
water

Article

Experimental Analysis of the Hydraulic Performance
of Wire-Wound Filter Cartridges in Domestic Plants

Giacomo Viccione 1,* ID , Stefania Evangelista 2 ID and Giovanni de Marinis 2 ID

1 Department of Civil Engineering, Università degli Studi di Salerno, 84084 Fisciano, Italy
2 Department of Civil and Mechanical Engineering, Università di Cassino e del Lazio Meridionale,

03043 Cassino, Italy; s.evangelista@unicas.it (S.E.); demarinis@unicas.it (G.d.M.)
* Correspondence: gviccion@unisa.it; Tel.: +39-089-963-408

Received: 18 January 2018; Accepted: 8 March 2018; Published: 13 March 2018

Abstract: Among the treatment processes in water networks—of increasing importance in recent
decades due to the progressive deterioration of water quality—filtration still represents a major
solution. The present work focuses in particular on the filtration of drinking water with wire-wound
filter cartridges, the most widely used type of cartridge in domestic plants among the commercially
available cartridges, due to their efficiency and relatively low costs. Specifically, the hydraulic
performance of these cartridges was analyzed, i.e., mainly the effect of their introduction into a
hydraulic system in terms of head losses. The local pressure drops produced by the cartridges
may, in fact, create problems in hydraulic plants already characterized by low pressures, where
pressure levels may fall below the minimum limit recommended to ensure the smooth operation of
domestic devices. To this aim, a set of experiments was conducted in a pilot circuit in the Laboratory
of Environmental and Maritime Hydraulics (LIDAM) at University of Salerno, where pressure
drops produced by the cartridges were measured in different operating conditions. The artificially
dirty conditions of the wire-wound filters were analyzed in order to evaluate the effect of the filter
obstruction. The analysis provided some useful information about the performance and duration of
these filters, as well as suggestions for more efficient commercial filters.

Keywords: drinking water networks; wire-wound filter cartridges; head losses; laboratory experiments;
filter clogging

1. Introduction

Among the different water treatment techniques—increasingly necessary nowadays due to
pollution and environmental degradation attributable to the progressive industrialization and the
uncontrolled social and economic development—filtration still represents the main solution. Almost all
the domestic apparatus which make use of water are equipped with internal filtration elements or are
installed with proper filtration systems.

The present study is focused on the drinking water filtration and, in particular, on the hydraulic
performance of wire-wound filter cartridges, the most widely used in domestic water systems among
the commercially available cartridges, due to their efficiency and relatively low costs. This cartridge
was also one of the first to be made in standard dimensions, able to fit into housings from a variety of
manufacturers, and was a major form of filter cartridge for a long period. It is a very effective filter,
with filtration not only in the apertures between the turns of the yarn, but between the fibers in the
yarn as well [1]. For this reason, it is also the cartridge that makes easier and more controlled the
experiments on progressive clogging of the filter, a condition which is the objective of this research
as well.

More specifically, the effects in terms of head losses produced by the installation of wire-wound
filter cartridges in a pilot laboratory plant have been analyzed. In fact, these effects are not negligible
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and may determine pressure values not compatible with those required for a proper functioning of
some electro-mechanical elements present in domestic water systems (dishwashers, washing machines,
boilers, etc.). The gradual clog of the filter by the solid particles suspended in the flowing water was
also analyzed, since it produces, with prolonged use, an increase in head losses, which may further
compromise the operating conditions of the plant.

An analysis of the literature shows very few studies on the hydraulic analysis of filtering cartridges.
Besides, these works are usually focused on different features, such as water quality aspects or
efficiency of the filtration process, or on specific topics, such as the removal of specific substances from
drinking water [2–5]. An ad-hoc pilot circuit was, therefore, designed and built at the Laboratory of
Environmental and Maritime Hydraulics (LIDAM) of the Department of Civil Engineering (DiCiv),
University of Salerno. The aim of the conducted experiments was to measure the head losses produced
by wire-wound filter cartridges progressively clogged by fine solid particles (see also [6,7]) and to
contribute to the better understanding of the clogging process and its effect on the pressure drops.
This may suggest the optimal times of replacement of the cartridges and the design of more competitive
mechanical filters, capable of producing—the number of solid particles being equal—lower head losses
than the commercial ones.

2. Materials and Methods

2.1. Wire-Wound Polyester Filter Cartridges

A wire-wound filter cartridge works for mechanical filtration. It is produced by winding a wire
on a central support core, both made of pure polypropylene, very tenacious and non-toxic, that make
it suitable also for the treatment of drinking water. The main uses are as follows: protection of
boilers, taps, washing machines, pre-filter for pumps, irrigation systems, industrial installations of
several types.

The wire-wound filter cartridges tested in the laboratory in this work were produced by “Acqua
Brevetti 95 S.r.l.”, Mestrino (PD), and “Idrocosmotek, Fimi S.p.A.”, Izano, Italy. However, since their
characteristics agree with the standards of most brands on the market, results, which are very similar
in the two cases, can be considered generalizable to other commercial cartridges.

These cartridges are of the type shown in Figure 1, where size, weight and efficiency are also
reported. The filtering set has a particular honeycomb uniform texture, with precisely shaped and
uniformly sized holes.
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Figure 1. Adopted wire-wound filter cartridge.

The transit of the fluid in the cartridge, during which the treatment phase takes place, occurs in
such a way (Figure 2) that the fluid flows through the cartridge via a side entrance (lateral inflow),
the solid particles are deposited in the filter and, once water reaches the central part, it flows upward
(outflow) through the duct created in the inner core.
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Figure 2. Fluid flow mode in the wire-wound filter cartridge: radial flux.

The pore size nominal rating or nominal filtration of a cartridge, defined as the pore size at which
particles of a given size will be retained with efficiency below 100% [5], is 50 µm. This rate refers to the
capability of the filter to capture particles by the process of absorption, which depends on the size of
the filter holes; it is linked to the efficiency of the filter expressed as a percentage (e.g., an efficiency
of 80% with a nominal pore size rating of 50 µm means that 80% of the suspended solid particles
dispersed in water, having a nominal size greater than 50 µm, are retained by the filtering septum
during their transit through it). This cartridge can be used without further filtration stations, since the
outflowing water is devoid of all solid impurities. With a prolonged filtration, the amount of particles
retained by the filter progressively increases. This puts an increasingly reduced transit space with a
consequent increasing pressure loss at the disposal of the fluid. The most unfavorable condition results
from the completely clogged filter, corresponding to a very significant head loss. When the filter is
completely clogged, to restore the filtration system in its early ideal conditions, the cartridge has to be
replaced, since a wash would not completely clean the septum, with the solid particles being retained
in the filter matrix and not only on the external surface.

In this study, artificially dirty conditions have been reproduced in the laboratory experiments with
a partial occlusion of the pores, in order to evaluate the head losses produced by the filter obstruction.

2.2. Laboratory Setup

A hydraulic circuit (Figure 3) was designed and built with the aim to simulate in the laboratory a
generic residential plant with a cartridge filtration system, in order to calculate the local head losses
produced by the filter. To make the experiment as realistic as possible, pipes with commercially popular
materials and diameters were adopted.

The experimental circuit consists essentially of the following:

1. a polyethylene tank with capacity of 300 L;
2. an electronic circulation pump with maximum head equal to 6.9 m (model Evosta 40-70/130,

flow rate range 0.4 ÷ 3.3 m3/h);
3. a galvanized steel pipe with diameter ϕ3/4 ” (internal diameter 20.9 mm) and length 7.05 m;
4. a single-jet water meter;
5. a housing element (Figure 4) with interchangeable filter cartridges.

The coiled pipes in multiple layers that can be observed in Figure 3 (numbers 2 and 3) were
by-passed in this experimental campaign through the closing of the proper ball valves (number 4).
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Figure 3. Sketch of the pilot circuit adopted for the laboratory experiments.

The cartridge container (model FC GREEN V/T, Figure 4) is also produced by Acqua Brevetti
95 S.r.l. of Mestrino (PD), Italy and it is of sufficient size and shape to accommodate a filter cartridge of
9 3/4”, such as the ones considered here. It has transparent walls, which permit one to observe the way
the sand is deposited in the filter as the degree of artificial clogging increases.
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Figure 4. Container for filter cartridges.

2.3. Experiments

Experiments have been conducted with three different values of discharge (Qmin,
Qinter-intermediate- and Qmax), depending on the operating modes of the pump, in the conditions of
no filter cartridges and introducing the cartridges each time, with the progressively increasing clogging
rate, in the proper plastic container.

Before performing the tests, the storage tank was filled up to a certain level (1.50 m referred to the
extrados of the slab on which the circuit was placed), to be kept constant during the tests in order to
maintain the water head upstream of the circuit; all the measurements taken during the laboratory
activity refer to this level. The shut-off valves upstream and downstream of the container are closed
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each time in order to disconnect it and insert it inside the filter cartridges artificially clogged with
quantities of sand established a priori.

When the circuit is operating, it is possible to measure the head losses in the filter element and
along the pipe. The measurement of the continuous head losses along the pipes was performed through
digital pressure gauges (model Sino Instruments HX601, Huaxin Instrument, Beijing, China) for direct
reading of the relative pressure, properly positioned in selected detection points. Concentrated head
losses at the filter cartridges were measured, instead, through electronic differential manometers
(model Digitron Engineering B.V. 2082P, Digitron Instruments, Belfast, Northern Ireland), capable
of guaranteeing a significantly higher gauging precision, positioned with the two detection points
(equipped with valves to regulate the inflow and outflow) upstream and downstream of the cartridge,
respectively (Figure 3). Each measurement was performed three times in order to verify the repeatability
of the experimental tests. Also, a flow meter by B Meters S.r.l. (Gonars, Italy), was installed between the
pump and the filter housing.

The accuracy of the measurements was ascertained prior in a single campaign of experimental
tests, by comparing the readings obtained from the instruments with known values, alternatively
detected. Concerning the flow rates measured by the flow meter, the comparison was made by
adopting the procedure known as the bucket method. For each pump speed and filter condition,
once the level in the polypropylene tank reached a constant value thanks to an external water source,
at the steel pipe outlet it was measured how long the water takes to fill a 20 L bucket. After repeating
this procedure five times, the flow rate was obtained by dividing the volume of the bucket by the
average time it took to fill the bucket. Before each test, digital pressure gauges were reset to zero in the
absence of water in the steel pipe, to match the atmospheric pressure value. In addition, for pressure
gauges with readings lower than 0.2 bar, a comparison was made by reading the water levels at
piezometers, 2 m high, placed in the same locations thanks to the presence of four-way fittings.

2.4. Clogging Scenarios

This analysis of the clogging conditions is of particular interest, because the head losses increase
significantly when, with prolonged use, the filter gradually clogs until the saturation degree is reached.
The filter is expected to remove suspended particles but in doing so these particles get deposited either
inside the filter matrix or on its surface. The yarn structure in itself is porous, resulting in particles
becoming embedded inside it. Thus, with time, as the filter becomes clogged, it will resist the passage
of flow [2]. The wire-wound filter cartridge does not allow maintenance (e.g., washing) to restore the
initial status; this implies that after a certain period of time, it has to be replaced.

Clogging has been simulated after appropriately selecting the material to be used and the way to
put it into the cartridge. Two different types of clogging have been considered: clogging by fine gravel
(2–10 mm) and fine sand (0.10 mm) (Figure 5). As stated in Section 2.1, the wire-wound filter cartridge
is able to retain particles up to 50 mm in size.
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The two experimental scenarios differed not only in the used material but also in the method
of application.



Water 2018, 10, 309 6 of 15

The selection of the fine gravel material (Figure 5a) was made after trials with different
granulometries and the final choice was based on the one most suited to be retained in the special
honeycomb structure of the filter. Although this size is not compatible with that of the particles that
might be suspended in drinking water, it helps to understand the physical processes in the clogging
process and, therefore, to highlight remarks on the filter behavior. The gravel was introduced by
physically moving the wire from its position with the help of a rigid metal bar with a diameter of about
3 mm, and inserting the particles in the middle in such a way that, at the end, they were positioned on
the filter in a systematic way (Figure 6).
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By following this procedure, a maximum of 225 particles were placed along the entire surface
of the filter cartridge. To quantify the obtained filter obstruction, a clogging rate µ in percentage was
introduced, defined as the ratio of the total average clogged area Stot

clog over the total free surface area
Stot

f ree available to the flux (Stot
f ree = π× D × H = 0.048 m2):

µ =
Stot

clog

Stot
f ree

× 100 [%] (<100%). (1)

The total average clogged surface area Stot
clog was calculated perpendicular to the flow direction

through the product between the unit average clogged area Su
clog and the number of used particles N:

Stot
clog = Su

clog × N. (2)

The unit average clogged surface area Su
clog was estimated taking into account the average diameter

of the used gravel (8 mm), approximating the typical particle shape to a square 8 mm in size. Then:

Su
clog = l2 = 0.64 mm2. (3)

The aim to achieve orderly and manageable clogging resulted in a limited number of particles
that could be placed on the filter cartridge.

The head losses were measured during the experiments using three different values of the
parameter µ:

• µmin = 7.5%, obtained in the above described way with 57 particles employed (Figure 7a);
• µave = 15%, obtained with 113 particles employed (Figure 7b);
• µmax = 30%, obtained with 225 particles employed (Figure 7c).

The three clogging conditions with fine gravel are summarized in Table 1.
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Table 1. Experimental conditions for the filter clogging by fine gravel.

Clogging Scenario Particle Number N Unit Clog Area Su
clog Total Clog Area Stot

clog Clogging Rate µ

(n◦) (-) (mm2) (mm2)

1 57 0.64 36.48 0.08
2 112 0.64 71.68 0.15
3 225 0.64 144.00 0.30

As for the clogging by fine sand (Figure 5b), it was decided to use particles a tenth of a millimeter
in size, a size more compatible with that of particles that are most likely suspended in drinking water.
In this case, difficulty arose regarding how to stick the sand along the side surface of the filter cartridge.
To avoid using artificial glues, which may also alter the nature of the fluid, and consequently pressure
values and head losses, it was decided to apply a water-soluble natural substance which, below a
certain amount, does not alters the objectivity of the measurements. After a series of research and
trials, honey and flour glue were selected as the glues suitable for this experimental activity, according
to the hydrosolubility characteristics of both substances. The preparation of the flour glue involved
350 g of white flour, 0.75 L of water, 45 g of sugar (to enhance the adhesive power), 45 mL of vinegar
(to delay the decomposition), 12 min cooking time. Several tests were repeated with both glues in
order to check the influence of the substance on the head losses results.

The first clogging was done by spreading the flour glue along the entire side of the cartridge,
using a silicone kitchen brush, obtaining a layer of 5 mm. The filter was then subjected to a rolling
process on a paper support where a known amount of fine sand was poured. At the end of this
process, residual sand was weighed and the amount of sand retained by the filter was obtained by
the difference in weight. The filter inserted into the enclosure was tested for 24 h, with the minimum
pump speed upstream of it. The observations made during and after this first test led to a reduction
in the thickness of flour glue in an attempt to solve, or at least reduce, the problem of fast dragging
water. In the second application, therefore, sand was applied in the same manner with a 2 mm-thick
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layer of flour glue. Before conducting the experiment, the cartridge was subjected to a drying process
within a period of one to five hours to allow the glue to dry and the sand to adhere fully to the filter
lateral surface. At the end of this second test, it was observed that sand losses were lower than those
detected in the first test. To quantify these losses, the deposited sand was extracted and dried; then,
the effective sand applied to the filter cartridge was determined by the difference between the sand
used in the clogging phase and the dried deposited sand (right most column in Table 2, indicated as
effective sand weight).

Four clogging scenarios with different amounts of sand were produced, as reported in Table 2.

Table 2. Progressive clogging rates with fine sand.

Clogging Scenario Employed Sand (g) Detached and Deposited Sand (g) Effective Sand (g)

1 20 0 20
2 40 5 35
3 60 15 45
4 80 20 60

Figure 8 contains, instead, pictures of the filter at progressively increasing clogging rates,
with quantities of sand equal to (a) 20 g, (b) 40 g, (c) 60 g and (d) 80 g, respectively. Sand was
added in equal amounts from time to time, to guarantee an appreciable variation in head losses
recorded at each increment.
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Figure 8. Progressively increasing clogging rates with fine sand: (a) 20 g, (b) 40 g, (c) 60 g and
(d) 80 g, respectively.

The filter was thus made artificially dirty by laying a uniform layer of sand to reproduce a severe
clogging condition. Once a sample was prepared, it was put in the filter housing, then a flow was
recirculated to re-clean the filter. The glue was found to be completely dissolved in water after running
about for 10 min, but most of the sand was held in position, thanks to the water pressure acting on the
filter surface with percentages of deposition to the filter bottom between 0% and 25%. After carefully
removing the filter, the weight of the residual layer of sand was measured and used in correlation with
the pressure drop [7], as shown in Section 3.

3. Results and Discussion

The results of the experiments with fine sand are plotted in Figure 9 in terms of head losses ∆H
(in m) as functions of corresponding discharges Q (in L/s) for cartridges progressively clogged with
10 g of sand each time up to 80 g and flour glue for the three different values of discharge.
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Figure 9. Results of all tests of clogging with fine sand in terms of head losses as functions of discharges
for the three different discharges.

The graphs allow us to highlight some outcomes. As expected, the trend is increasing head losses
with growing discharge values with an exponent bigger than one. The head losses also increase as the
clogging rate increases but the curves show a similar trend. A generalization of these results and a
formula of the type of Equation (4) to calculate the local head loss produced by the filter cartridge in
each scenario have been sought:

∆Hloc = β
V2

2g
(4)

Starting from the pair values of discharges Q and the corresponding local head losses ∆Hloc,
first the corresponding mean velocities were calculated by the continuity equation and then the values
of coefficient β in Equation (4) were calculated: the results are reported in Table 3.

Table 3. Values of the head losses, discharges, velocities and β coefficients (the values in bold type are
the averages) for progressive clogging rates with fine sand.

i Q ∆H V β

(g) (L/s) (m) (m/s)

20 0.269 0.276 0.944 6.08
0.353 0.394 1.238 5.04
0.397 0.520 1.393 5.25
0.340 0.396 1.192 5.456

30 0.263 0.296 0.923 6.82
0.314 0.418 1.102 6.76
0.389 0.574 1.365 6.04
0.322 0.429 1.130 6.541

40 0.261 0.302 0.916 7.06
0.317 0.429 1.112 6.80
0.386 0.592 1.354 6.33
0.321 0.441 1.127 6.728
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Table 3. Cont.

i Q ∆H V β

(g) (L/s) (m) (m/s)

50 0.258 0.324 0.905 7.77
0.333 0.500 1.168 7.19
0.386 0.613 1.354 6.56
0.326 0.479 1.143 7.172

60 0.245 0.399 0.860 10.59
0.308 0.534 1.081 8.98
0.378 0.742 1.326 8.27
0.310 0.558 1.089 9.279

70 0.253 0.417 0.888 10.39
0.306 0.533 1.074 9.07
0.37 0.737 1.298 8.58
0.310 0.562 1.086 9.343

80 0.242 0.408 0.849 11.10
0.318 0.584 1.116 9.20
0.378 0.784 1.326 8.74
0.313 0.592 1.097 9.682

In Figure 10, the values of β are plotted as functions of the corresponding values of the mean
velocity V in all the scenarios.
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Figure 10. Values of coefficients β as functions of the velocities for all tests of clogging with fine sand.

The trend again respects the progressive clogging rates. The values of β reduce as the velocity
increases (inverse proportionality) and enter the range of about 5–11. As expected, for higher clogging
rates, the values of β increase, since head losses increase. Different trends can be distinguished for the
analyzed cartridges: the curves are concave for 20 g, 60 g, 70 g and 80 g of clogging sand, while they
appear convex and almost linear for 40 g, 50 g and 60 g of clogging sand.

The following relations can be obtained from the trend curves, which are also illustrated in
Figure 11, where the line trends are plotted as black bold broken lines:

- trend for 20 g: β = 10.95 V2 − 27.40 V + 22.19;
- trend for 30 and 40 g: β = −3.39 V2 + 6.04 V + 4.25;
- trend for 50 g: β = −2.67 V2 + 3.34 V + 6.94;
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- trend for 60 and 70 g: β = 10.68 V2 − 28.04 V + 26.83;
- trend for 60 and 70 g: β = 10.37 V2 − 27.51 V + 26.98.
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It can be observed that the curve that better approximates the curves is a
second-degree polynomial.

One interesting remark is that while with the first amounts of added sand the differences in
the values of head losses are significant, for values of clogging higher than 60 g the head losses do
not increase much in further steps. This is due to the fact that the filter is close to the condition of
complete clogging.

The cartridges tested in the laboratory in this work have characteristics that agree with the
standards of most brands on the market and, therefore, these results, obtained for two different brands,
can be considered generalizable to other commercial cartridges. Besides, the values of head losses
calculated here are also in the same order of magnitude as those measured in [2] for comparable water
flow rates. Unfortunately, there are not many data available in the literature, but the values obtained
here are compatible with those observed in technical practice by manufacturers and installers.

Discharges, measured by volumetric flow meters, show that in this case, without perfectly clean
water, the pump changed its functioning point, with higher values of continuous head losses and,
consequently, discharges.

The values of pressure drops produced by the filter, measured through the differential pressure
gauges at its upstream and downstream sections, have also been plotted in Figures 12 and 13, for fine
gravel and fine sand respectively, as functions of the effective clogging rate. The results obtained in
the condition of clogging by fine gravel and honey are plotted in Figure 12 in terms of pressure drops
∆p evaluated in the three different flow rate operating conditions correlated to the clogging rate µ.
The values reported in each curve correspond to the pressure drops in the absence of clogging and for
the three analyzed clogging scenarios (Table 1).

The results obtained in the condition of clogging by fine sand and honey are plotted, instead,
in Figure 13, taking into account the effective clogging sand, as values of pressure drops ∆p evaluated
in the three different operating conditions as functions of the sand residual weight wr,s. In this case,
in fact, the filter was made artificially dirty by a uniform layer of sand of weight ws. After carefully
removing the filter, the weight of the residual layer of sand wr,s was finally measured and used in
correlation with the pressure drop ∆p. The values reported in each curve correspond to the pressure
drops in the absence of clogging and for the four analyzed clogging scenarios (Table 2).
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Figure 12. Pressure drop ∆p trend obtained by clogging filters with fine gravel.
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Figure 13. Pressure drop ∆p trend obtained by clogging filters with fine sand.

This experimental activity allowed us to obtain useful information about the wire-wound filter
cartridge, in particular its behavior in terms of head losses under the condition of progressive clogging.
As expected, as particles are deposited either inside the filter matrix and on its surface, the filter
becomes clogged and offers greater resistance to the passage of flow. This explains the increasing trend
of pressure drop observed in all tests (see also [2,8]).

However, the graphs in Figures 12 and 13 show a different average trend depending on the
material used for the two types of clogging: more than linear with fine gravel and less than linear with
fine sand.

In the case of fine gravel, in Figure 12, it is possible to distinguish two zones of the graph with
different head losses trends. Specifically, the slopes of the curves change when µ is about 8%.

For minimum and intermediate flow rates, the curves are convex and the following zones can
be distinguished:
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- Zone 1, in the range of 0–57 particles, i.e., µ < 8%, where the development of the head losses is
pronounced and the maximum ratio between the pressure drop ∆p and the particle increment
∆part, here equal to 57, corresponding to the curve slope, is ∆p/∆part = 0.24;

- Zone 2, in the range of 57–225 particles, i.e., 8% < µ < 30%, where the head losses increase more
slowly, and the maximum values of ∆p/∆part = 0.04, with a particle range ∆part of 168.

As for the higher flow rate, the curve is concave and it is possible to distinguish the following zones:

- Zone 1, in the range of 0–57 particles, where the losses development is lower than the previous
zone 1 (∆p/∆part = 0.15);

- Zone 2, in the range of 57–225 particles, with a steeper growth and maximum slope equal to
∆p/∆part = 0.21.

In the real cases of domestic systems, particles are transported in the distributed water; 80%
of the maximum head loss due to the clogging is reached in less time than is necessary to achieve
100% of the maximum loss. According to the measurements, 80% corresponds to a loss of about
65 mbar, just enough to lower the inlet pressure (just over 1 bar) so as not to trigger the operation of
electromechanical elements (boilers, washing machines, etc.).

In the case of fine sand, as mentioned above, the chart in Figure 13 shows a different behavior:
the growth in losses is increasingly pronounced as the amount of used sand increases and the curves
are concave.

In the range of the minimum and intermediate measured flow rates, four zones can be identified:

- Zone 1: 0–20 g of sand, maximum ∆p/∆wr,s = 0.13, with an ∆pr,s increment in the sand residual
layer weight;

- Zone 2: 20–35 g of sand, maximum ∆p/∆wr,s = 0.58;
- Zone 3: 35–45 g of sand, maximum ∆p/∆wr,s = 0.70;
- Zone 4: 45–60 g of sand, maximum ∆p/∆wr,s = 0.63.

For the maximum measured flow rate of 0.32 L/s:

- Zone 1: 0–20 g of sand, maximum ∆p/∆wr,s = 0.16;
- Zone 2: 20–35 g of sand, maximum ∆p/∆wr,s = 0.84;
- Zone 3: 35–45 g of sand, maximum ∆p/∆wr,s = 1.20;
- Zone4: 45–60 g of sand, maximum ∆p/∆wr,s = 0.81.

Also, in this case, the different velocity values cause different head losses and, in particular,
the greater the velocity the greater the losses. In both cases, the pressure drop ∆p increases with
the degree of obstruction, as expected. However, the behavior is slightly different according to the
materials used to clog the filter: in the case of clogging caused by fine gravel, pressure drop trends are
convex downward for the minimum and intermediate flow rates, whereas for the clogging caused
by fine sand, related trends are convex upward. This observation has a physical explanation: fine
gravel creates preferential directions for the incoming water flow, while clogging fine sand opposes
a more uniform resistance to the fluid motion. The less than linear trend of the gravel sand is due
to the capacity of the filter to adapt as the liquid keeps flowing through the available empty spaces
without any substantial increase in energy loss. The more than linear trend of the fine sand is due to
the uniform thickness of the permeable material which leaves no space for preferential path flows.

It is worth noting that the use of fine sand makes the case study much closer to reality in
comparison with fine gravel. The presence of particles of the order of 2–8 mm is, in fact, highly unlikely
in drinking water plants, besides those fed by well supply systems. However, the comparison of the
results for the two clogging materials enabled some features to be highlighted in the comprehension of
the filtering physical process.

Additionally, head losses begin to reach significant values, for the purpose of a residential user,
with a quantity of sand greater than 40 g. Given that the water in usual pipelines does not exclude
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much larger quantities of sand, it is important not to underestimate the effects of such filtration systems
in terms of pressure. Replacement of the cartridges becomes compulsory after a certain period of use.

Further experimental investigations on the clogging process of wire-wound filtering cartridges
have been performed at the LIDAM Laboratory in order to better understand the filtration mechanisms
and to suggest technical applications to realize more efficient cartridges [9].

Besides the experimental laboratory activities, a numerical model in EPANET [10] was also set up
in order to perform hydraulic simulations with the same aim of calculating the head losses produced by
the cartridges. In fact, after a proper calibration based on the observed results, numerical calculations
allow for the analysis of a greater number of test cases, with a wide range of flow rates and different
operating conditions [11].

4. Conclusions

In this work, some experimental data are presented on head losses produced in drinking water
networks by wire-wound filter cartridges. The experiments were performed in the Laboratory
of Environmental and Maritime Hydraulics (LIDAM), University of Salerno. Different operating
conditions (three discharge values) were considered, in which the performance of the commercial
filtering cartridge was evaluated in terms of local pressure drops produced for progressive clogging of
the filter.

Pressure drops were measured with the filter artificially clogged by laying fine gravel or fine sand
over the permeable surface intersected to the flux. Although fine sand is the type of solid particles more
likely present in drinking water plants, with the exception of well supply systems, the comparison
of the results for the two clogging materials allowed us to highlight some features of the physical
process. The behavior is slightly different according to the materials used to clog the filter: in the case
of fine gravel, the filter adapts as the particles create preferential directions for the incoming water flow,
that keeps flowing through the available empty spaces without any substantial increase in energy loss;
the clogging fine sand, instead, is more uniformly dispersed, thus leaving no space for preferential path
flows and opposing a more uniform resistance to the fluid motion. The results prove that, in all the
cases, the pressure drops increase with the degree of obstruction, as expected. Furthermore, the local
head losses begin to reach significant values for a residential plant with a quantity of sand greater
than 40 g. Since, in common plants, the presence of large quantities of sand cannot be excluded, it is
important not to underestimate the effects in terms of pressure drops produced by filtration systems.
Replacement of the cartridges is compulsory after a certain period of use.
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