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Abstract: In South Korea, meteorological droughts are becoming frequently-occurring phenomena
in different parts of the country, because precipitation varies significantly in both space and time.
In this study, the quantiles of four identified homogeneous regions were estimated by incorporating
major drought variables (e.g., duration and severity) based on the Standardized Precipitation
Index (SPI). The regional frequency analysis of drought was performed by evaluating a variety
of probability distributions and copulas, using graphical comparisons and goodness-of-fit test
statistics. Results indicate that the Pearson type III (PE3) and Kappa marginal distributions, as well
as Gaussian and Frank copulas, are better able to simulate the drought variables across the region.
Bivariate stochastic simulation of selected copulas showed that the behavior of simulated data
may change when the degree of association (e.g., Kendall’s τ) between the drought variables was
considered. Results showed that the south-west coast and east coastal areas are under high drought
risk, and inland mid-latitude areas (surrounding areas of Yeongju station) and northwest parts are
under low drought risk. The joint distributions were used to compute conditional probabilities,
as well as primary, secondary, and conditional return periods, which can be useful for designing and
managing water demand and the supply system on a regional scale.

Keywords: meteorological droughts; SPI; homogeneous regions; bivariate copula; drought variables;
return periods

1. Introduction

The United Nations classified South Korea as water-deficit country, and recently, South Korea has
faced serious droughts and water deficit problems [1]. Historical climate records confirm the presence
of severe droughts across South Korea [2,3]. In addition, it is reported that the temperature of South
Korea increased throughout the 20th century [4]. Since anthropogenic climate change is expected
to increase in future, South Korea will be vulnerable to extreme drought events. It is reported that
changes in climate extremes have an adverse effect on water resources of South Korea [5].

The stochastic nature of drought should be expressed by different correlated random variables,
such as drought duration and severity. A bivariate distribution is needed to express those correlated
drought variables. In the case of flood studies, there are a variety of bivariate distributions
applied to obtained joint distribution, such as bivariate normal distribution [6], bivariate exponential
distributions [7], and bivariate gamma distributions [8]. However, these bivariate distributions are
unable to characterize the individual behavior of random variables using the same parametric family
of univariate distribution [9]. In the case of drought studies, drought characteristics are assumed to be
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independent, identically random variables [10], or assumed to be derived from the same univariate
distribution and have explicit bivariate forms (e.g., bivariate forms of normal, exponential, or gamma
distributions) [6–8]. However, usually, none of the above-stated assumptions are satisfied, because of
the presence of high correlation between drought variables, and the fact that those variables may
belong to different univariate distributions. The copula theory proposed by Cancelliere [11] can solve
the above-stated problems. The copula can preserve the dependence structure, and is able to jointly
simulate different univariate distribution characteristics of drought variables.

When the record length of available meteorological data is much shorter than the return period of
interest, the local frequency analysis is difficult to estimate. The regional frequency analysis is used to
cope with this lack of data. It is based on the assumption that the available data is transferred from
the different meteorological stations within the same homogeneous region into a site with little or
no data available. The regional frequency of drought at various levels of duration and severity is
critical to understanding the nature of drought risk, and helping us to establish comprehensive and
integrated drought management strategies. However, univariate frequency analysis does not provide
an accurate probability of extreme droughts if the underlying drought event is described by more than
one random variable (duration and severity, in this study). Therefore, the frequency analysis may lead
to an incorrect estimation of drought risk [12]. Consequently, the multivariate statistical approach is
becoming more popular in recent studies [13–15].

Most of the studies having the application of copulas in hydrology are particularly focused on
the bivariate modelling, to simulate the dependence between the variables. Shiau [16] used bivariate
copulas to determine the joint distribution between drought duration and severity. In a later study,
Shiau [17] used the Clayton copula for a bivariate frequency analysis of drought severity and duration
at the Abadan and Anzali gauge stations in Iran. The results showed that drought severity is expected
to increase in the region if the high fluctuation in the rainfall continues. Kao [18] used copulas to
perform a spatial and temporal drought analysis for the Midwestern U.S., and adopted a copula-based
joint deficit index (JDI) for describing overall drought status, comparing it to the Palmer drought
severity index. Furthermore, Kao later [19] indicated that the JDI index has the tendency to take into
account the seasonality of precipitation and streamflow margins.

The precipitation patterns in South Korea have complex spatial and temporal variations, because
of the coincident typhoon season in the western North Pacific [20–22]. Due to complicated mountainous
terrain and climatic features, analyzing the spatial characteristics of drought are the main obstacles
in drought analysis. Identification of drought-prone areas using drought risk analysis has direct
relevance to both the water industry and the environmental demands of the river system. In this study,
regional drought risk analysis is performed using univariate probability distributions and bivariate
elliptical and Archimedean copulas, to identify the areas vulnerable to drought hazard. In addition,
various types of drought risks were compared, to provide useful information for decision makers and
to help them to reduce the impact of drought at the local level.

2. Materials and Methods

2.1. Study Area and Data

The Korean Peninsula is located between a northeastern part of the Asian continent, between
33–43◦ N and 124–131◦ E (Figure 1). South Korea has more than 18,797 reservoirs, which are
regularly monitored for a proper supply of agricultural water and flood control. In some dry regions,
precipitation is less than 1000 mm, due to topographical effects, and many parts of South Korea
are characterized by a precipitation range of 1200 to 1400 mm, which is about 30% greater than the
worldwide average of 973 mm [23].

The Korean Meteorological Administration (KMA) database was used to extract the monthly
precipitation data for 70 rainfall stations across South Korea. The randomness of the monthly
precipitation data was tested using homogeneity, the absence of the artificial trends, and spurious
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auto-correlation tests. Three non-parametric tests, as explained in [24], including the Mann-Whitney
homogeneity test, Mann-Kendall trend test, and Kendall’s autocorrelation test [25], were tested and
evaluated for all stations. The test results indicated that more than 15 stations needed to be eliminated,
because of low-quality data and more than 5% missing values. The remaining 55 rainfall stations across
South Korea, covering more than 35 years (1980–2015) of data, were used for further regionalization
analysis. The Maintenance of Variance Extension (Move4) technique, as explained in [26], was used to
fulfill the gap of missing values. This method is selected because extended records are generated while
maintaining the variance of the data series.
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2.2. Drought Identification

The Standardized Precipitation Index (SPI) proposed by Mckee [27] was used in this study for
identifying the duration of drought events and to evaluate their severity. The SPI was computed based
on fitting long-term rainfall data to the probability distribution on any desired timescale, such as 1, 3,
6, 12, and 24 months. It was found that the gamma distribution fit more closely to the precipitation
data of candidate stations (55 total) across South Korea [28]. Since there are a number of zero-bounded
continuous variables in climatology, it is important to give a distribution which may be used for such
variables. The gamma distribution, which has a zero lower bound, has been found to fit several such
variables well [29]. Therefore, gamma distribution has successfully been applied for drought studies
by many researchers in South Korea [1,30].

In this study, the SPI timescale was estimated using a timescale of 6 months, because it matches
well with the dry and wet alternations in South Korea, and has successfully been applied for drought
monitoring in South Korea [1]. The duration of any drought event is defined as the time when the
SPI values I continuously remain below the predefined truncation level [31]. The severity of any
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drought event indicates the cumulative deficiency below the truncation level, defined as S = ∑D
i=1|−Ii|

(Figure 2), as described in [31]. In this study, the theory of run analysis was performed using the
predefined truncation level of −0.99.
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Figure 2. Drought characteristics using run theory.

Figure 3 shows the spatial variability of mean drought duration (Figure 3a) and mean drought
severity (Figure 3b) from 1980 to 2015, using SPI-6 across South Korea. Droughts of the longest mean
duration (3.1 to 3.4 months) were recorded at the southwest coast (areas surrounding Jangheung,
Goheung, Haenam, and Wando stations) and mid-latitude inland areas (areas surrounding Jecheon
and Gumi stations). Figure 3a shows that droughts of highest severities were recorded at the
southwest coast (areas surrounding Jangheung, Goheung, Haenam, and Mokpo stations) and the
areas surrounding Sancheong and Jecheon stations (Figure 3b). It can be seen that the droughts of
longest mean duration mostly correspond to the droughts of highest mean severities, and thus drought
duration and severity are correlated variables.
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Figure 3. Spatial distribution of (a) mean duration (months); (b) mean severity, using the inverse
distance weighted (IDW) method. IDW assumes substantially that the rate of correlations and
similarities between neighbors is proportional to the distance between them. The IDW method
is recommended when there are enough sample points with a suitable dispersion at local scale.
The accuracy of IDW is affected by the size of the neighborhood and the number of neighbors.

2.3. Cluster Analysis and Testing of Regional Homogeneity

A more robust and statistic based clustering algorithm, the hierarchical classification on principal
components (HCPC), was applied for the delineation of homogeneous regions. The regionalization
of drought variables was performed, considering the topographical variables such as latitude,
longitude, and elevation above sea level (m), as well as climatological variables, such as mean annual
precipitation (mm), mean daily maximum temperature (◦C), mean daily minimum temperature
(◦C), annual evaporation (mm/year), and mean relative humidity (%) (refer to [32]). The HCPC
clustering algorithm proposed in this study dealt with the above-stated eight topographical and
climatological variables, which are likely to affect the drought mechanism in the region. Clusters
formed by HCPC algorithm were validated using distance-based validating indices (e.g., connectivity,
silhouette width, Dunne index, and Calinski and Harabasz index). A detailed explanation about the
bivariate discordancy and homogeneity tests applied for regionalization of drought across South Korea
is provided in [32].

2.4. Selection of Regional Distribution Models

After making sure that identified regions are homogeneous, it is necessary to identify the
probability model for each of the drought variables; in our case, the drought variables are duration
and severity. To accomplish this task, five candidate probability distributions, such as generalized
logistic (GLO, three parameters), generalized Pareto (GPA, three parameters), generalized extreme
value (GEV, three parameters), generalized normal (GNO, three parameters), and Pearson type III
(PE3, three parameters) were considered in this study.
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In this study, the L-moment ratio diagrams and a goodness-of-fit measure (the Z statistic) were
used to identify the best-fitted marginal distribution, as recommended by many researchers [33–36].
The Z statistic for a particular distribution [37] can be expressed as follows.

Z =
(tR

4 − tdist
4 )

σt4

(1)

where tR
4 indicates regional average L-kurtosis, σt4 indicates the standard deviation of tR

4 , and tdist
4

indicates the L-kurtosis of the fitted distribution. The best-fitted probability distribution is selected
based on the smallest value of |Z|. The probability distribution function, with the |Z| ≤ 1.64 at a
significant level of α = 10%, is considered acceptable for representing the sample data [35].

2.5. Dependence Measures

Dependence among drought variables was analyzed using both qualitative and quantitative
approaches. Qualitative dependence was assessed using graphical diagnostic tools, such as Chi and
Kendall plots, whereas quantitative dependence was assessed using Pearson’s linear correlation r,
Spearman’s rank correlation ρ, and Kendall’s τ. The detailed description of the Chi and Kendall plot
are provided in [14].

2.6. Copula Function

Copula helps us to construct a joint distribution function of univariate random variates and be
able to capture the dependence between two variables. Let X = (X1, X2, ..., XN) indicate a random
vector with a continuous marginal distribution function (CDFs) F1, F2, . . . , FN. Sklar [11] describes the
relationship between CDF H(X) copula function C, which can be written as described in [38]:

H(X) = C(F1(X1), F2(X2), . . . Fn(Xn)) X ∈ Rn (2)

where the unique function C : [0, 1]d → [0, 1] is called a d-dimensional copula. The multivariate joint
distribution model for H can be constructed in two parts: (1) computation of the marginal CDFs (F1,
F2, . . . , FN) and (2) the computation of the copula model (C).

In this study, the maximum pseudo-likelihood (MPL) approach was used to compute the
parameters of copula family [38]. Candidate copula families used for the analysis were the elliptical
and Archimedean copula, as shown in Table 1. Elliptical copulas include normal (Gaussian) and
Student’s t, and Archimedean copulas include Clayton, Gumbel, Joe, and Frank. The best-fitted
copula was chosen using parametric the bootstrap-based Cramér–von Mises test (Sn) [39] and Akaike
information criterion (AIC) [40] goodness-of-fit. Bivariate joint distributions were estimated using the
Copula package in R programming [41].
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Table 1. List of copulas applied in this study.

Copulas Bivariate Copula Cθ(u, v) Parameters θ

Archimedean copulas

Clayton (u−θ + ν−θ − 1)−1/θ θ ∈ [−1, ∞)\{0}
Frank − 1

θ log
[
1 + (e−θu−1)(e−θν−1)

e−θ−1

]
θ ∈ [−∞, ∞)\{0}

Gumbel exp
[
−
(
u−θ + ν−θ

)1/θ
]

θ ∈ [1, ∞)

Joe 1− [(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ]
1/θ

θ ∈ [1, ∞)

Elliptical copulas

Student’s t

∫ t−1
ϑ (u)
−∞

∫ t−1
ϑ (v)
−∞

1
2π
√

(1−r2)

{
1 + x2− 2rxy+ y2

ϑ(1−r2)

}− ϑ+2
2

dxdy

tϑ(x) =
∫ x

∞
Γ((ϑ+1)/2)√
πϑΓ( ϑ2 )

(
1 + y2/ϑ

)−(ϑ+1)/2dy, ϑ 6= 0
ϑ > 2, r ∈ (0, 1]

Gaussian Φ2

(
Φ−1(u), Φ−1(v), ρ

)
−1 ≤ ρ ≤ 1

2.7. Conditional Probability

Copula-based joint distribution is necessary to derive the conditional probability distributions
of drought duration and severity. The conditional probability of drought severity with drought
duration exceeding various threshold values is indicated by d′, and the conditional probability
of drought duration with drought severity exceeding various threshold values is indicated by s′.
The corresponding conditional probabilities can be expressed as follows [42].

P
(
S ≤ s

∣∣D ≥ d′
)
=

P(D≥d′ , S≤s)
P(D≥d′)

=
F(s)+F(d′ , s)

1−F(d′)
=

F(s)−C(F(d′), F(s))
1−F(d′)

(3)

Similarly

P(D ≤ d|S ≥ s′) = P(D≤d, S≥s′)
P(S≥s′) = F(d)−F(d, s′)

1−F(s′) = F(d)−C(F(d), F(s′))
1−F(s′) (4)

2.8. Return Period in a Bivariate Framework

2.8.1. Primary Return Periods

Estimation of the return period has special importance in the planning and management of water
resources. Let us suppose that D and S denote the drought duration and severity, respectively—then,
the univariate return period can be computed using the procedure described in [15,43]:

TD =
µt

1− F(d)
(5)

TS =
µt

1− F(s)
(6)

TD and TS indicate the return period for drought duration and drought severity, respectively.
F(d) and F(s) indicate the cumulative distribution functions of drought duration and severity,
respectively. In this study, µt can be calculated using the theory of run and the Markov theorem [42]:

µt =
1

PDW
+

1
PWD

(7)

where PDW = p(SPIt ≤ −0.99|SPIt−1〉 − 0.99 and PWD = p(SPIt > −0.99|SPIt−1 ≤ −0.99) . Here,
the unit of µt is months. There are two possible cases for the derivation of return periods as described
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by [42]: (1) the return period for D ≥ d and S ≥ s and (2) the return period for D ≥ d or S ≥ s.
The copula-based joint return period in the above stated cases can be derived as follows:

T̂D, S = µt
P(D ≥ d, S ≥ s) =

µt
1−F(d)− F(s)+ F (d, s) =

µt
1−F(d)− F(s)+ C(F (d), F(s)) (8)

ŤD, S =
µt

P(D ≥ d or S ≥ s)
=

µt
1− F (d, s)

=
µt

1− C(F (d), F (s))
(9)

where C(F (d), F (s)) indicates the copula-based joint distribution function of the drought duration
and severity, respectively. In this study, sign ∧ indicates “and”, and sign ∨ indicates “or”. Additionally,
“or” is also known as standard return periods.

2.8.2. Secondary Return Period

The secondary return period provided a precise indication for performing risk analysis, and may
also yield useful hints for doing numerical simulations [13,44,45]. In this study, the secondary return
period was adopted for the evaluation of drought risk within South Korea, and was compared with
the primary return periods computed using Equations (5) and (6). The occurrence probability should
be estimated for the calculation of secondary or Kendall’s return period. KC, denoting Kendall’s
distribution, can be computed following KC(t) = P(C(F (d, s) ≤ t)). The related secondary return
period can be derived as follows [32]:

T∗D, S =
µt

1−KC(t)
=

µt
1− P(C(F (d, s) ≤ t))

(10)

where t indicates the critical probability level and KC indicates the Kendall distribution function.
The detailed description of the KC function for other Archimedean and elliptical copula families are
available in [15,38,45].

2.8.3. Conditional Return Period

The concept of a conditional return period has special importance, especially for particular
conditional drought events that are of interest in our applications. For instance, the evaluation of
the risk for malfunction of a specific water resources system needs to consider the drought event,
at the given drought duration D, when drought severity equals or exceeds a certain design value s,
and vice versa.

The return period of drought duration and severity is derived conditionally, following the
expression proposed by [42]. For example, the conditional return period for D given S ≥ s, and the
conditional return period for S given D ≥ d:

TD|S ≥ s =
TS

P(D ≥ d, S ≥ s) =
µt

1− F(s) ×
1

1−F(d)− F(s)+ F (d, s) =
µt

[1− F(s)][1−F(d)− F(s)+ C(F (d), F(s))] (11)

TS|D ≥ d = TD
P(D ≥ d, S ≥ s) =

µt
1− F(d) ×

1
1−F(d)− F(s)+ F (d, s) =

µt
[1− F(d)][1−F(d)− F(s)+ C(F (d), F(s))] (12)

TD|S ≥ s indicates the conditional return period of drought duration when drought severity
exceeds a certain level, and TS|D ≥ d indicates the conditional return period of drought severity when
drought duration exceeds a certain level.

3. Results and Discussion

3.1. Bivariate Regionalization of Drought in South Korea

The HCPC algorithm was applied for the formation of initial regions, using topography and
climate-based site characteristics of each station. However, regions obtained by the HCPC algorithm
are not statistically homogeneous. Univariate and bivariate discordancy and homogeneity tests results
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showed that Tongyeong station in Region I, as well as the Ganghwa, Jeonju, and Boeun stations in
Region III, were identified as discordant sites. Following methodology proposed by [37], the stations
shifted from one region to another, in order to improve the homogeneity of the regions. The spatial
distribution of the final identified homogeneous regions is presented in Figure 4. Region II, located at
the mid-latitude inland of South Korea, is the smallest region compared to the others, as it contains only
five stations. Moderate drought attributes observed in Region II may be because of its location away
from the coastal areas, making it thus less affected by summer typhoons, which occur mostly at the
coastal areas. Table 2 showed that all the regions fulfill the criteria of homogeneity. The detailed results
of the bivariate homogeneity tests are provided in [32]. Since regional drought frequency analysis
is based on the extreme values of drought variables (duration and severity), basic statistics such as
mean, maximum, minimum, standard deviation, skewness, and kurtosis were computed for four
homogeneous regions (Table 3). The longest drought duration of 13 months was recorded at Jecheon
station in Region I, and the highest severity of 22.30 was recorded at Yeongju station in Region II.
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Table 2. Heterogeneity measure for the final adjusted homogeneous regions [32].

Region Drought Events Stations D S DS

I 516 20 −0.70 (H 1) −0.82 (H 1) −0.11 (H 1)
II 139 5 0.85 (H 1) −0.12 (H 1) −0.34 (H 1)
III 492 18 −2.21 (H 1) −2.26 (H 1) −1.45 (H 1)
IV 308 12 1.47 (A.H 2) 0.74 (H 1) 0.56 (H 1)

1 H = Homogeneous region, 2 A.H = Acceptably homogeneous region.

Table 3. Some basic statistics of drought duration and severity for each identified homogeneous region.

Region Variables Mean Max Min SD 1 Skewness Kurtosis

I
Duration 2.65 13.00 1.00 2.24 1.44 4.33
Severity 4.03 17.61 1.00 3.93 1.55 4.52

II
Duration 2.63 12.00 1.00 2.23 1.61 5.24
Severity 4.01 22.30 1.00 3.93 2.07 8.11

III
Duration 2.53 10.00 1.00 2.12 1.50 4.21
Severity 3.88 20.55 1.00 3.78 1.70 5.07

IV
Duration 2.48 11.00 1.00 2.16 1.55 4.58
Severity 3.72 20.01 1.00 3.78 1.89 6.33

1 SD indicates standard deviation.

3.2. Identification of Regional Marginal Distribution

The L-moment ratio diagram, in the case of drought duration for the four identified homogeneous
regions, is shown in Figure 5. Among the five candidate probability distributions, the PE3 distribution
line passed through the small portion of the observed data, in case of Regions I and III, and passed
away from the observed data in the case of Regions II and IV. However, it is noted that the regional
average point is always located away from the PE3 distribution line. The Z statistic value showed that
none of the candidate probability distributions satisfied the criteria that |Z| ≤ 1.64 (Table 4). This may
be due to a large number of ties, especially with the short drought duration. Therefore, for drought
duration, a more robust Kappa distribution was selected, as recommended by [37,46–48]. In the case of
drought severity, the L-moment ratio diagram (Figure 6) and Z statistics (Table 4) showed that except
for Region I, all other regions can be modeled with PE3 distribution. For Region I, a four-parameter
Kappa distribution was selected.

Table 4. Z statistics of the drought variables, using five candidate probability distribution for the
four sub-regions.

Variables Region GLO GEV GNO PE3 GPA

Duration

I 9.41 8.82 7.2 4.41 6.46
II 4.51 4.19 3.36 1.92 2.97
III 7.92 7.42 5.85 3.16 5.31
IV 6.33 6.06 4.92 3.00 4.75

Severity

I 7.27 6.74 5.16 2.46 4.56
II 2.86 2.58 1.78 0.42 1.45
III 5.92 5.44 3.8 0.99 3.35
IV 4.99 4.68 3.41 1.26 3.22

Note: The bold values indicate the best distribution for a significance level of 10%.
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The visual comparison between empirical and theoretical probability distribution functions
(PDFs) and their corresponding cumulative distribution functions (CDFs) for the drought duration
and severity of each region is presented in Figure 7. CDFs and PDFs were computed using Kappa
distribution for Regions I, II, III, and IV, in the case of drought duration, and for Region I in the
case of drought severity. The drought severity of Regions II, III, and IV were computed using PE3
distribution. Here, the empirical cumulative probability was calculated by using plotting position
formula p(X ≤ xi) =

i−0.35
n , proposed by Hosking [49]. Here, i denotes the rank of the observations

in ascending order, and n denotes sample size. The derived theoretical CDFs and PDFs show good
agreement with the empirical ones, which indicates that these probability distributions perform
well with the observed data. The CDFs of the final best-fitted probability distributions and their
corresponding parameters are given in Table 5.
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Table 5. Parameters of final selected probability distributions for each region.

Variables Region Distribution CDF Parameters

Duration

I Kappa F(x) =
(

1− h
(

1− κ(x−ξ)
α

)1/κ
)1/h

ξ = −6.854;
α = 8.872; ablesy occur at central and souther region of south Korea.
restxceeding varirtain erved data.ness and L−kurtosis and theorat
k = 0.832; h = 3.908

II Kappa F(x) =
(

1− h
(

1− κ(x−ξ)
α

)1/κ
)1/h

ξ = −4.182;
α = 5.239; ablesy occur at central and souther region of south Korea.
restxceeding varirtain erved data.ness and L− kurtosis and theorat
k = 0.624; h = 3.492

III Kappa F(x) =
(

1− h
(

1− κ(x−ξ)
α

)1/κ
)1/h

ξ = −4.022;
α = 4.852; ablesy occur at central and souther region of south Korea.
restxceeding varirtain erved data.ness and L− kurtosis and theorat
k = 0.574; h = 3.614

IV Kappa F(x) =
(

1− h
(

1− κ(x−ξ)
α

)1/κ
)1/h

ξ = −17.771;
α = 34.673; ablesy occur at central and souther region of south Korea.
restxceeding varirtain erved data.ness and L− kurtosis and theorat
k = 1.147; h = 5.079

Severity

I Kappa F(x) =
(

1− h
(

1− κ(x−ξ)
α

)1/κ
)1/h

ξ = −2.739;
α = 3.278; ablesy occur at central and souther region of south Korea.
restxceeding varirtain erved data.ness and L− kurtosis and theorat
k = 0.369; h = 3.074

II PE3 F(x) =
∫ x−ξ
β

0 tα−1 exp(−t)dt
Γ(α)

β:1.232; α:0.557; ξ:0.313

III PE3 F(x) =
∫ x−ξ
β

0 tα−1 exp(−t)dt
Γ(α)

β:1.274; α:0.510; ξ:0.350

IV PE3 F(x) =
∫ x−ξ
β

0 tα−1 exp(−t)dt
Γ(α)

β:1.44; α:0.444; ξ:0.362
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The parameters of each distribution were estimated using the L-moment method. Before fitting
the copula model, site-specific scaling factors were used to standardize the observations from the
pooled sites [50]. In this study µi, S and µi, D denote the site-specific scaling factor for drought duration
and severity, respectively. This approach helped us to increase statistical reliability of the calculations,
especially at the sites having small a length of records. The site-specific scaling factor for drought
duration and severity of each region and the number of drought events recorded at each station are
shown in Table 6. The highest number of drought events (34) were recorded at Tongyeong station.
This can be correlated with unusual precipitation patterns in southern coastal areas. This is because of
the major contribution of typhoons to the seasonal (particularly summer) precipitation patterns and
convective systems within the air mass in southern coastal areas [51]. A study based on spatial patterns
of trends in summer precipitation showed a significant increasing trend in amount and intensity of
precipitation at southeast coastal areas [20].

Table 6. µi,D and µi,S indicate the site-specific scaling factors for drought duration and severity,
respectively, and ni indicates the number of drought events recorded at each station.

Region I

Site µi,D µi,S ni Site µi,D µi,S ni
Jangheung 3.35 5.03 23 Jinju 2.61 4.01 28
Haenam 2.58 3.84 26 Geoje 2.67 3.89 24

Yeongcheon 2.58 4.07 24 Buan 2.31 3.43 29
Miryang 2.93 4.35 27 Namhae 2.63 4.19 24

Sancheong 3.00 4.97 21 Jeongeup 2.63 3.83 30
Ulsan 2.52 3.80 27 Goheung 3.29 5.14 21

Gwangju 2.58 4.06 26 Yeosu 2.53 3.73 30
Busan 2.00 2.95 31 Wando 3.05 4.69 21

Tongyeong 1.94 2.78 34 Suncheon 2.56 3.92 27
Mokpo 2.80 4.65 20 Jeonju 3.43 5.12 23

Region II

Chupungnyeong 2.57 3.90 28 Boeun 2.61 3.82 28
Geumsan 2.77 4.11 30 Yeongju 2.38 3.68 29
Geochang 2.88 4.65 24

Region III

Chuncheon 2.29 3.35 31 Imsil 2.85 4.54 26
Chungju 2.59 3.90 27 Boryeong 2.69 4.12 29
Daejeon 2.26 3.40 31 Namwon 2.80 4.57 25
Jecheon 2.64 4.21 28 Seoul 2.79 4.18 24

Yangpyeong 2.46 3.65 28 Incheon 2.19 3.16 32
Icheon 2.90 4.66 21 Wonju 2.50 4.08 24

Cheonan 2.32 3.50 28 Cheongju 2.52 3.99 27
Buyeo 2.37 3.46 30 Gunsan 2.68 4.14 25
Suwon 2.38 3.63 26 Seosan 2.70 3.98 30

Region IV

Sokcho 2.31 3.37 29 Uiseong 2.00 3.33 29
Daegwallyeong 2.36 3.31 28 Gumi 3.17 4.74 24
Gangneung 2.45 3.55 29 Mungyeong2.44 3.79 27

Uljin 2.92 4.16 25 Yeongdeok 2.83 4.20 24
Pohang 2.06 2.85 16 Inje 2.96 4.33 24
Daegu 2.17 3.52 29 Ganghwa 2.17 3.51 24

3.3. Application of Copulas

Prior to fitting the bivariate copulas, it is important to examine the dependence structure between
the drought duration and severity. In this study, quantitative dependence was assessed using three
correlation coefficient measures, such as Pearson’s linear correlation r, Spearman’s rank correlation
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ρ, and Kendall’s τ. The Student’s t-test at the significance level of 0.05 was used to test the statistical
significance of the correlation values. Since Pearson correlation coefficient can only indicate the linear
dependence between the variables, it may not be useful for heavy-tailed variables and may be affected
by the outliers. Therefore, Kendall’s τwas used to describe the wider class of dependencies and to cope
with the outliers [52]. Moreover, rank-based evaluation of the correlation between drought duration
and severity was also presented in Table 7. The three correlation coefficient test results showed that
there is a statistically significant positive dependence between the drought variables for all regions.

Table 7. Correlation coefficients for drought variables.

Dependence Measure Region I Region II Region III Region IV

Pearson’s r 0.941 0.912 0.920 0.928
Kendall’s τ 0.834 0.832 0.826 0.799

Spearman’s ρ 0.934 0.939 0.938 0.914

The qualitative dependence between drought variables were accomplished using graphical
diagnostic tools. The pair-wise dependence pattern of drought variables, using Chi and Kendall plots
for each region, is presented in Figure 8. According to [53,54], the two variables could be considered
as independent if the majority of the events lay within the confidence band of the Chi plots. In the
case of the Chi plot, a strong deviation from the control point was observed for all regions. All the
points fell near or away from the confidence band of the Chi plots. Furthermore, most of the drought
event values were higher than the median value (positive lambda values). In the case of the Kendall
plots, two variables could be considered as independent if the majority of the event lay on the diagonal
line. Events above the diagonal line indicate positive dependence, and event below the diagonal line
indicate the negative dependence. The results of the Kendall plots showed a strong deviation from
the diagonal line for all regions. This indicates the presence of strong positive association between
drought variables.
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Since the qualitative and quantitative dependence measures indicated significant positive
correlation between the drought variables, and goodness-of-fit tests indicated the best-fitted probability
distributions, a copula can be employed to simulate the drought variables using joint distribution.
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Elliptical and Archimedean copula families, described in Section 2.6, were fitted and compared to
find the best-fitted copula. The Ali-Maikhail-Haq copula is also the part of Archimedean copula
family, but was not considered in this study, because the application of this copula needs Kendall’s τ
value to be within the range of [−0.1817, 0.333] [38]. Furthermore, the six copula models were fitted
using the MPL method, where the parameters were estimated using either Kappa or PE3 distribution.
The performance of the copula families was compared using the Cramér–von Mises test (Sn). The test
statistic Sn and its associated p-value can be estimated using either parametric bootstrap [39,55] or by
means of a multiplier approach [56,57].

The drawbacks of the parametric bootstrap are that it has very high computational cost, as each
iteration requires both random number generation from the fitted copula and the estimation of copula
parameters [58]. Additionally, the parametric bootstrap method becomes prohibitive with an increase
in the sample size. Therefore, a fast large-sample testing procedure based on the multiplier approach
was preferred in this study. The Sn and p-value were computed using the multiplier iteration of 10,000,
with the sample length as the historical data (Table 8). The Sn statistic was computed on the basis of the
probability integral transformation of Rosenblatt [59]. In addition to this, the AIC criteria as described
in [40] was also used to choose the appropriate copula model. Neither the Joe copula in Regions I, III,
and IV nor the Gumbel copula in Region III was able to pass the Sn test at 90% significance level. Since
the difference in the Sn statistic between the six copula values was very small, additional AIC statistics
were also considered. Therefore, if the Sn statistics for the two copulas were the same, then the copula
having a lower value of AIC was preferred. The Gaussian copula was identified as the best copula for
Regions I and IV, and the Frank copula for Regions II and III are shown in Table 8 (bold). Estimated
parameters using the MPL approach for each copula family are also presented in Table 8.

Table 8. Goodness-of-fit test and parameters of the bivariate copula for both duration and severity.
The fitted copula is indicated in bold.

Region Copula Sn p-value AIC Parameter (`)

I

Student’s t 0.015 0.203 1962.910 0.904
Gaussian 0.006 0.910 1498.739 0.905
Clayton 0.013 0.470 1651.630 18.376
Gumbel 0.024 0.124 1607.415 1.952
Frank 0.006 0.847 1705.827 25.236

Joe 0.049 0.005 1963.757 1.957

II

Student’s t 0.015 0.282 517.169 0.895
Gaussian 0.011 0.619 516.446 0.896
Clayton 0.006 0.629 420.528 16.138
Gumbel 0.014 0.718 424.331 1.901
Frank 0.006 0.827 396.856 21.978

Joe 0.030 0.104 431.889 1.914

III

Student’s t 0.015 0.213 1783.290 0.907
Gaussian 0.013 0.371 1783.963 0.908
Clayton 0.006 0.441 1525.584 17.839
Gumbel 0.025 0.094 1462.539 2.029
Frank 0.006 0.856 1359.508 24.169

Joe 0.045 0.005 1567.173 2.061

IV

Student’s t 0.014 0.233 1102.463 0.923
Gaussian 0.005 0.928 834.423 0.924
Clayton 0.012 0.460 986.052 19.175
Gumbel 0.021 0.134 903.498 2.217
Frank 0.006 0.847 1010.155 25.908

Joe 0.042 0.015 1102.432 2.268

Overall, the AIC and Sn statistics indicate the different aspects of the model under study. The Sn

statistic was used as the formal hypothesis test, as a criterion to rank the copulas according to a
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predefined significance level, whereas AIC is a relatively simple likelihood criteria-based method,
where selection is only a matter of choosing the models with the lowest likelihood value. Results did not
show any significant correlation between the two statistical tests; this may be because the numerical
tests tend to narrowly focus on a particular aspect of the relationship between the empirical and
theoretical copulas, and often try to compress the information into a single descriptive number
(see e.g., [60]). The second reason is that the test has been successfully applied to at-site frequency
analysis, where the total sample size is very small compared to regional drought frequency analysis.
Large sample sizes can affect the performance of an Sn goodness-of-fit test statistic, as described in [39].
Comparing the method of computation, the p-value in the Sn test statistic is complicated to implement
and computationally intensive; however, the AIC has a relatively low computational cost.

Even though the AIC and Sn goodness-of-fit test statistics accepted the commonly used copulas in
drought studies, the graphical comparison of the empirical and theoretical copulas may not show good
agreement. Therefore, joint CDFs and PDFs for drought duration and severity were estimated using
the two best-fitted copulas (Gaussian and Frank) mentioned in Table 8, and are shown in Figure 9.
Joint CDFs in Figure 9 show the visual comparison between empirical and theoretical copula functions
for drought duration and severity. The red dashed contour line shows the empirical copula obtained
through Cn(u, v) = 1/n ∑n

i=1 1
(

Ri
(n+1) ≤ u, Si

(n+1) ≤ v
)

, where u, v ∈ [0, 1], Ri and Si denote the
ranks of the ordered sample. The solid contour line represents the theoretical copula. Results indicate
that the Gaussian and Frank empirical copulas from the Regions I and II, respectively, matched well
with the theoretical copulas.Water 2018, 10, x FOR PEER REVIEW  18 of 30 
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However, the Frank and Gaussian empirical copulas from Regions III and IV, respectively, showed
some deviations between the theoretical copulas, especially at low probability levels. This may
be due to discrete characteristics of drought duration and the relative low accuracy of marginal
distribution. Furthermore, the estimation of the probabilities of interest is affected by the majority of
“ties” (i.e., identical pairs of drought duration and severity) at the lower probability level. It can be
observed from Figure 9 that at high probability levels, all regions showed good agreement between
empirical and theoretical copula values. The upper and lower tail dependencies in the case of both the
Gaussian and Frank copulas is 0.

3.4. Conditional Probability

The copula-based joint distribution of drought duration and severity can provide very useful
information for regional drought management. For illustration, the probability when drought duration
and severity exceeds a threshold value, which can act as a special condition for a specific water demand
and supply system, and may help to propose drought mitigation plan in the region. This probability
can be easily derived with the help of copula-based joint distribution.

P(D ≥ d, S ≤ s) = 1− F(d)− F(s) + F (d, s) = 1− F(d)− F(s) + C(F (d), F(s) (13)

For example, if d = 3 months and s = 4, as the threshold condition for water demand and the
supply system of Region I, then the Kappa distribution would be F(d) = 0.67 and F(s) = 0.75 and
the Gaussian copula would yield F (d, s) = C(F (d), F(s) = 0.62. Therefore, the probability that
drought duration and severity exceeding three months and 2, respectively, will be equal to 0.20.
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Water resource managers are interested to know about the conditional probability
P
(
S ≤ s

∣∣D ≥ d′
)

of drought severity, given that drought durations exceeding the threshold values of
d′ can be computed using Equation (4), and the conditional probability P(D ≤ d|S ≥ s′) of drought
duration, given drought severity exceeding threshold values of s′, can be computed using Equation
(5). In this study, d′ and s′ took the threshold levels of the 25th, 50th, 75th, and 95th percentile,
shown in Figures 10 and 11. Both cases of conditional probability evaluated for the four regions
(P
(
S ≤ s

∣∣D ≥ d′
)

and P(D ≤ d|S ≥ s′)) showed an increasing trend in the skewness of the conditional
probability curves. Based on the computed conditional probability curves, water resource managers
can extract useful information; for example, in the case of Region IV, the probabilities for a drought
severity of less than 2 or 4, given a drought duration exceeding two months (50th percentile), will be
equal to 0.235 and 0.785, respectively (Figure 10). Similarly, the probabilities for a drought duration
less than two or four months, given drought severity exceeding 1.97 (50th percentile), will be equal to
0.331 and 0. 853, respectively (Figure 11).

Conditional probability curves also help us to evaluate and compare the drought risk between the
regions. For example, for a drought severity of less than 3, given a drought duration exceeding three
months (75th percentile), corresponding conditional probability (P

(
S ≤ s

∣∣D ≥ d′
)
) values estimated

for Regions I, II III, and IV are 0.532, 0.641, 0.612 and 0.596, respectively. This information can serve as
basis to evaluate the capability of water demand and the supply system when considering different
drought events, and can be used to trigger a drought contingency plan on regional scale.Water 2018, 10, x FOR PEER REVIEW  20 of 30 
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50th, 75th, and 95th percentile) for Regions I, II, III, and IV.
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Figure 11. Conditional probability curves P(D ≤ d|S ≥ s′) of drought duration given drought severity
exceeding certain thresholds s′ (s′ indicate the threshold levels of severity at the 25th, 50th, 75th,
and 95th percentile) for Regions I, II, III, and IV.

3.5. Stochastic Simulation of Copulas and Bivariate Return Periods

The simulation of the copulas was performed using 5000 random samples generated from the
Gaussian copula for Regions I and IV, and from the Frank copula for Regions II and III, as presented
in Figure 12. It can be observed that the simulated data (grey dots) for all regions fitted well with
the observed data (red dots) of drought variables. A large number of “ties” (i.e., identical pairs of
drought duration and severity) were observed at drought durations of one and two months, and the
concentration of observed data decreased with an increase in drought duration. Simulated drought
data also showed a similar trend, as it closely resembled that of the observed sample. Pearson’s r,
Kendall’s τ, and Spearman’s rank ρ correlation coefficients of simulated drought data for Region I
were 0.913, 0.748 and 0.916, respectively; for Region II they were 0.910, 0.839, and 0.967, respectively;
for Region III, they were 0.925, 0.846, and 0.970, respectively; and for Region IV they were 0.914, 0.749,
and 0.916, respectively. Among the three correlation coefficients, Kendall’s τ showed more variation
from one region to another. Figure 12 shows that the simulated data tend to concentrate along the main
diagonal with the higher Kendall’s τ value (Regions II and III, with Kendall’s τ values of 0.839 and
0.846, respectively), and tend to disperse along the main diagonal with the lower Kendall’s τ value
(Regions I and IV with Kendall’s τ values of 0.749 and 0.748 and, respectively). This shows that the
behavior of a bivariate drought sample may change when the degree of association (e.g., Kendall’s
τ) between the variables is considered. These results are in accordance with the findings of [61] by
using Frank and Gumbel copulas. The contour lines of joint return (standard) periods for 5, 10, 20,
50, 100, 200, and 500 years, computed using Equation (9), are shown in Figure 12. Since the different
combination of the correlated drought variables (duration and severity) can occur at the same time,
the return periods are shown using contour lines, together with observed and simulated samples.
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In drought frequency analysis, the droughts of longer duration and highest severities were
always more important, because they can affect water resource planning and may pose a high risk to
agriculture. Therefore, historical long-lasting drought events were identified for each region. In the
case of Region I, the longest drought event recorded among 55 stations lasted for 13 months (Table 3),
at Jecheon station. It lasted from April 2008 to April 2009, with the corresponding severity of 16.04;
the joint return period of this event is more than 1000 years. The second longest drought event was
recorded at Suncheon and Miryang stations, with the duration of 10 months, from April 1988 to January
1989; their corresponding severities were 16.98 and 16.46, respectively, and the joint return period
was closer to 500 years. Simultaneous occurrence of drought events was observed at both stations,
and surrounding stations may have similar precipitation patterns.

In case of Region II, the two longest drought events had a duration of 12 months and 10 months,
recorded at Yeongju station and Geochang station, respectively. The first lasted from March 1982 to
February 1983, and the second from July 2008 to April 2009, and their corresponding severities were
22.30 and 21.50, respectively. In the case of Region III, the three longest drought events had an identical
duration of 10 months, recorded at both Seoul and Incheon stations from March 2014 to December 2014,
and at Buan station from April 1988 to January 1989; their corresponding severities were 15.44, 12.94,
and 16.00, respectively, and their joint return periods were less than 500 years. Drought events at Seoul
and Incheon stations occur simultaneously because of the possibility of having similar precipitation
patterns at adjacent stations (Figure 1). In the case of Region IV, the two longest drought events were
recorded at Ganghwa and Mungyeong stations, from March 2014 to January 2015 and from March
1982 to December 1982, respectively, with the severities of 20.01 and 16.15, respectively; their joint
return periods were nearly 200 and 500 years, respectively.

Since extreme drought events are more of a concern in drought frequency analysis, only droughts
of the longest duration and highest severities were selected for spatial representation of drought risk
maps. In this study, the drought events with D ≥ 6 months and S ≥ 6.5 were considered, being the
droughts of longest duration and highest severities. This criterion was chosen because agriculture and
surface water supplies are likely to be affected after six months. Additionally, this criteria was also
recommend in previous studies [62]. On the basis of the copula-based bivariate drought return period,
the associated drought risk (R) can be computed using the equation R = 1− (1− 1/ŤD, S)

N [63],
to impose the probability of extreme drought with a ŤD, S year return period for N years of life span .
Figure 13 indicates spatial patterns of the regional drought risks, using the ŤD, S observed at each site
for the life spans of 10 and 50 years. In Figure 13, green, yellow, and red colors indicate the areas of
low, moderate, and high drought risks, respectively, and their values vary from 0 to 1. The drought
risk map for N = 10 years shows low or nearly moderate drought risk, except on the southwestern
coast (areas surrounding Jangheung, Goheung, Wando, and Mokpo stations) and the east coast (Uljin
and Yeongdeok stations) of South Korea (Figure 13a). In case when the N = 50 years, most of the areas
fall under the category of moderate and high drought risk, except for the area surrounding Yeongju,
Mungyeong, Ganghwa, and Chuncheon stations (Figure 13b). Consequently, those regions which
are located at the southern (Region I) and eastern coast (Region IV) of South Korea are under high
drought risk, compared to other regions. This may be due to changes in precipitation patterns caused
by the “Changma front”; thus, the rainy season becomes short, but the amount of the rainfall and the
number of heavy rainfall days have increased at the southern and eastern coasts of South Korea [20,64].
Precipitation trend analysis showed the decline in annual mean precipitation on the southwest coast
of South Korea [21], which is therefore more vulnerable to drought risk. Kim et al. [3] showed that
extreme historical drought events mostly occurred in the central and southern regions of South Korea.
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3.6. Comparison of the Bivariate Return Periods

Comparison of multivariate drought frequency analysis was performed using the best-fitted
copulas for each region (Table 9). T̂D, S (“and”), ŤD, S (“or”), T∗D, S (Kendall’s), and TD|S ≥ s, TS|D ≥ d
(conditional) joint return periods were computed for the duration of 2, 5, 10, 20, 50, 100, 200, 500, and
1000 years for the four regions, accounting for the bivariate drought properties (Table 9). T̂D, S, ŤD, S,
T∗D, S, TD|S ≥ s, and TS|D ≥ d were computed using Equations (8)–(12), respectively. Since the primary,
secondary, and conditional return periods explain the different situations, the preference of the return
period may change, based on what type of drought risk needs to be evaluated for the area under study.
The different levels of drought risks can be used to assess the malfunction of a specific water demand
and supply system. For example, a particular water demand and supply system in Region I may be
unable to supply water under a condition of drought severity exceeding 5.67, given a drought duration
exceeding 4.41 months. The return period in this situation will be equal to 30.16 years, computed using
Equation (12).
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Table 9. Comparison of univariate and bivariate return periods of drought characteristics for all Regions.

Region T D S T̂D, S ŤD, S TS|D ≥ d TD|S ≥ s T∗D, S

I

2 1.51 2.20 2.24 1.49 3.38 4.92 1.79
5 4.41 5.67 6.84 3.89 30.16 38.78 4.91

10 5.46 6.15 6.46 5.24 35.25 39.71 5.75
20 6.51 7.51 8.04 6.16 52.31 60.37 7.43
50 7.68 8.98 9.58 7.29 73.56 86.07 8.52
100 8.50 9.65 9.95 8.28 84.56 96.04 9.14
200 9.17 10.72 11.59 8.62 106.18 124.24 10.01
500 9.97 11.90 14.06 8.83 140.14 167.32 12.23

1000 10.30 12.60 15.76 8.85 162.31 198.58 13.91

II

2 1.54 2.49 2.49 1.54 3.85 6.22 1.96
5 4.23 4.94 5.43 3.92 22.99 26.83 4.12

10 5.52 6.42 6.92 5.20 38.22 44.48 5.91
20 6.73 7.58 7.71 6.63 51.88 58.41 7.05
50 7.35 8.44 8.85 7.06 65.03 74.67 8.01
100 8.49 9.65 10.19 8.11 86.48 98.37 9.25
200 9.22 10.98 11.17 9.09 103.03 122.68 10.21
500 10.07 12.01 13.04 9.45 131.32 156.58 10.32

1000 10.28 13.12 14.00 9.80 143.95 183.73 12.52

III

2 1.52 2.36 2.36 1.52 3.58 5.56 1.83
5 3.97 5.07 5.31 3.84 21.10 26.92 4.52

10 5.88 6.91 7.00 5.82 41.15 48.33 6.55
20 6.86 7.62 8.21 6.45 56.32 62.49 7.14
50 7.68 8.64 8.85 7.53 67.95 76.46 8.01
100 8.31 10.55 10.98 8.07 91.26 115.80 9.52
200 9.44 11.31 11.97 9.02 112.99 135.42 10.85
500 10.09 11.99 13.23 9.35 133.40 158.60 11.88

1000 10.25 13.02 15.13 9.23 155.01 196.91 13.45

IV

2 1.29 2.36 2.35 1.29 3.03 5.54 1.62
5 5.08 5.77 6.08 4.87 30.88 35.05 5.01

10 6.29 7.17 8.46 5.55 53.24 60.65 6.72
20 8.21 8.02 9.58 7.03 78.61 76.77 8.21
50 8.36 9.24 11.21 7.22 93.72 103.59 9.85
100 9.18 10.75 13.90 7.69 127.55 149.43 11.01
200 9.86 11.51 14.68 8.32 144.81 169.00 12.91
500 10.91 12.95 17.04 9.07 185.90 220.74 14.75

1000 11.72 13.80 19.24 9.45 225.48 265.50 16.37

Table 9 shows the difference in the return period, according to the considered type of risk.
For example, for Region I, at a univariate return period of 100 years, the values of drought duration
and severities are 8.50 months and 9.65, respectively. However, joint bivariate return periods of drought
variables show the return period being 9.95 years for T̂D, S (D ≥ 8.50 and S ≥ 9.65) and 8.28 years for
ŤD, S (D ≥ 8.50 or S ≥ 9.65). Similarly, conditional and secondary return periods for TD|S ≥ s, TS|D ≥ d,
and T∗D, S are 96.04, 84.56, and 9.14 years, respectively. Furthermore, Table 9 shows that Kendall return
periods T∗D, S are always greater than the ŤD, S return periods and smaller than the T̂D, S return periods.
ŤD, S is always smaller than T̂D, S because the probability of occurrence of two cases simultaneously is
always smaller than when only one of the two cases occur. The results match well with the finding
of [61]. Moreover, it is noticed that the difference between T∗D, S and ŤD, S increases with an increase
in critical probability level t. Results showed that conditional return periods TD|S ≥ s and TS|D ≥ d
are always greater than the primary and secondary return periods T̂D, S, ŤD, S, and T∗D, S, and the
conditional return period TD|S ≥ s was greater than TS|D ≥ d. However, direct comparison of different
return periods is a difficult task, because each type of return period has a different physical meaning in
drought risk analysis.
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4. Conclusions

In the presence of complex topographical and climatic features of South Korea, precipitation varies both
in space and time. Therefore, drought is becoming a frequently-occurring phenomena in different parts
of the country. Droughts are recognized as the main obstacle to effective water resource management
and planning. Regionalization of drought events (extracted using SPI-6) is performed using the
HCPC algorithm (a blend of Ward’s classification and PCA approach) and bivariate homogeneity tests.
Results of bivariate regionalization of drought showed that the whole of South Korea can be divided
into four homogeneous regions, which have been tested to be robust. In drought frequency analysis,
the lack of lengthy records reduces the reliability of quantile estimation. To overcome this problem,
regional frequency analysis of drought on a multivariate framework was performed for the four
identified homogeneous regions. Various probability distributions were tested and evaluated, using
both quantitative (Z-statistic) and qualitative (visual comparison) goodness-of-fit tests, in order to fit
drought duration and severity for all regions. Dependence structures between drought variables were
assessed, using various graphical diagnostic tools and correlation coefficients. For the construction
of joint distributions between drought variables, best-fitted copulas were identified on the basis of
goodness-of-fit test statistics (Sn and AIC), and the visual comparison between empirical vs theoretical
values. Potential drought risks for all regions across South Korea were evaluated and compared
through primary, secondary, and conditional types of joint return periods. The primary conclusions
determined from this study are as follows:

1. The spatial distribution of mean drought duration and severity from 1980 to 2015 indicates that
the droughts of longest duration and highest severities were recorded at southwestern coastal
areas of South Korea, which is due to the unusual precipitation patterns along the coast.

2. The Z statistics and L-moment ratio diagram suggested that among the five candidate
distributions evaluated for both drought duration and severity, only the PE3 distribution fits
better for the drought severity of Regions II, III, and IV. All regions of drought duration showed
poor fit because of a large number of ties, especially at short drought durations. Therefore, a more
general and robust Kappa distribution model was used instead for the regions having higher Z
statistic values (>1.64). The further evaluation of the selected probability distributions, using a
visual comparison between empirical and theoretical probabilities, showed that PE3 and Kappa
distributions are better able to simulate the drought variables across the region.

3. Results of Chi plot, Kendall plots, Pearson’s r, Spearman’s ρ and Kendall’s τ correlation
coefficients showed the significant positive dependence between the drought variables, and thus
indicate the suitability of drought variables for joint modeling.

4. Goodness-of-fit statistics (Sn and AIC), based on Rosenblatt’s transformation and visual
comparison between empirical and theoretical copula functions, indicate that among six copulas,
the bivariate Gaussian copula is better able to simulate the drought variables for Regions I and IV,
and the bivariate Frank copula for Regions II and III.

5. Evaluation of best-fitted copulas by comparing observed and simulated random samples
(5000 samples), showed fairly good agreement. It is noticed that Kendall’s τ is more sensitive
to drought variables as compared to Pearson’s r and Spearman’s ρ correlation coefficients,
as Kendall’s τ varies significantly from one region to another. Furthermore, the structure of
the simulated data changes, according to the degree of association (e.g., Kendall’s τ) between
drought variables.

6. The drought risk maps derived for 10 and 50 year life spans, using the droughts of longest
duration and highest severities, showed that the southwestern coast and eastern coastal areas are
under high drought risk, and that inland mid-latitude areas (areas surrounding Yeongju station)
and northwestern parts are under low drought risk. This is due to the effect of monsoons to the
summer precipitation patterns and convective system within the air mass on the southern and
eastern coast of South Korea.
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7. Comparison between the different types of return periods showed that secondary return periods
T∗D, S are always greater than the ŤD, S return periods and smaller than the T̂D, S return periods,
and ŤD, S return periods are always smaller than T̂D, S return periods. Moreover, conditional
return periods TD|S ≥ s and TS|D ≥ d are always greater than the primary return periods T̂D, S and
ŤD, S, and the secondary return period T∗D, S. Since each type of return period explains a different
situation, the preference of the return period may change based on type of drought risk that
needs to be evaluated for the area under study.
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