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Abstract: In this study, we assess the costs and benefits of dynamic management of water storage
to improve flood control in a system of wetlands. This management involves releasing water from
wetlands ahead of (e.g., a few hours or days before) a rainfall event that is forecasted to produce
flooding. Each project site may present different challenges and topographical conditions, however
as long as there is a relatively small hydraulic gradient between the wetland water surface and the
drainage ditch (e.g., >0.9 m), wetlands can be engineered for the purpose of flood control. We present
a case study for a system comprised of four wetland areas encompassing 925 acres in the coastal
plain south of Houston, Texas. The benefit–cost analysis shows that, in general, the benefits of
wetland ecosystems far surpass the costs of construction and maintenance for all considered periods
of analysis and assumed degrees of dynamic management of wetland storage. The analysis also
shows that the benefit/cost ratios increase over the period of analysis. Considering flood protection
only (e.g., not considering the value of other ecosystem services), as long as dynamic management
of wetland storage increases flood protection by about 50% compared to that with no management
(e.g., a typical wetland with no controlled release of water), the construction of a wetland system
would have a benefit/cost ratio of at least 1.9.

Keywords: active control; culvert flow; flooding; optimization; wetland; wetland management

1. Introduction

Multi-mitigation projects within the context of a watershed approach have been receiving
increasing attention in the last few decades [1,2]. In the watershed approach, the entire watershed
becomes the objective of management so that for example human activities (e.g., land development)
upstream can be associated to inundation in a downstream area (e.g., [2]). It has been recognized that
within a watershed, wetlands can play a significant role in flood control, while providing other benefits
such as creating habitats for flora and fauna, improving water quality, and providing opportunities
for recreation and public appreciation (e.g., [3–14]). It is recognized that wetlands can help in flood
reduction by storing, holding, and percolating water [4,7], however their effectiveness is constrained
due to their limited storage capacity and the fact that some or all of this capacity may be occupied
when a flood is imminent. The Galloway report [15] suggests that upland wetlands could be effective
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for containing smaller floods, but decrease in effectiveness for larger floods. One strategy for increasing
the effectiveness of wetlands for larger floods could be to release part of the water ahead of (e.g., a few
hours or a couple of days before) heavy rainfall so that as much of the wetland volume as possible is
made available for flood control.

Many wetlands naturally have a variable hydroperiod, so their function is not necessarily reduced
by partial draining. If draining is complete, however, species that require standing water, such as fish,
will be eliminated. Moreover, if a wetland is mostly drained to low water levels in anticipation of
a storm and the storm does not materialize, the wetland will be at risk of drying out completely in
the following days due to natural evapotranspiration. Thus, draining involves some risks, which can
be minimized by not draining the wetlands fully, and by draining only when the certainty of rain
events is very high, which may be achieved in the best of cases a few hours or days in advance of
a predicted storm.

The work presented herein addresses part of a larger topic which is to dynamically manage
the water storage of a system of interconnected wetlands for flood reduction. The authors refer
to dynamic water storage management as the controlled release of water from wetlands ahead of
large storm events that are forecasted to produce flooding. In this way, wetland storage can be
made available for the storm event and hence reduce flooding. The design of a wetland involves
multiple components such as vegetation selection, soil media improvement, basin size selection,
hydrological, sedimentation and topographical considerations, etc. The reader is referred to [16–18] for
a discussion on the latter considerations. Moreover, a system of interconnected wetlands could consist
of any combination of natural wetlands, constructed wetlands, flood control structures, and accidental
wetlands. Different engineering and ecological issues would apply for each type of wetland. The scope
of this paper is limited to the benefit–cost analysis of dynamic management of water storage in a system
of wetlands for improving flood control. This paper is organized as follows. Firstly, the setup of
a hypothetical wetland system located on the grounds of the University of Houston Coastal Center is
described. Secondly, the hydraulics of the drainage of the hypothetical wetland system are presented.
Thirdly, a multi-objective optimization model is combined with the hydraulics model for the optimal
selection of piping for the drainage of the wetland system. Fourthly, the benefit–cost analysis is
discussed. Finally, the key results are summarized in the conclusion.

2. Case Study

The Coastal Plains in Texas, where the city of Houston and most other densely populated cities
in the State are located, encompass about two-fifths of the Texas land area and are essentially flat,
low prairies that stretch inland from the Gulf Coast [19]. To show that wetlands can be engineered for
flood control even in relatively flat areas, our case study was selected in a coastal plain area. This case
study, which is shown in Figure 1, takes place in a 925-acre field station located at the University of
Houston Coastal Center (UHCC), 30 km south of metropolitan Houston and 22 km north of the Gulf
of Mexico. Water draining from the site enters Highland Bayou, and ultimately flows into Galveston
Bay. The 925-acre site was virtually engineered to create four wetlands and their ancillary components
(e.g., drainage) as shown in Figure 2. A three-dimensional sketch of the UHCC wetland system after
virtual modification is shown in Figure 3.

2.1. Geomatic Considerations

To enable a realistic earthwork grading analysis for the construction of the wetland system in the
UHCC, a high-resolution topographic map of the site was derived from a high-resolution terrain model
acquired using airborne Light Detection and Ranging (LiDAR), also known as airborne laser swath
mapping [20]. The LiDAR data is publicly available through the Texas Natural Resources Information
System (https://tnris.org/), and was acquired in 2008 for producing 1-ft elevation contours for Harris
County, TX. Although the LiDAR data is almost 10 years old, there have been minimal changes in the
UHCC landscape and therefore the model accurately represents existing conditions.

https://tnris.org/
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To build a representative wetland water storage system, it was desirable to both maximize
the water volume storage of the system, and almost balance the amount of cut and fill required
at the site to ensure that all required soil would be available at the site. Therefore, an iterative
approach was implemented to alter the landscape to produce the wetlands to fulfill these major
criteria. While manually iterated for this demonstration, this analysis could be automated for
future applications.
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Figure 1. Google Earth view of the University of Houston Coastal Center (UHCC), southeast of
Houston, Texas, United States.
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Figure 2. Plan view of the UHCC wetland system before (left) and after being virtually modified (right).

 

Figure 3. A three-dimensional (3D) sketch of the UHCC wetland system after being virtually modified.

The earthworks required for constructing the UHCC wetland system are shown in Table 1.
As shown in this table, the total cut is slightly greater than the total fill, which means that all the fill
needed is generated on site.
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Table 1. Wetland geometric characteristics and earthwork volumes required for constructing each of
the wetlands.

Wetland
Bottom Water Surf. Surface Storage Cut Fill

Elevation Elevation Area Volume Volume Volume
(m) (m) (m2) (m3) (m3) (m3)

1 3.6 4.4 972,500 760,000 122,000 69,000
2 4.4 5.2 654,000 515,000 73,400 115,400
3 3.8 4.6 440,000 340,000 178,200 25,500
4 4.8 5.6 554,000 430,000 21,500 180,500

2.2. Environmental Considerations

What types of wetlands would be available for projects like this, and what are the environmental
concerns with respect to using them? A typical urban area is likely to have a mixture of remnant
natural wetlands, constructed artificial wetlands meant to mimic natural wetlands, artificial flood
control structures such as detention ponds, and “accidental wetlands” that form as an unintended
consequence of land use and water infrastructure decisions [21,22]. All of these could be incorporated
into an engineered network such as the one described here, but different political and environmental
considerations would apply. In particular, the natural and artificial wetlands are likely to have the
most ecological value, while being the most politically sensitive and subject to the greatest level
of regulation.

All natural systems are inherently variable over time [23]. Shallow depressional wetlands are
particularly variable, because their primary source of water is rainfall, which occurs intermittently,
and because they are shallow enough that they can dry out completely during periods without
rain [24]. This variability is described by the hydroperiod—a record of water depth over time. There is
a fundamental ecological distinction between wetlands that retain some water year-round, and those
that dry out periodically, because only the former support long-lived aquatic animals such as fish,
as well as wetland amphibians and invertebrates, which are important predators [25,26]. Among
wetlands that dry out periodically, ones that stay wet for longer periods (a long hydroperiod) can
support amphibians and insects with aquatic life stages that require water for weeks or months at a time,
and tend to support obligate aquatic plants. At the dry extreme, wetlands that are flooded for only
short periods of the year (a short hydroperiod) support primarily facultative wetland animals and plant
species that benefit from or can tolerate occasional flooded conditions but do not require them most
of the year [27–29]. These considerations suggest that intervention in natural and artificial wetlands
should be cautious so that the characteristics of the natural hydroperiod are retained. In particular,
if a wetland supports fish, it should be drained only partially and only when imminent rainfall is likely
to refill the wetland and reduce the risk that it completely dries out. In contrast, the hydroperiods
of wetlands that naturally dry out periodically can be manipulated more aggressively in advance
of a storm without markedly changing the ecological function of the wetland. Even for temporary
wetlands, a dramatic shift in the hydroperiod will lead to a shift in plant and animal composition.
The hydroperiod naturally varies among years due to variations in precipitation [30], however, changes
to the hydroperiod in a single year (for example due to draining a wetland in advance of a storm that
fails to materialize) may not change the long-term ecological function of the wetland as long as the
altered hydroperiod does not fall outside the long-term distribution of historical hydroperiods for the
area. Most interestingly, because the hydroperiod of detention ponds and accidental wetlands may not
match the hydroperiod of natural wetlands in a particular geographic area (in particular, detention
ponds are often engineered to dry completely between storms—a very short hydroperiod—and as such
provide low ecological function), the possibility exists that extending the hydroperiods of these habitats
towards a more natural regime using water control techniques such as that described here would
allow these habitats to achieve a higher ecological value than they currently provide. Finally, one of
the important ecological “disservices” provided by temporary wetlands to humans is the support
of mosquito populations. The ability to control the hydroperiod of a wetland could potentially be
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used to help control mosquito populations by creating hydrological conditions amenable to native
predators of mosquitoes, unsuitable to mosquito larvae, or unsuitable to wetland vegetation preferred
by mosquitoes [31,32]. Similarly, freshwater wetlands produce methane, a potent greenhouse gas,
and it is possible that the hydroperiod could be manipulated to maximize ecological benefits while
minimizing methane production. These considerations are beyond the scope of this paper, but would
merit attention in future work to optimize water regulation decisions.

Historically, the Texas coast supported extensive complexes of prairies and depressional wetlands
referred to as “potholes” [33]. Potholes filled with water seasonally during periods of heavy rain,
and the duration of flooding varied from weeks to months as a function of pothole size and geographic
location [33]. Potholes provided habitat for a variety of reptiles, amphibians, mammals, and resident
and migratory birds, and also stored vast amounts of water during rainy periods [33]. Because most
were not continuously flooded, there is considerable latitude to manage their hydroperiod without
markedly altering their ecological function. Depressional wetlands in the United States in general
and along the Texas coast in particular have greatly decreased in area over the past century due
to a land use change to agriculture and urban sprawl [34,35]. Urban areas in particular have lost
surface water features [21]. As a result, both natural habitat and flood protection have been lost.
Although depressional wetlands are geographically isolated [34], they are hydrologically connected
by surface runoff through intermittently flowing channels during periods of heavy precipitation [36].
Thus, these natural wetlands historically functioned as a connected network of flood retention basins,
but not necessarily in a manner that was optimized for flood control.

Historically, the site of our case study (the UHCC) would have been dominated by coastal prairie;
today, it is a mixture of prairie and forest. For illustrative purposes, we assumed that the entire site
would be available for the purpose of creating a network of artificial wetlands with the primary goal
of flood control. The artificial wetlands would provide a variety of additional services beyond flood
control, including trapping of sediments and nutrients, and providing habitat for wildlife. If the project
sought to create a semi-natural landscape that would balance flood control with these other ecosystem
services, the proportion of a site converted to wetlands would probably be closer to the historical value
of 30% ([33]). Examining the tradeoffs between these potential services and how this would affect the
exact proportion of land devoted to wetlands is beyond the scope of this paper.

2.3. Simulated Scenario

It is clear that each project site may have specific challenges and different topographical conditions,
however as long as there is a relatively small hydraulic head (e.g., >0.9 m) between the wetland water
surface and the discharge point or drainage ditch, wetlands can be engineered for the purpose of
flood control.

As shown in Figure 4, the simulated scenario assumes that the four interconnected wetlands have
a single discharge to the most downstream lateral ditch. Because the edge habitat between the water
and terrestrial habitats is ecologically important, we assume that each wetland would have several
engineered one-acre islands—in this case these reduce the maximum water volume of the wetlands by
1.5% but provide additional edge habitat and create 14 acres of upland habitats protected by water
from terrestrial predators. The plan view of the islands is shown in Figure 5.

Figure 4 depicts the layout of the “flood” and “overflow” pipes as well as the remotely operated
gates. The “flood” pipes are intended for releasing water ahead of (e.g., a few hours or days before)
a heavy rainfall event that is forecasted to produce flooding. This water release is performed using
remotely controlled gates. It is expected that remote operation of gates will be necessary because
the use of wetlands for flood control requires a relatively large surface area, necessitating the spread
of multiple wetlands over a large geographic area. To make this remote operation of gates/valves
possible, a control system similar to the Supervisory Control and Data Acquisition (SCADA) system
could be used (e.g., [37]). An “overflow” pipe releases the water that exceeds the maximum water
level in the wetland which in this case is 0.15 m below the top of the wetland berm. As can be observed
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in Figure 4, the “flood” and “overflow” pipes are connected downstream of the respective remotely
operated gate. The intake for the “flood” pipe is considered to have a five-way inlet to avoid inlet
control. As discussed in [38], inlet control conditions may occur for inlets that significantly restrict
the flow. Furthermore, because natural and most artificial wetlands are restricted to shallow water
depths and small hydraulic heads (e.g., the difference between upstream water surface elevation and
downstream discharge elevation), a single intake for both pipes (“flood” and “overflow”) would not
work for shallow water depths. Thus, a separate intake is used for the “flood” and “overflow” pipes.

1751 m

1500 m

N Wetland berm

W4 W2

W1

W3

Plan view of UHCC wetland
system for scenario 2

Overflow
pipe
intake

Overflow
pipe

Drainage ditch

Remotely
controlled
gate

Flood
control pipe

A A

E
E

B B

C
C

Flood control
pipe intake

Figure 4. Layout of drainage. Note that wetland 1 (W1) receives the water from wetlands 2 (W2) to
4 (W4). Then the combined water is discharged to the existing lateral ditch at a single discharge point.

1751 m

1500 m

N Wetland berm Existing ditch
1-acre
Terrestrial islands

Plan view of UHCC wetland
system for islands only

D D

W4
W2

W1

W3

Figure 5. Plan view of the four wetland system displaying the 14 one-acre terrestrial islands intended
as an ecological habitat. This plan view does not show the drainage system.
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The wetland overflows are cascaded from the most upstream wetlands to the most downstream.
To provide further details on the wetland drainage, Figures 6–10 show sectional views A-A, B-B,
C-C, D-D and E-E, respectively, indicated in the above plan views (Figures 4 and 5). Figure 6 shows
the intake for the “flood” pipe. As can be observed in this figure, the invert elevation of the intake
for the flood pipe is 0.15 m above the wetland bottom, which prevents the wetland from draining
completely even if the remotely controlled drainage system is set to release as much water as possible.
If the wetland does not receive new water inputs, however, it will then be vulnerable to drying out
completely due to evapotranspiration. Also, as observed in Figure 6, a sediment trap with a minimum
surface area of 25 m2 and a depth of 0.15 m below the wetland bottom is located right upstream of the
flood control pipe intake. The sediment trap should be accessible to heavy machinery so that it can
periodically be scraped out and accumulated sediment moved to a suitable disposal site—either to
a berm or (if it is heavily polluted) a landfill. The benefit of the sediment trap is to reduce clogging
of the flood control pipe intake. Another benefit is improved water clarity and (if the sediment is
polluted) improved water quality. Figure 7 shows the intake for the “overflow” pipe. As shown in
this figure, the invert level of the intake for the overflow pipe is 0.15 m below the wetland top berm.
Figure 8 shows the intake for the “flood” and “overflow” pipes in a perpendicular view to that of
sections A-A (Figure 6) and B-B (Figure 7). This figure also shows the elevations of the inverts of
the intakes of both pipes, and the bottom elevation of the “flood” and “overflow” pipes. In addition,
Figure 9 shows the side view of the one-acre terrestrial island while as Figure 10 shows the side view
of flow discharge from the downstream wetland to the drainage ditch.

20 20

1 1

Wetland top berm

Remotely
controlled
gate Flood control

pipe intake

Wetland
bottom

Section A-A

90º elbow

Sediment trap

0.8 m

0.15 m

0.15 m

5 m (min)

Figure 6. Cross-sectional view A-A. This section shows the intake for the “flood” pipe.

20 20

1 1

Wetland top berm

Section B-B

Reducer
coupling

90º elbow

Overflow
pipe intake

0.8 m

0.15 m

Tee

Figure 7. Cross-sectional view B-B. This section shows the intake for the “overflow” pipe.
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Wetland top berm

Flood control
pipe intake

Wetland
bottom

Section C-C

Reducer
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Overflow
pipe intake

0.15 m

0.65 m

0.15 m

Figure 8. Cross-sectional view C-C. This section shows the intake for the “flood” and “overflow” pipes.

0.8 m

SECTION D-D

Wetland berm
1-acre
Terrestrial island

20
1

20
1

20
1

0.15 m

Figure 9. Cross-sectional view D-D. This section shows the side view of the one-acre terrestrial island.

0.8 m
Flood control pipe

Wetland berm

Existing ditch

Flood control
pipe intake

Remotely
controlled gate

SECTION E-E

20
1

0.15 m

Sediment
trap

0.15 m

5 m ( min)

Figure 10. Cross-sectional view E-E. This section shows the side view of flow discharge from the
downstream wetland to the drainage ditch.

The data for the simulated scenario are presented below.

1. The tailwater elevation for the flood pipe(s) at wetland 1 is below the outlet invert of the
flood pipe(s).

2. The drop height between the inlet and outlet inverts (LS) is set to 0.5 ft (0.15 m) for all flood pipes.
3. The length (L) for all “flood pipes” is 400 ft (121.9 m).
4. The soil cover height over the pipe crown (hp) is set to 1.25D, where D is the pipe diameter.
5. The surface area (Aw) values of wetlands 1 to 4 are 240.31 acres (972,500 m2), 161.61 acres

(654,000 m2), 108.73 acres (440,000 m2), and 136.90 acres (554,000 m2), respectively.
6. The vertical distance from the invert of the five-way flood pipe intake to the bottom of the wetland

(hs) is set to 0.5 ft (0.15 m).
7. The Manning’s roughness (n) for all “flood pipes” is set to 0.009.
8. The entrance loss coefficient (ke) for the intake of all “flood pipes” is set to 0.8.
9. The initial water depth measured above the invert of the five-way flood pipe intake (h) for all

wetlands is set to 2 ft (0.61 m).
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2.4. Hydraulics of Simulated Scenarios

The water balance equations for the four-wetland system (i = 1, 2, 3 and 4) can be written as:

∑ Ii −∑ Oi = Awi

(
∆hi
∆t

)
(1)

where ∑ Ii and ∑ Oi are the sums of inflows and outflows at wetland i, respectively, Aw is the wetland
surface area, t is time, and h is the wetland water depth measured above the invert of the flood pipe
intake. To release large volumes of water in a short time period, parallel pipes of the same diameter
may be needed in a wetland. Herein, the number of parallel pipes at wetland i is denoted as mi. In
a similar way to [38], the energy equation for the four flood pipes (i = 1, 2, 3 and 4) can be written as:

HWi + LSi = hoi +
A3

ci

2Tci A
2
i

[
1 + kei +

Kun2Li

R1.33
i

]
(2)

where HW is the headwater depth above the entrance invert, LS is the drop height between the inlet
and outlet culvert inverts, ke is the entrance loss coefficient, n is the Manning’s roughness coefficient, L
is the pipe length, R is the pipe hydraulic radius, Q is the flow discharge, A is the cross-sectional area
of the pipe, Ku is a constant equal to 29 in English units (19.63 in SI), Ac is the critical flow area, and Tc

is the critical flow surface width. hoi (i = 1, 2, 3 and 4) is given by:

ho1 = max
(hc1 + D1

2
, TW

)
(3)

ho2 = max
(hc2 + D2

2
, HW1

)
(4)

ho3 = max
(hc3 + D3

2
, HW1

)
(5)

ho4 = max
(hc4 + D4

2
, HW2

)
(6)

where hc is the critical depth, D is the pipe diameter, and TW is the tailwater depth above the outlet
invert. In a similar way to [38], Equation (2) is solved for the respective critical depths, which in turn
can be used for calculating the outflows in pipes 1 to 4 using the following equation:

Qi =
√

gA3
ci /Tci (7)

It is noted that the total outflow at wetland i (∑ Qi) would be given by miQi. Once the outflows
have been determined, the water depth in wetlands 1 to 4 at the new time can be updated as follows:

ht+1
1 = ht

1 +
∆t

Aw1
(∑ Qt

2 + ∑ Qt
3 −∑ Qt

1) (8)

ht+1
2 = ht

2 +
∆t

Aw2
(∑ Qt

4 −∑ Qt
2) (9)

ht+1
3 = ht

3 +
∆t

Aw3
(−∑ Qt

3) (10)

ht+1
4 = ht

4 +
∆t

Aw4
(−∑ Qt

4) (11)

The above process is repeated for the entire simulation period.
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2.5. Time Step Convergence of Wetland Drainage Model

Various time steps, ranging from 1 s to 3600 s, were used for analyzing the time step convergence
of the wetland drainage model. In the simulations, the releasing time was fixed to 3 h and the number
of 24 ′′ (610 mm) pipes in wetlands 1 to 4 were fixed to 3, 1, 1, and 1, respectively. This arrangement
corresponds to one of the set of optimal solutions obtained using the optimization model described in
Section 2.6. The results of time step convergence for the percentage of water released from the wetlands
is shown in Figure 11. As can be observed in this figure, the model achieves time step convergence for
∆t of about 200 s or smaller. For the remaining simulations of this paper, a time step of 100 s was used
to ensure that the results are time-step independent.
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Figure 11. Percentage of water released from the wetlands versus time step.

2.6. Optimal Number of Pipes for Each Wetland

The non-dominated sorting genetic algorithm [39] was used as the optimization model for
determining the optimal diameters of the flood pipes. A population of 100 and a generation of 500
was used in the case study. Other parameters, such as crossover rate, were selected to be the same
as in the study of [39]. Two objectives were considered in the optimization. The first objective was
to minimize the cost of the flood pipes and automated gates. The second one was to maximize the
conveyance capacity of the flood pipes. It is clear that these objectives conflict with each other and
the optimal trade-off is a desired result for the design. The wetland hydraulics model, which was
described earlier, was used for evaluating the objectives in the optimization model. In the optimization
model, the number of 24 ′′ flood pipes for the four wetlands are the decision variables. In our case
study (a system comprised of four wetland areas), the number of decision variables is 4. It is noted that
different combinations of numbers of pipes for the four wetlands result in different objective values.
The goal of the optimization model is to find the optimal combination of numbers of pipes that has
a relatively low cost and high conveyance capacity. Various constraints are specified to account for
the restrictions of the system. It is worth mentioning that the nature of the wetland will influence
decisions. If the wetland naturally remains flooded year-round and therefore supports fish, managers
may not wish to drain more than (say) 50% of the water so as to ensure that the system will not dry out
if the expected rain does not materialize. This will allow reduced costs. Conversely, in highly artificial
structures or structures with high flood control value, the goal may be to maximize drainage, which
will increase the cost.



Water 2018, 10, 325 11 of 18

2.6.1. Objectives

Minimizing cost of flood pipes and automated gates: The cost for polyvinyl chloride (PVC)
pipe schedule 40 was based on information quoted from the Charlotte Pipe and Foundry Company
(http://www.charlottepipe.com/). The automated valve cost was based on information quoted from
Flomatic Corporation (http://www.flomatic.com). This information can be found in [38].

The objective to minimize costs can be expressed as:

Minimize
N

∑
i=1

(PPi ×mi × Li) +
N

∑
i=1

mi × AVi (12)

where i is the wetland ID, N is the number of wetlands, PP is pricing of pipe per unit of length
(e.g., dollar/ft), Li is length of each flood pipe at wetland i, and AVi is the cost of each automated valve
at wetland i.

Maximizing conveyance capacity: Maximizing the conveyance capacity will result in a faster
water release from the wetlands. This objective can be quantified by the percentage of water volume
released from the system in a fixed time period. Since most of the optimization algorithms are designed
for minimization problems, the above objective can be modified to minimize the percentage of water
remaining in the wetland system after a fixed period. This can be written as follows:

Minimize
N

∑
i=1
−(Soi − S f i)/Soi × 100% (13)

where Soi is initial storage of wetland i, and S f i is final storage of wetland i after the predefined
releasing time.

2.6.2. Constraints

Constraint on the pipe diameter: Because wetlands are restricted to shallow water depths and
small hydraulic heads (e.g., the difference between upstream water surface elevation and downstream
discharge elevation), the diameter of the drainage pipe needs to have an upper limit to maximize
the storage of the wetland. This upper limit was set to 24 inches (610 mm) herein. Also, because the
wetland areas are relatively large and hence so are the water volumes to be released, only a 24-inch
pipe is considered in the optimization.

Constraint on wetland water elevation: As can be observed in Figures 7 and 8, the proposed
wetlands would have an emergency overflow, however to avoid simulating the overflow during the
optimization, an upper limit was set for the water elevation which was equal to the invert of the
overflow spillway. The minimum water elevation in the wetland was set to the invert of the five-way
pipe intake, which is the minimum water level that can be drained.

2.7. Discussion of Results

Pareto fronts for the two aforementioned objectives and seven releasing times are shown in
Figure 12. A Pareto front (or Pareto frontier) is a set of nondominated optimal solutions where no
objective can be improved without sacrificing at least one other objective (e.g., [40]). On the other
hand, a solution is referred to as dominated by a second solution if, and only if, the second solution
is equally good or better than the first solution with respect to all objectives (e.g., [40]). Each point
on a Pareto front is associated with a cost and the percentage of water released from the wetlands.
The latter is equal to 100% minus the percentage of water remaining in the wetlands. Since each point
on the Pareto front is indifferent in the context of multi-objective optimization, selection of a point from
the Pareto front merely depends on the preference of the decision maker. For example, for a releasing
time of 3 h, the decision maker may choose a relatively low cost option ($250 K) with a relatively small
percentage of water release (100% − 80% = 20%). Alternatively, a more balanced option would be

http://www.charlottepipe.com/
http://www.flomatic.com
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that with a $450 K cost and 50% water release. A solution with $650 K cost and 80% water release
(20% of water remaining in the system) would be a better choice for faster drainage of the wetlands.
Furthermore, as can be observed in Figure 12 and as is expected, for the same cost, the larger the
releasing time, the larger the percentage of water release. Likewise, for the same percentage of water
release, the larger the releasing time, the smaller the cost.

A few solutions for the optimal number of 24 ′′ pipes for each wetland for the 3-h releasing time
are shown in Figure 13. Although all the scenarios in Figure 13 have the same releasing time of 3 h,
each scenario has different results with respect to how much water is released in the 3 h. For example,
the scenario depicted with diamond markers releases 99.99% of the water but with a larger cost (i.e.,
larger number of pipes). The scenario depicted with green five-pointed star (pentagram) markers
markers releases 19.99% of the water at a smaller cost (smaller number of pipes). Furthermore, as can
be observed in Figure 13 and as is expected, the most downstream wetlands have a larger number of
pipes in comparison to the most upstream wetlands (see pipe network in Figure 4). To evaluate how
the number of pipes changes with the pre-specified releasing time, Figure 14 compares the solutions of
optimal pipe diameters for 80% water release and five different releasing times (2, 3, 6, 12, and 18 h).
As it is expected, the larger the releasing time, the smaller the number of pipes required.
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Figure 12. Optimal trade-off between percentage of water remaining in the wetland system and
piping/automated valve cost.
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Figure 14. Optimal pipe diameters for releasing 80% of the water under different releasing times.

3. Benefit–Cost Analysis

The benefit–cost analysis was prepared using the best information the authors could find. Table 2
provides the cumulative value of wetland services per acre for the Houston–Galveston area for three
periods (20, 30, and 50 years). The second column in Table 2 shows the value of wetland services for
the Houston–Galveston area as reported by [41]. The third column of Table 2 presents the updated
values of wetland services for 2018 U.S. dollars using an inflation rate of 2.15%, which was the average
U.S. inflation rate between 1996 and 2016 (http://www.usinflationcalculator.com/). Columns 5–7 in
Table 2 present the cumulative value of wetland services per acre assuming that the system enters in
service in 2018 and the periods of service are 20, 30, and 50 years, respectively.

Table 2. Cumulative value of wetland services per acre for the Houston–Galveston area for the periods
2018–2037, 2018–2047, and 2018–2067 (Adapted from [41]).

Ecosystem Unitary Value Cum. Value Cum. Value Cum. Value

Services Value in 2018 2018–2037 2018–2047 2018–2067
Ref: Houston-Wilderness per Acre per Acre per Acre per Acre

Water Supply $9320/acre/year $11,049 $272,508 $458,920 $974,779(Nontidal) Year 2010

Water Quality $3500/acre/year $4149 $102,337 $172,341 $366,065(Nontidal) Year 2010

Stormw. Regul./ $7990/acre/year $9472 $233,620 $393,430 $835,674Flood Protect. Year 2010(Nontidal)

Climate Regul./Carbon Sequest. $100.4/acre/year $119 $2936 $4944 $10,501Palustrine Emergent (100%) Year 2010

Recreation $2092/acre/year $2377 $58,620 $98,720 $209,689Year 2012

Total $27,166 $670,021 $1,128,355 $2,396,707

According to the compiled information by Houston–Wilderness ([41]), wetlands in the
Houston–Galveston area provide the following benefits.

• Water supply (nontidal): $9320/acre/year ($2010). Benefit provided (nontidal): 100,000 gallons/
acre/day (wetlands can provide water at a lower cost than procuring it elsewhere).

• Water quality (nontidal): Median $3500/acre/year ($2010). Benefit provided (nontidal): Can filter
63% of nitrogen, 45% of phosphorous.

• Stormwater regulation/flood protection (nontidal): $7990/acre/year ($2010). Benefit provided
(nontidal): Wetlands can typically store one million gallons of floodwater per acre.

http://www.usinflationcalculator.com/
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• Climate regulation/carbon sequestration: $68–236/acre/year ($2010). Palustrine emergent
(100%)—$100.4/acre/year. Because our proposed wetlands are relatively shallow, the wetlands
would be mostly palustrine emergent. Benefit provided: Wetlands store between 75,000 and
260,000 lbs of carbon per acre.

• Recreation: $2092/acre/year ($2012). Benefit Provided: Birding/hunting.

Table 3 provides the costs of construction and maintenance of the UHCC wetland system.
According to [42], the construction cost of wetlands (e.g., costs of earthwork and vegetation planting)
ranges between 0.60 and 1.25 dollars per cubic feet of wetland, where 1997 is the base year for the cost
data. Using the above data, for a 2.5-foot-deep wetland, the cost in 1997 dollars would range between
about $65,000 and $136,000 per acre, which updated to 2018 dollars would range between $101,344
and $212,044. As shown in the third column of Table 3, the cost of our hypothetical wetland system
in 2018 dollars would be $90,879 per acre. This amount is near the low end of the range obtained
in [42]. The low cost is expected as the construction of the hypothetical wetland system would involve
minimal excavation.

Table 3. Construction and Maintenance Costs per acre for the Houston–Galveston area for the periods
2018–2037, 2018–2047, and 2018–2067.

Description

Unitary Value Value at 2037 Value at 2047 Value at 2067
Value per Acre or Cum. Value or Cum. Value or Cum. Value

(See References Year 2018 2018–2037 2018–2047 2018–2067
in This Column) per Acre per Acre per Acre

Land costs
$50,000/acre

$51,075 $76,513 $94,650 $144,840(Year 2017)
(Estimated)

Design and Engineering

$500,000

$552 $827 $1023 $1566(entire system)
(Year 2017)
(Estimated)

Earthwork (cut)

$12/cu. yd.

$6704 $10,043 $12,424 $19,012(Year 2017)
(Aver. of 3 contractors
in Houston-Galveston)

Earthwork (fill)

$12/cu. yd.

$6624 $9924 $12,276 $18,785(Year 2017)
(Aver. of 3 contractors
in Houston-Galveston)

Drainage pipes and
$650,000

$718 $1075 $1330 $2036Automated gates
(entire system)

(Year 2017)
(Optimiz. in this paper)

Installing vegetation

$10000/acre

$10,215 $15,303 $18,930 $28,968(Year 2017)
(Texas Coastal Watershed

Program 2017)

Equipment for remote
$11,000,000

$12,148 $18,198 $22,511 $34,448operation of gates
(entire system)

(Year 2017)
(Omnisite)

Mainten. of remote $575,000/year
$635 $951 $1177 $1801operation of gates (Year 2017)

and cel. annual fees (Omnisite 2017)

Wetland maintenance 9.1% of

$2208 $54,452 $91,700 $194,776(does not include construction

Gate remote operat.) cost per year
Weiss et al. (2005)

Total $90,879 $187,286 $256,021 $446,232
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As discussed in the optimization section, the total cost of the drainage for the hypothetical
wetland system for releasing 80% of the water in 3 h is $650,000, which gives an average of
$703 per acre. This means that the drainage cost is much smaller compared to the construction
cost of a wetland. The maintenance cost for constructed wetlands reported in the literature is
highly variable. For instance the U.S. Environmental Protection Agency ([42]) considers an annual
maintenance cost of 2% of the construction cost. The authors of [43] consider an annual maintenance
cost between 4% and 14.2% of the construction cost. In this study, two maintenance costs are
considered, one for the wetland including the drainage system and another for the equipment/software
for the remote operation of gates (e.g., SCADA-type control) including the fees for cellular or
satellite connection. For the wetland/drainage system, an annual maintenance cost of 9.1% of the
construction cost is considered, which is the average of the percentage in [43]. For the gate remote
operation equipment/software/connection fees, the spreadsheet in Omnisite (Omnisite [44]) was used.
The vegetation costs were obtained with information in [45].

Table 4 presents the comparison of construction/maintenance costs and the benefits provided
by the wetlands for periods of 20, 30, and 50 years assuming that the flood control due to dynamic
management of wetland storage is respectively one, two, and three times that with no management.
As can be observed in Table 4, in general, the benefit value of wetland services far surpasses the
costs of construction and maintenance of the UHCC wetland system for the three considered periods
of analysis and for the three degrees of dynamic management of wetland storage. Furthermore,
the benefit/cost ratios increase with the period of analysis.

In a similar way to Table 4, Table 5 presents the benefit/cost ratios assuming that flood control is
the only benefit provided by wetlands (e.g., not considering the value of other ecosystem services).
As can be observed in Table 5, the benefit/cost ratio is larger than one even when the proposed water
storage management does not provide any additional benefit to that with no management. Table 5
also shows that whenever flood control with no management is improved by 100%, the benefit/cost
ratio, taking into account flood control only, would increase by 125%, 154%, and 187% for the 20-, 30-,
and 50-year periods, respectively. In addition, Table 5 shows that the benefit/cost ratio, taking into
account flood control only, would be at least 1.87 as long as the proposed dynamic management of
wetland storage improves flood control by 50% compared to that with no management.

Table 4. Benefit/cost ratios for the Houston–Galveston area for the periods 2018–2037, 2018–2047,
and 2018–2067.

Description
Total Value Total Value Total Value
2018–2037 2018–2047 2018–2067
(925 Acres) (925 Acres) (925 Acres)

Construction and $173,239,346 $236,819,296 $412,764,576maintenance costs

Value of benefits of

$619,769,648 $1,043,728,778 $2,216,954,114ecosystem services
New flood control (FC) =

1 × FC with no storag. manag.
Benefit/cost ratio 3.58 4.41 5.37

Value of benefits of

$835,868,379 $1,407,651,834 $2,989,952,553ecosystem services
New FC = 2 × FC

with no storag. manag.
Benefit/cost ratio 4.82 5.94 7.24

Value of benefits of

$1,051,967,110 $1,771,574,890 $3,762,950,991ecosystem services
New FC = 3 × FC

with no storag. manag.
Benefit/cost ratio 6.07 7.48 9.12
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Table 5. Benefit/cost ratios for the Houston–Galveston area for the periods 2018–2037, 2018–2047,
and 2018–2067 assuming that flood protection is the only benefit provided by wetlands.

Description
Total Value Total Value Total Value
2018–2037 2018–2047 2018–2067
(925 Acres) (925 Acres) (925 Acres)

Construction and 173,239,346 236,819,296 412,764,576maintenance costs

Value of benefits (New flood control 216,098,731 363,923,056 772,998,439(FC) = 0 × FC with no storag. manag. )
Benefit/cost ratio 1.25 1.54 1.87

Value of benefits 324,148,096 545,884,584 1,159,497,658New FC = 0.5 × FC with no storag. manag.
Benefit/cost ratio 1.87 2.31 2.81

Value of benefits 432,197,462 727,846,112 1,545,996,878New FC = 1 × FC with no storag. manag.
Benefit/cost ratio 2.49 3.07 3.75

Value of benefits 648,296,193 1,091,769,168 2,318,995,316New FC = 2 × FC with no storag. manag.
Benefit/cost ratio 3.74 4.61 5.62

Value of benefits 1,080,493,655 1,819,615,280 3,864,992,194New FC = 4 × FC with no storag. manag.
Benefit/cost ratio 6.24 7.68 9.36

4. Conclusions

The work presented herein addresses part of a larger topic which is to dynamically manage the
water storage of a system of interconnected wetlands for minimizing floods. The scope of this paper is
limited to the benefit–cost analysis of dynamic management of storage for a system of wetlands for
improving flood control. The key findings are as follows:

1. In general, the benefit value of wetland services far surpasses the costs of construction and
maintenance of the UHCC wetland system for the three considered periods of analysis and the
three degrees of dynamic management of wetland storage.

2. The benefit/cost ratios increase with the period of analysis.
3. Considering flood protection only (e.g., not considering the value of other ecosystem services),

as long as dynamic management of wetland storage increases flood protection by about 50%
compared to that with no management, the construction of a wetland system would have
a benefit/cost ratio of at least 1.9.
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