of sustainability of transport
by suspension), D is the flow depth, Fr∗ = u∗/ws is the grain Froude number and k indicates von
Karman’s constant.

Since Rouse’s model, several analytical and empirical laws have been obtained over the years.
Vanoni, Einstein and Chien demonstrated that the logarithmic velocity distribution[13,14], on

which Rouse’s theory is based, agrees with their experimental data of velocity and suspension
distributions throughout the flow depth only if a smaller value of von-Karman constant, k, is used.
Their results allowed concluding that an increase in suspension concentration corresponds to a reduction
in constant k.

Later, Itakura and Kishi, Coleman pointed out that this conclusion may actually be the result of a
misinterpretation of velocity data by the earliest investigators, to whom the existence of the wake region
of flow was unknown [15–17]. Indeed, their von-Karman constant, instead of decreasing like it did for
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Vanoni, Einstein and Chien [13,14], remained essentially constant through the increase in sediments
suspension from zero to full-capacity concentration. The adjustment to experimental data was achieved
by resorting to a different type of velocity distribution. Specifically, Itakura and Kishi derived a
suspended sediment concentration profile from a log-linear velocity law based on Monin-Obukhow
theory (Monin and Obukhov; Turner) [15,18,19]. Coleman resorted to a velocity profile that was
the sum of the log-velocity distribution for sediment-laden flow [16,17], which strictly applies in
the near-wall region, and a semi-empirical law based on the wake-strength function developed by
Coles [20], which applies in the whole flow domain. He argued that the wake coefficient, rather than
the constant k, is affected by the presence of suspended sediment and showed how the coefficient
varies from a clear-water value of about 0.2 to a suspension-capacity value of about 0.9.

Overall, all the above studies stress how water and solid particles in sediment-laden flow
follow distinct hydrodynamics, and thereby show the inaccuracy of the customary treatment of
water and sediment motion as a single fluid. In the last few decades, some investigators such as
Greimann and Holly, Righetti and Romano, Muste et al., Zhong et al. have analyzed sediment-laden
flows by a two-phase approach [21–24]. Greimann and Holly developed mathematical relationships
that account for particle inertia and particle-particle interactions aimed at modelling the sediment
concentration behavior in open-channel flows over flat sediment-starved beds with single-sized
suspended sediment [21]. Although the proposed two-phase model manages to better predict the
near-bed concentration distribution, where both the effects of particle inertia and particle-particle
interactions are significant, it needs to estimate two empirical coefficients that account for the influence
of the sediment on turbulence intensity. The experimental studies by Righetti and Romano focused on
the characteristics of suspended heavy particles and their turbulence modulation effects in open as
well as in confined channel flows [22]. They observed that, in particle-laden flows, the vertical profiles
of stream-wise mean velocity for both fluid and solid phases and turbulence intensity were reduced in
the outer layer and increased in the viscous sublayer as compared to the clear-water case, which led
to an apparent slip kinematic boundary condition near the wall. Moreover, in the presence of solid
particles, the flow exhibited a velocity that was respectively smaller and larger than that characterizing
the sediments in the near-wall and in the outer region. Muste et al. experimentally demonstrated how
the suspended particles affect the turbulent flow by decreasing the bulk water velocity and the von
Karman constant [23], with the shear velocity remaining approximately constant. Furthermore, they
showed how Rouse’s law quantitatively departs from the measured concentration profile when in
the outer region of the flow the clear-water values of β, k, and Ca are used. Zhong et al. developed a
two-fluid transport model that [24], while formally remaining a typical advection-diffusion equation,
incorporates the effects of external forces, particle-particle interactions, and particle inertia, and is
applicable to both diluted and moderately dense sediment-laden flows. In this model, the velocity of
sediment is not imposed but it is determined as an asymptotic solution to the momentum conservation
equation for solid phase. The use of simple analytical or empirical relations to determine the variables
contained in the governing equation restricts the applicability of the model to stable and uniform
flows only.

Other researchers included the effect of stratification in the concentration profiles ([25,26], to name
a few). McLean showed that stratification and bed-forms typically reduce flow transport capacity and
the heterogeneity of sediment sizes increases the expected transport [25]. Wright and Parker proposed
different methods for the prediction of flow depth [26], grain-size specific near-bed concentration,
and bed-material suspended sediment transport rate in sand-bed rivers. They modified existing
formulations by including density stratification effects and by introducing a new predictor for near-bed
entrainment rate into suspension and for form drag.

Finally, Yang, Ghoshal and Kundu investigated the effect of secondary currents in terms of
fluid vertical velocity and concentration distribution [27–29]. Yang developed a model aimed at the
simultaneous prediction of velocity and sediment concentration profile [27], based on the re-examination
of Prandtl’s theory for sediment-laden flows and the condition of nonzero wall-normal velocity induced
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by secondary currents and sediment settlement. Ghoshal and Kundu elaborated a mathematical model
for the sediment concentration distribution in steady uniform flow that incorporates the effect of both
secondary currents and sediment-induced stratification [28,29]. They found that the stratification leads
to a decrease in sediment concentration, while secondary currents might influence sediment-laden
flow by either increasing or decreasing its concentration.

A relatively recent study on steady uniform flows has shown the possibility of obtaining the
vertical distribution of concentration starting from the maximization of velocity information entropy
(e.g., [30]) and the physical description of the transport process. This entropic model provides good
qualitative and quantitative results, depends on a single parameter (a given function of the ratio of
mean u to maximum umax cross-sectional velocity) and allows for the evaluation of the concentration
also in the wall boundary layer, where it reaches its maximum and where the velocity logarithm law
does not apply. Although the model by Chiu et al. proves to perform better than Rouse’s [30], its
analytical solution would require a complex integration. The present study proposes a simplification
of this model that allows for analytically solving Equation (3) while consistently incorporating the
effect of velocity dip position (e.g., [31]). Tests were performed by applying the proposed simplified
model to a set of measurements collected by Coleman and Valiani during laboratory surveys in
steady flows [16,17,32,33]. According to Equation (3), the model applies along the depth of large
open channels in equilibrium conditions, that is, it assumes that the turbulent ensemble mean
concentration C has achieved an asymptotic space-time domain (i.e., independence from time and
from the channel-axis coordinate). Analytical solutions of the transient advection-dispersion equation
for dissolved chemicals and fine sediments in open channels were given by the authors in the case
of deterministic depth-averaged velocity distributions and different initial conditions by the method
of moments (e.g., [34]); in the case of randomly uniform flows in the presence of morphologic
heterogeneity by a stochastic Lagrangian approach (e.g., [35,36]); and in terms of second-order
concentration statistics based on a stochastic Eulerian approach (e.g., [37]). An analytical-numerical
model was proposed to solve ADE in a stochastic Lagrangian framework in the case of backwater
flows, highlighting the occurrence of a global re-densification of the cloud and a permanent transverse
non-uniformity (e.g., [4]). Finally, a stochastic Lagrangian numerical model was developed to handle
ADE in the case of non-uniform transverse mixing, highlighting the occurrence of concentration
boundary side-pockets (e.g., [38]).

2. Simplified Entropic Model of Concentration

Let us start from the entropic distribution of velocity (e.g., [39,40]):

u(ξ)
umax

=
1
M

ln
[

1 +
(

eM − 1
) ξ − ξO

ξmax − ξo

]
(7)

where ξ is a dimensionless variable such that the velocity increases monotonically with it, ξ0 and
ξmax are the position of the minimum (u = 0) and the maximum (u = umax), respectively, and M is the
so-called entropic parameter, defined by u/umax =

(
eM/eM − 1

)
− 1/M.

In case of velocity monotonically increasing from the bed to the free surface, one has:

ξ =
y
D

(8)

and, after Chiu et al. for linearly distributed shear stress τ/τ0 = (1− y/D), the distribution of
suspended sediment concentration is given by [30]:

C(y)
C0

=

[
1− y

D
1 + (eM − 1) y

D

] λ(eM−1)
2

eM [MeM−(eM−1)]

(9)
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where:
λ = Ψ/βFr∗ (10)

In the above equation,

Ψ =
u
u∗

(11)

indicates the dimensionless Chézy friction coefficient and Fr∗ is a function of ws evaluated as:

wsd
ν

=

(√
25 + 1.2d2∗ − 5

)(3/2)
(12)

where d is sediment particle diameter, ν kinematic viscosity of the fluid, d∗ =
(
(ρs−ρ)g

ρν2

)1/3
d , and ρs

sediment density. Due to its negligible variation with the sediment concentration and along the depth
(e.g., [41]), coefficient β is assumed to be nearly unit.

When the velocity peak is detected below the free surface, ξ becomes a more complex function of y:

ξ =
y

D− h
exp

(
1− y

D− h

)
(13)

where h indicates velocity dip position. The corresponding concentration profile obtained by Chiu et al.
for shear stress distributed according to the following law [30,42]:

τ

τ0
=

h
D

(
1− y

D− h

)
+

(
1− h

D

)(
1− y

D− h

)2
(14)

is given by:

C(y)
C0

= exp

− λ
(
eM − 1

)2

eM[MeM − (eM − 1)]
eM

ξmax

y∫
0

{
hξ

[
1 +

(
eM − 1

) ξ

ξmax

]
τ

τ0

}−1
dy

 (15)

where hξ is a scaling factor defined by:

hξ =
dy
dξ

=

[
ξ

y

(
1− y

D− h

)]−1
(16)

The integral in Equation (15) is not analytically treatable and requires numerical solution.
In the present study, a simplified formulation of the model is proposed by expanding the

exponential function in Equation (13) about y = 0, and by keeping the leading order term only:

ξ =
e

D− h
y (17)

where e indicates Euler’s constant. The linear shear stress distribution will be expressed by:

τ

τ0
= 1− D− h

eD
ξ = 1− ηξ (18)

and Equation (5) will become:

C(ξ)
C0

= exp

− ws

βu2∗

ξ∫
0

(
τ

τ0

)−1 du
dξ

dξ

 (19)
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Then, from Equations (7), (17) and (18):

C(ξ)
C0

= exp

−λ

u
(eM − 1)

M

ξ∫
0

1
(1− ηξ)

1
(1 + (eM − 1)ξ)

dξ

 (20)

It should be emphasized that the use of a diffusion-dispersion model like Equation (1), very close
to the bed (y→0), corresponds to a pure mathematical approximation, since in the near-wall region the
convective entrainment prevails on diffusive particle motion due to the imperfect reaction of particles
to turbulence (e.g., [22]). The integration in Equation (20) can be performed in closed-form leading to:

C(y)
C0

=

[
1− y

D
1 + (eM − 1) ey

D−h(M)

] λ(eM−1)
2

[MeM−(eM−1)][(eM−1)+ D−h(M)
eD ]

(21)

with h = h(M) according to Mirauda et al. [31]. Due to the wall approximation implied by Equation (17),
Equation (21) is in principle mainly valid in the area near the channel bed, where the maximum
concentration occurs.

3. Model Validation

The robustness of the simplified entropic formulation in the presence of velocity dip position was
tested based on the laboratory data collected by Coleman and Valiani [16,17,32,33]. Coleman measured
40 velocity profiles along the axis of the channel flow in laboratory experiments performed in a 0.356 m
wide × 15 m long recirculating flume. During the experimental runs, the Plexiglass flume slope was
adjusted from time to time in such a way as to maintain uniform flow. The experiments were repeated
with three different sands characterized by nominal diameters equal to 0.105, 0.210, and 0.420 mm. Flow
rate and average flow depth were set at 0.064 m3/s and 0.169 m, respectively. Valiani’s experiences
are similar to Coleman’s, which were performed in a 0.37 m wide × 10.5 m long Plexiglas flume.
In Valiani’s tests, solid discharge was gradually increased until saturation of the uniform flow transport
capacity. The experiments were carried out for fixed flow rate (0.022–0.024 m3/s), slope (0.002), and flow
depth (0.10 m), with three different grain sizes (0.150 mm (4 runs), 0.106 mm (6 runs), and 0.075 mm
(12 runs)). All the velocity profiles reconstructed at different cross-sections show that the maximum
velocity systematically occurs below the free surface. Therefore, the (approximate) generalized vertical
coordinate to be used to estimate the corresponding concentration distribution is that given by
Equation (17). Figures 1 and 2 show the comparison between the observed concentrations referred to
different diameters of sediment particles and the two theoretical curves (numerical Equation (15) vs.
first-order analytical Equation (21)).
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Figure 1. Comparison between the theoretical concentration profiles and Valiani’s data:
(a) d50 = 0.075 mm; (b) d50 = 0.106 mm; and (c) d50 = 0.150 mm.

Figure 2. Comparison between the theoretical concentration profiles and Coleman’s data:
(a) d50 = 0.105 mm; (b) d50 = 0.210 mm; and (c) d50 = 0.420 mm.
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As can be seen from the figures above, the proposed simplified fully-analytical curve converges
to the exact numerical solution near the bed and proves to be a very good predictor for the higher
concentrations. Conversely, it is overall slightly less accurate in the upper part of the flow, as one
would expect due to the wall approximation introduced by Equation (17). Interestingly enough, the
present study’s model performs better than the numerical counterpart even near the free surface in the
d50 = 0.075 mm-runs by Valiani and in the d50 = 0.420 mm-runs by Coleman.

The accuracy of the proposed model is confirmed by the reduced standard deviation (7–12%),
whose higher values correspond to the lower concentrations, typically affected by significant
instrumental error (Figure 3).

Figure 3. Observed vs. computed concentrations (simplified entropic model): (a) Valiani’s data and
(b) Coleman’s data.

Equation (21) shows that the concentration distribution is controlled by parameters M and λ.
The entropic parameter M accounts for cross-section geometry, roughness, and morphology,

affecting the “slope” of velocity profile and shear stress distribution within the flow and on the
bed [31,43–48]. Figure 4, which shows C/Cm (Cm indicates the depth-average of C) as a function of
y/D for different M, computed from Equation (21), and the input flow data by Coleman and Valiani,
illustrates how M modifies the shape of the concentration profile. Specifically, according to Chiu’s
statements [40], as the entropic parameter increases and the cross-sectional velocity entropy diminishes,
the distribution becomes more homogeneous and the suspended load interests also the upper part of
cross-section. Conversely, as M decreases and the entropy increases, the velocity profile becomes more
heterogeneous and the suspended load is mainly concentrated in the lower part of the flow. Note that,
as shown in Figure 4a,b, M has a limited variability as a function of flow rate. As a matter of fact, Chiu
and Said highlighted how an erodible channel, due to changes in the boundary conditions [43], can
achieve a new equilibrium state by modifying hydraulic and geometrical characteristics as well as
suspended load concentration. In this case, the velocity distribution and the related entropic parameter
M typically undergo negligible variations.

Being a function of the dimensionless Chèzy coefficient and grain Froude number, parameter λ

has a specific physical meaning that is associated with the relevance of particle gravitational convective
forces as compared to shear stresses, and with the intensity of turbulence. For larger values of λ, that
is, for larger Ψ or smaller Fr∗, sediment particles tend to be trapped near the bed and the concentration
profile tends to be less uniform. Conversely, for smaller values of λ, that is, for smaller Ψ or larger
Fr∗, the stream power is higher and the more intense particle lifting makes the suspended load
concentration profile more homogeneous (see Figure 5, which shows C/Cm as a function of y/D for
different λ computed from Equation (21) and the input flow data by Coleman and Valiani.
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Figure 4. Relationship between parameter M and concentration distribution degree of uniformity at
constant values of λ: (a) Valiani’s data at λ = 5.9 and (b) Coleman’s data at λ = 5.6.

Figure 5. Relationship between parameter λ and concentration distribution degree of uniformity at
constant values of M: (a) Valiani’s data at M = 12 and (b) Coleman’s data at M = 9.4.

Figures 6a,b and 7a,b show the comparison among three truly analytical equations: Equation (6) by
Rouse with a = 2d [12], Equation (9) by Chiu et al. and Equation (21) (present study) [30]. The proposed
method starts from the simultaneous assessment of h and umax by an iterative procedure that only
requires a very limited field sampling [31], where the velocity dip position, h, is a function of M
according to the following relationship:

h(M) = D− D
{

M
eM − 1

[
eM
(

1
M
− 1

M2

)
+

1
M2

]}
(22)

As one can see from the figures, Rouse’s formula tends to overestimate the suspended load
within the turbulent core for larger λ (smaller grain sizes) and to underestimate it for smaller λ

(larger grain sizes). This is because the Equation (6) cannot suitably account for the reduction in
mixing length due to the presence of sediment suspension. The occurrence of velocity dip position,
which induces an effect that is similar to the virtual increment of viscosity in the upper fluid layers,
determines a corresponding reduction of suspended sediment concentration. When the dip is more
pronounced (M = 4, h = 0.23D), the analytical curve by Chiu et al. [30], which ignores it, gives definitely
out-of-range results. As mentioned in the introduction, several studies in the recent past reported
detailed investigation on the interaction between suspended sediment concentration and vertical
velocity profile. The method proposed by the present study synthesizes in a single parameter to be
field-determined from time to time (M) the effect of velocity gradient reduction due to the bi-phasic
flow (by the assessment of umax for given D) and the occurrence of velocity dip position (by the
assessment of h). Indeed, from Equations (7) and (17) one obtains:
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du
dy

=
umax

M
[

y + (D−h)
(eM−1)

] (23)

Thus, when umax increases D being the same, the gradient increases and vice versa. Similarly,
when M decreases and h increases, the gradient increases and vice versa (which justifies the reduction
in C/C0 for y/D→1 that was detected in the figures).

Figure 6. Comparison among the prediction by Equation (6) by Rouse [12], Equation (9) by Chiu et al. [30],
Equation (21): (a) d=0.105 mm from Coleman’s data set (λ = 5.6) and (b) d = 0.210 mm from Coleman’s
data set (λ = 8.2).

Figure 7. Comparison among the prediction by Equation (6) by Rouse [12], Equation (9) by Chiu et al. [30],
Equation (21): (a) d = 0.075 mm from Valiani’s data set (λ = 5.9) and (b) d = 0.150 mm from Valiani’s data
set (λ = 14.8).

4. Conclusions

The present study suggests a simplified version of the entropic model proposed by Chiu et al. for
the concentration of suspended load in large open channels [30]. This approximate entropic model
for suspended sediment concentration allows for an analytical closed-form solution that consistently
depends on the cross-sectional velocity entropic parameter (and entropy), dimensionless Chézy
friction coefficient, and grain Froude number. The mathematical formulation hinges as usual on
Reynolds’ analogy, leading to the equivalence of mass and momentum turbulent dispersion coefficients.
The simplification consists in the leading order expansion of the generalized spatial coordinate of the
entropic velocity profile in the presence of velocity dip position that, strictly speaking, applies to the
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near-bed region. The good agreement between predicted and observed concentrations documented in
the laboratory experimental studies by Coleman and Valiani highlights the robustness and reliability of
the simplified method [16,17,32,33]. In particular, the method proved to be able to closely reconstruct
the sediment concentration profile near the channel bed, while being slightly less accurate in the
upper part of the flow (where, nevertheless, the concentrations are typically very low). Additionally,
the possibility to account in a very simple fashion for the velocity dip position, to be evaluated
by an iterative procedure along with umax, makes our model an easy and fast tool to estimate the
concentration in sediment-laden flows that incorporates the effect of the interaction between sediment
suspension and velocity distribution.
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