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Abstract: Permeable pavement is often known as “cool road”. However, the cooling performance
will be weakened due to clogging. In this paper, the temperature field distribution model of asphalt
pavement was obtained by Green’s function. Gradations of porous asphalt mixture were designed to
obtain different porosities, and the thermal properties of specimens with different porosities were
tested and calculated. The simulation test was carried out to obtain the heating curves, which were
used to verify the accuracy of the temperature model by comparing the results of the theoretical
calculation to results of the test. The daily solar radiation intensity and air temperature changing
functions were plugged into the model to calculate the temperature at the bottom of the middle
surface. In this way, the simplified model of void fraction and cooling performance of the porous
asphalt pavement was obtained. The results showed that the temperature at the bottom of the middle
surface for permeable pavement was lower than that for traditional asphalt pavements. The gap was
between 0.29 to 2.75 ◦C and it increased as the porosity of permeable pavement increased.
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1. Introduction

As an important part of a “sponge city”, permeable pavement plays a significant role in
regulating local climate, accelerating groundwater recycling and reducing runoff on road surface.
Permeable pavement is also known as “cool road”. Due to its porous structure, the maximum
temperature in the permeable pavement is lower than that in traditional asphalt pavement in
summer [1]. The maximum temperature of asphalt pavement affects the service and safety performance.
Problems such as rutting and deflection are more likely to occur as the maximum temperature
rises, leading to instability failures [2–5]. The difference between the maximum temperatures of the
permeable asphalt pavement and traditional asphalt pavement is defined as the cooling performance
of permeable asphalt pavement. In the long-term use of permeable pavement, the study found that it
was easily affected by the environment and the compaction conditions, leading to void clogging [6–8],
weakening its permeability characteristics, and also affecting the cooling performance.

The numerical analysis method is often used to predict the temperature distribution internal to
the pavement [9–12]. This method is based on finite element or finite difference method. In these
numerical models, pavement structures are discretized into elements for solving governing equations.
However, the accuracy of the calculation results is highly dependent on the density of the mesh and
total number of elements in the model.

Different from the numerical analysis method, the analytical method can be used to
obtain the rigorous solutions of pavement temperature fields with appropriate assumptions.
Additionally, various transfer methods were used in the analytical method. With this approach,
each layer of the pavement was treated as isotropic [13]. Based on the Fourier–Biot heat conduction
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equation and transform methods such as Laplace transform method and Green Function method,
an analytical solution to heat conduction can be obtained very fast by solving the initial boundary
value problems. The solution is usually an equation of instant temperature, thermal properties of
materials in each layer and the heat flux on the surface of pavement [14–16]. Comparing with the
numerical analysis method, the analytical method is more convenient and accurate. So the analytical
method was adopted in the paper.

According to the analytical method, the changing rule between thermal properties and porosity of
the asphalt mixture should be studied first. Then the maximum internal temperatures of the pavement
can be obtained, based on which the changing rule of cooling performance with void clogging can also
be obtained.

2. Objective

This paper aims to establish a prediction model of the cooling performance decline for layered
permeable pavements due to clogging problems. In order to achieve the objective, both theoretical
analysis and laboratory test were performed. The Green’s function method was used in the prediction
of pavement temperature fields. The thermal properties of porous asphalt mixture with different
porosities were tested in laboratory. Finally, the cooling performance was represented by the difference
between the maximum temperatures in the permeable asphalt pavement and traditional pavement.

3. Pavement Temperature Field with Green’s Function Method

3.1. Heat Conduction Model of Multilayer Pavement Structure

Because the horizontal dimension of each layer of the pavement is much larger than the vertical
direction, the heat conduction problem of the pavement can be regarded as the heat conduction
problem of the large flat plate. Therefore, in the prediction of the temperature field, the method of
one-dimensional heat conduction was adopted [17–19]. The pavement structure is shown in Figure 1.
At the surface of the pavement z = z0 = 0. The surface is considered as a mixed boundary where the
pavement receives the solar radiation, radiates part of the heat into the atmosphere and exchanges
heat with the air. When the depth is infinitely deep, the temperature can be considered as a constant.
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Figure 1. Heat transfer diagram of multilayered pavement system.

According to the theory of heat transfer, heat conduction and heat convection that occurred due
to direct contact between fluid and solid are called convention heat transfer, which can be calculated
according to Newton cooling formula:

qr = hr(Tsur f − Tair) (1)

where qr is the heat flux when convective heat transfer occurs, W·m−2·s−1; hr is convective heat transfer
coefficient, W/(m2·K). Tsurf is the temperature of the surface, K; and Tair is the temperature of the air, K.
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The energy entering the road consists of short wave radiation and long wave radiation.
Meanwhile, the road will radiate outward in a long wave way. The total amount of long wave
radiation energy can be expressed as the following formula:

EL = εaσsbT4
air (2)

where EL is the amount of long wave radiation energy, W·m−2·s−1; σsb is Stefan–Boltzmann constant,
5.67 × 10−8 W·m−2·K−4; and εa is atmospheric long wave emissivity.

The long wave radiation [9] of asphalt pavement emission can be calculated according to the
following formula:

qL = εσsbT4
sur f (3)

where qL is the outward amount of pavement radiation, W·m−2·s−1; and ε is pavement emissivity.
So the heat flux into the pavement system can be expressed as:

q = εeEg + ε f EL − qL − qr (4)

where q is the heat flux into the pavement; Eg is the total solar shortwave radiation, W·m−2·s−1; εe is the
absorptivity of solar shortwave radiation; and εf is the absorptivity of atmospheric long wave radiation.

3.2. Model of Temperature Field in Asphalt Pavement Based on Green’s Function

Green’s function method is widely used to solve heat conduction problems, especially when the
boundary conditions are nonhomogeneous. It can be used to solve single dielectric problems, as well
as inhomogeneous problems for composite dielectrics. The heat conduction problem can be expressed
as follows:

αi
∂2Ti(z, t)

∂z2 =
∂Ti(z, t)

∂t
zi−1 < z < zi, t > 0 (5)

where Ti(z,t) is the distribution of temperature in i-th layer, K; z is the depth, m; and αi is the thermal
diffusivity of i-th layer, m2·s−1.

The boundary conditions can be expressed as follows:

− k1
∂T1(0, t)

∂z
+ h1T1(0, t) = h1 f1(t) (6)

ki
∂Ti(z, t)

∂z
|z=zi = ki+1

∂Ti+1(z, t)
∂z

|z=zi (7)

Ti(z, t)|z=zi = Ti+1(z, t)|z=zi
(8)

Tm(z, t)|z=zm = f2(t) (9)

Ti(z, 0) = Ii(z) (10)

where ki is the thermal conductivity of i-th layer, W·m−1·K−1; f 1(t) is the heat flux into the pavement;
f 2(t) is the distribution of temperature as z = zm.

Construct the solution of Ti(z,t) as the form as follows:

Ti(z, t) = ϕi(z) f1(t) + ψi(z) f2(t) + θi(z, t) (11)

where φi(z) and ψi(z) are functions of z; f 1(t) and f 2(t) are functions of t; and θi(z,t) is function of z and t.
φi(z) should satisfy the steady state heat conduction problem given as Equation (12):

d2 ϕi(t)
dz2 = 0zi−1 < z < zi (12)
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The boundary conditions of Equation (12) are shown as Equations (13)–(16).

ϕm(z)|z=zm = 0 (13)

ϕi(z)|z=zi = ϕi+1(z)|z=zi
(14)

ki
dϕi(z)

dz
|z=zi = ki+1

dϕi+1(z)
dz

|z=zi (15)

− k1
dϕ1(z)

dz
|z=0 + h1 ϕ1(z)|z=0 = 0 (16)

In addition, ψi(z) should satisfy the steady state heat conduction problem given as Equation (17),
subjected to the boundary conditions Equations (18)–(21).

d2ψi(t)
dz2 = 0zi−1 < z < zi (17)

ψm(z)|z=zm = 1 (18)

ψi(z)|z=zi = ψi+1(z)|z=zi
(19)

ki
dψi(z)

dz
|z=zi = ki+1

dψi+1(z)
dz

|z=zi (20)

− k1
dψ1(z)

dz
|z=0 + h1ψ1(0) = h1 f1(t)|z=0 (21)

θi(z,t) should satisfy the transient state heat conduction problem given as Equations (22) and (23),
subjected to the boundary conditions Equations (24)–(28).

αi
∂2θi(z, t)

∂z2 + gi(z, t) =
∂Ti(z, t)

∂t
zi−1 < z < zi, t > 0 (22)

gi(z, t) = ϕ(z)
d f1(t)

dt
+ ψ(z)

d f2(t)
dt

(23)

− k1
∂θ1(z, t)

∂z
|z=0 + h1θ1(z, t)|z=0 = 0 (24)

ki
∂θi(z, t)

∂z
|z=zi = ki+1

∂θi+1(z, t)
∂z

|z=zi (25)

θi(z, t)|z=zi = θi+1(z, t)|z=zi
(26)

θm(z, t)|z=zm = 0 (27)

θi(z, 0) = Ii(z)− f1(0)ϕ1(x)− f2(0)ψ1(x) ≡ I∗i (x) (28)

The solution of φi(z) and ψi(z) can be constructed as Equations (29) and (30):

ϕi(z) = Ai + Biz (29)

ψi(z) = Ci + Diz (30)

The unknown coefficients in Equations (29) and (30) can be determined by Equations (12)–(21).
Because there is no heat source inside the pavement, the solution of θi(z,t) can be constructed as

θi(z,t) = Z(z) Γ(t); Equations (31) and (32) can be obtained as θi(z,t) substituted into Equations (22) and (23).

dΓ(t)
dt

+ β2
nΓ(t) = 0t > 0 (31)

d2Z(z)
dz2 +

β2
n

αi
Z(z) = 0zi−1 < z < zi (32)
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where βn is the eigenvalue, which can be determined by Equations (22) and (23). Equations (33) and
(34) can be obtained by equations above.

Γ(t) = e−β2
nt (33)

Z(z) = Ai,n sin(
βn√

αi
z) + Bi,n cos(

βn√
αi

z) (34)

So θi(z,t) can be expressed as follows:

θi(z, t) =
∞

∑
n=1

cne−β2
ntZ(z) (35)

cn =
1

N(βn)

N

∑
i=1

ki
αi

∫ zi+1

zi

Zi(βn, z)I∗
i
(z)dz (36)

N(βn) =
N

∑
i=1

ki
αi

∫ zi+1

zi

Z2
i (βn, z)dz (37)

Equation (22) can be deduced as:

θi(z, t) =
N
∑

j=1

kj
αj

∫ zj+1
zj

[
∞
∑

n=1

1
N(βn)

e−β2
ntZi(βn, z)Zi(βn, z′) · I∗

j
(z′)dz′

=
N
∑

j=1

∫ zj+1
zj

Gij(z, t|z′, τ)|τ=0 I∗
j
(z′)dz′

(38)

where

Gij(z, t|z′, τ) =
∞

∑
n=1

1
N(βn)

e−β2
n(t−τ)Zi(βn, z)Zj(βn, z′) (39)

According to the heat transfer theory, once the Green’s function is determined, the temperature
field of the pavement can be determined directly as:

Ti(z, t)= (Ai + Biz) f1(t) + (Ci + Diz) f2(t)

+
N

∑
j=1

[
ki
αi

∫ zj+1

zj

Gij(z, t|z′, τ)|τ=0 I∗j (z
′)dz′

+
∫ t

0
Gi1|z′=0 f1(τ)

zi−1 < z < zi, t > 0 (40)

4. Test Process

4.1. High Viscosity Modified Asphalt

Different from other studies, the high viscosity additive (HVA) and styrene-butadiene-styrene
(SBS) block copolymer modified asphalt were used in this test. The indexes of asphalt and HVA were
measured by the methods in Chinese standards. The results of SBS modified asphalt test are shown
in Table 1. The test results of HVA are shown in Table 2 and the indexes of high viscosity modified
asphalt modified by high viscosity additives are shown in Table 3.
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Table 1. Properties of SBS modified asphalt.

Test Value Specification Limits

Penetration 25 ◦C, 100 g, 5 s (0.1 mm) 54 40–60
Softening point (◦C) 88.0 ≥75

Ductility, 5 ◦C, 5 cm/min (cm) 28 ≥20
Density, 25 ◦C (g/cm3) 1.031

After aging in rolling thin film oven
Mass change (%) +0.045 ±1.0

Retained penetration, 25 ◦C (%) 83 ≥65
Retained ductility, 5 ◦C (cm) 19 ≥15

Table 2. Properties of high viscosity additive.

Index Value Specification Limits

Mass of single particle (g) 0.022 ≤0.03
Density (g/cm3) 0.978 0.90–1.00

Appearance Granular, uniform and plump -

Table 3. Properties of high viscosity modified asphalt.

Index Value Specification Limits

Penetration 25 ◦C, 100 g, 5 s (0.1 mm) 44 40–60
Softening point (◦C) 98.0 ≥90

Ductility, 5 ◦C, 5 cm/min (cm) 35 ≥30
Dynamic viscosity, 60 ◦C(Pa·s) 440,806 ≥400,000

Density, 25 ◦C 1.027 -
After aging in rolling thin film oven

Mass change (%) −0.023 ±0.6
Retained penetration, 25 ◦C (%) 82.4 ≥65

Retained ductility, 5 ◦C (cm) 25 ≥20

4.2. Mix and Structure Design

Asphalt concrete (AC) is widely used in the traditional pavement. Different from the traditional
pavement, the concrete used in the permeable pavement is often called porous asphalt concrete (PAC).
Besides, the maximum particle size of upper-surface is usually 13 mm in China, and for the mid-surface,
it is usually 20 mm. In addition, for better simulation effect, the test specimens were all made up of
two layers. Traditional pavement specimen was made up of 4 cm thick AC13 mixture and 6 cm thick
AC20 mixture. The permeable pavement specimens were made up of 4 cm thick PAC13 mixture and
6 cm thick AC20 mixture. Additionally, the different clogging situations were simulated by porosities
ranged from 15% to 24%.

4.2.1. Mix Design

The present study shows that the porosity of PAC13 is greatly influenced by the aggregate passing
proportion of 4.75 mm (P4.75) and 2.36 mm (P2.36) [20]. So the porosity of PAC13 mixture was mainly
adjusted by controlling P4.75 and P2.36. The gradation is shown in Table 4 and the gradation curves are
shown in Figure 2.
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Table 4. Gradation of aggregate blends for asphalt mixture PAC13.

Sieve Size 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 Porosity

Upper limit 100 100 71 30 22 18 14.0 12 9 7
Lower limit 100 90 40 10 8 6 4 3 3 3

Gradation

1 100 92.7 56.8 16.7 10.4 7.9 6.6 5.2 4.5 3.8 20.79%
2 100 95.0 65.0 25.0 16 14.0 11.0 9.0 6.0 4.0 19.66%
3 100 95.0 67.5 26.5 18.5 14.3 10.0 8.0 6.0 4.0 18.11%
4 100 95.0 70.0 28.0 21 14.5 10.5 9.0 6.0 4.0 16.36%
5 100 95.0 45.0 10.0 8.0 7.0 6.0 5.0 4.0 3.0 23.05%

Water 2018, 10, x FOR PEER REVIEW  7 of 16 

 

4.2.1. Mix Design 

The present study shows that the porosity of PAC13 is greatly influenced by the aggregate 
passing proportion of 4.75 mm (P4.75) and 2.36 mm (P2.36) [20]. So the porosity of PAC13 mixture was 
mainly adjusted by controlling P4.75 and P2.36. The gradation is shown in Table 4 and the gradation 
curves are shown in Figure 2. 

Table 4. Gradation of aggregate blends for asphalt mixture PAC13. 

Sieve Size 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 Porosity
Upper limit 100 100 71 30 22 18 14.0 12 9 7  
Lower limit 100 90 40 10 8 6 4 3 3 3  

Gradation 

1 100 92.7 56.8 16.7 10.4 7.9 6.6 5.2 4.5 3.8 20.79% 
2 100 95.0 65.0 25.0 16 14.0 11.0 9.0 6.0 4.0 19.66% 
3 100 95.0 67.5 26.5 18.5 14.3 10.0 8.0 6.0 4.0 18.11% 
4 100 95.0 70.0 28.0 21 14.5 10.5 9.0 6.0 4.0 16.36% 
5 100 95.0 45.0 10.0 8.0 7.0 6.0 5.0 4.0 3.0 23.05% 

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

P
as

si
ng

 p
er

ce
nt

ag
e(

%
)

Sieve size(mm) 

 Upper limit
 Lower limit
 1
 2
 3
 4
 5

 
Figure 2. Gradation of PAC13 asphalt mixture. 

In addition, the gradations of aggregate blends for asphalt mixture AC13 and AC20 are listed in 
Tables 5 and 6. 

Table 5. Gradation AC13 asphalt mixture. 

Sieve Size 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 
Upper limit 100 100 85 68 50 38 28 20 15 8 
Lower limit 100 90 68 38 24 15 10 7 5 4 
Gradation 100 96.9 70.2 41.8 29.1 19.9 14.4 10.5 8.2 5 

Table 6. Gradation AC20 asphalt mixture. 

Sieve Size 26.5 19.0 16.0 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
Upper limit 100 100 95 86 70 48 33 23 16 11 9 6 
Lower limit 100 90 83 73 56 35 22 15 10 6 5 4 
Gradation 100 96.8 89.4 78.9 60.9 42.8 29.3 21.1 14.6 10.7 8.3 5.5 

4.2.2. Structure Design 

A total of 6 experimental groups were set up in the test. The size of the specimens was 30 cm × 
30 cm × 10 cm. They were divided into 2 types: traditional group (AC) and permeable group (S1–S5). 
The specific combination form is shown in Table 7. Additionally, in order to facilitate later 
experiment, every gradation of asphalt mixture was also made into rutting plate specimens in the 
size of 30 cm × 30 cm × 5 cm (Labeling AC13, AC20 and PAC13-1–PAC13-5). 
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In addition, the gradations of aggregate blends for asphalt mixture AC13 and AC20 are listed in
Tables 5 and 6.

Table 5. Gradation AC13 asphalt mixture.

Sieve Size 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Upper limit 100 100 85 68 50 38 28 20 15 8
Lower limit 100 90 68 38 24 15 10 7 5 4
Gradation 100 96.9 70.2 41.8 29.1 19.9 14.4 10.5 8.2 5

Table 6. Gradation AC20 asphalt mixture.

Sieve Size 26.5 19.0 16.0 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Upper limit 100 100 95 86 70 48 33 23 16 11 9 6
Lower limit 100 90 83 73 56 35 22 15 10 6 5 4
Gradation 100 96.8 89.4 78.9 60.9 42.8 29.3 21.1 14.6 10.7 8.3 5.5

4.2.2. Structure Design

A total of 6 experimental groups were set up in the test. The size of the specimens was
30 cm × 30 cm × 10 cm. They were divided into 2 types: traditional group (AC) and permeable
group (S1–S5). The specific combination form is shown in Table 7. Additionally, in order to facilitate
later experiment, every gradation of asphalt mixture was also made into rutting plate specimens in the
size of 30 cm × 30 cm × 5 cm (Labeling AC13, AC20 and PAC13-1–PAC13-5).
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Table 7. Structure design of specimens.

Type Porosity/Material (Upper Layer) Porosity/Material (Lower Layer) Label

Traditional AC13 AC20 AC

Permeable

16.68%/PAC13 AC20 S1
18.11%/PAC13 AC20 S2
19.66%/PAC13 AC20 S3
20.79%/PAC13 AC20 S4
23.05%/PAC13 AC20 S5

4.2.3. Specimen Preparation

The temperature field in the pavement needed to be monitored in the later tests.
Thus, the thermocouple sensors should be embedded in the specimen preparation process. The length
of the thermocouples inside the specimen was 15 cm, and the depth of 2 cm, 4 cm, 7 cm and 10 cm
respectively, which was shown in Figure 3. Two thermocouples were embedded in each depth, and the
temperature of each layer is expressed as the average value of the measured values of the two sensors.
In order to facilitate the embedment of the sensor, the customized model in Figure 4a was made.
The specimens were prepared by the method of layered compaction. After the lower layer was cooled,
the upper layer was added and compacted.
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4.3. Determination of Thermal Properties

Parameters in the heat conduction model included mass density, specific heat and thermal
conductivity of the mixture. The mass density of the mixture was expressed by the bulk density.
In addition, in the study of the thermally physical properties of asphalt mixtures, Zou [21] proposed
that the specific heat can be expressed in a parallel model, which is shown as follows:

Ac = ∑ AiBi (41)

where Ac is the specific heat of asphalt mixtures; Ai is the specific heat of the i-th component; Bi is mass
fraction of the i-th component.

The mass densities and specific heat of each gradation are shown in Table 8.
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Table 8. Specific heat and density of 5 cm thick specimens.

Numbering Porosity (%) Specific Heat (J/(kg·K)) Density (kg/m3)

PAC13-1 16.68 926.88 2229.52
PAC13-2 18.11 926.09 2194.62
PAC13-3 19.66 926.09 2142.77
PAC13-4 20.79 925.30 2116.84
PAC13-5 23.05 915.82 2090.92

AC13 - 922.51 2420.96
AC20 - 920.60 2381.07

The thermal conductivity of the mixture was related to the conductivity of aggregate, asphalt,
mineral powder and porosity. Williamson [22] once put forward a formula:

km = (ka)
g · (kb)

h · (kv)
i · (kw)

j (42)

where ka, kb, kv and kw are the thermal conductivity of the aggregate, asphalt, mineral powder and air
respectively. G, h, i and j are volume fraction of each component. The thermal conductivities [23] of
the components were listed in Table 9.

Table 9. Thermal conductivities of the components.

Index Aggregate Asphalt Mineral Powder Air

Thermal conductivity (W/(m·K)) 2.18 0.66 0.2 0.026

In addition, the thermal conductivities of the specimens were also tested by heat flow meter
method, the results of the test and Williamson’s formula were shown in Table 10.

Table 10. Thermal conductivities of 5 cm thick specimens.

Numbering Porosity (%) Thermal Conductivity (W/(m·K))

Williamson’s Formula Test

PAC13-1 16.68 0.82 1.03
PAC13-2 18.11 0.78 0.97
PAC13-3 19.66 0.73 0.93
PAC13-4 20.79 0.70 0.88
PAC13-5 23.05 0.67 0.8

AC13 - 1.07 1.15
AC20 - 1.16 1.38

From Table 10, for PAC13 mixtures, the calculation results of Williamson formula and the
measured results decreased with the increase of porosity. The increasing trend is consistent, so it
was considered whether there was linear relationship between them. To facilitate the analysis and
comparison, the data of Table 10 is shown in Figure 5, and the relationship between the tested and
calculated values was obtained by linear fitting.

Can be seen from Figure 5, it can be linear fitted well between test value and the theoretical value
of the thermal conductivity of PAC mixture. So in this paper, a new model was proposed based on the
Williamson formula to explain the relationship between thermal conductivity of the mixture and that
of the components, which is shown as Equation (43):

k = −0.365 + 1.808(ka)
g · (kb)

h · (kv)
i · (kw)

j (43)
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4.4. Test Method

The infrared lamp was used to simulate the solar radiation in summer. Considering the size ratio
of the vertical and horizontal directions of the road surface, the sides and the bottom of the rutting
plate specimens can be set as an adiabatic surface while the upper surface was set as a mixed surface
to exchange heat with the outside.

As the temperature of the road surface in summer was about 65–70 ◦C, the target of the equilibrium
temperature of the heating test was set in the gap. The AC specimen was used to adjust the height
of the infrared light. When the specimen temperature reaches the equilibrium range, the height of
the infrared lamp would be fixed. The result showed that when the height of the infrared lamp was
controlled at 28 cm above the surface and the test lasting time was 60 min, the temperature of the
specimen surface would reach the target range and kept stable.

The heating tests were conducted after the height was determined. The infrared lamp should
be cooled after each heating test to avoid the influence of the remaining warmth on the later test.
The experimental devices were shown in Figure 6a. Additionally, in order to prevent the influence of
wind, the enclosure was installed around the specimen, shown in Figure 6b.
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4.5. Data Comparison

Several hypotheses were adopted in the theoretical calculation.

(1) The heating power on the infrared light remained constant during the test;
(2) The sides and the bottom of the specimen were adiabatic boundaries, and the upper surface of

the specimen is a mixed boundary of fluid and solid;
(3) Each layer of asphalt mixture was isotropic materials;
(4) The thermal properties of asphalt mixture remained constant during the test;
(5) There was no thermal resistance between two linked layers.
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The AC specimen was set as the matched group. With the thermally physical properties of the AC
specimen plugged into Equation (40) and surface temperature curve as the reference, the power of the
infrared radiation was determined to be 0.157 W/mm2. Then the thermal properties of the remaining
specimens were also plugged into Equation (40). The results of theoretical calculation and tests are
shown in the following figures.

Firstly, it can be found that the theoretical calculation results are similar with the actual results.
So it can be determined that the model was suitable with the heat transfer of porous asphalt mixture,
and it can be used to predict the temperature of the whole pavement.

In addition, it can be seen from Figures 7 and 8 that the temperature on the surface of the specimen
rose fastest. As the test went on, the temperature rising curve of the specimen gradually became gentle
and tended to be stable. In addition, by comparing the temperature among different depths, it can be
concluded that the temperature conduction in the asphalt pavement had the hysteresis in the vertical
direction. With the increase in depth, the hysteresis phenomenon became more obvious. Taking AC
specimen as an example, the surface temperature changes rapidly in the first 5 min. But at the bottom,
the temperature had almost no change in 30 min.
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The temperature of each depth of the specimens can also be obtained by the curves shown in the
figures above. The temperature in the depth of 4 cm and 10 cm of each specimen was extracted and is
listed in Table 11.

Table 11. Temperature in the specimens.

Specimen Porosity/Material (Upper) Porosity/Material (Lower) Temperature in 4 cm (◦C) Temperature in 10 cm (◦C)

AC AC13 AC20 42.4 31.4
S1 16.68%/PAC13 AC20 42.0 31.2
S2 18.11%/PAC13 AC20 41.4 30.3
S3 19.66%/PAC13 AC20 40.8 29.5
S4 20.79%/PAC13 AC20 40.5 29.4
S5 23.05%/PAC13 AC20 40.0 28.9

It can be visually seen from Table 11 that in both depth of 4 cm and 10 cm, the temperatures in
permeable pavements were lower than the traditional pavement. It showed that the cooling effect still
existed in the permeable pavement under the extreme conditions of no wind on the surface or water in
the void. Through the comparison of single layered PAC asphalt specimens, it can be found that with
the increase of porosity, both of the temperature values in the two depths were showing a downward
trend. The results showed that the cooling effect of drainage asphalt increased with the increase of void
fraction. As the porosity of PAC13 layer changed from 16.68% to 23.05%, the maximum temperature of
permeable asphalt pavement at the depth of 4 cm and 10 cm were 0.4–2.4 ◦C and 0.2–2.5 ◦C lower than
the traditional pavement respectively.

5. The Cooling Performance of the Temperature Field with Different Porosities

The pavement was usually divided into six layers. The upper surface was AC13/PAC13,
the middle surface was AC20, and the lower surface was AC25. The order and thickness of each layer
was shown in Figure 9, where CTB stands for cement treated base, LS stands for lime-stabilized soil
and SG stands for subgrade.
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The thermally physical properties of each layer were shown in Table 12.

Table 12. Thermally physical properties of each layer.

Layer Density (kg/m3) Specific Heat (J·kg−1·K−1) Conductivity (J·m−1·h−1·K−1)

AC25 2300 924.9 1.3
CTB 2200 911.7 1.56
LS 2100 942.9 1.43
SG 1800 1040 1.56

After the structural form was determined, it was necessary to ascertain the thermal physical
parameters of each layer, the solar radiation intensity and the variation law of the daily air temperature.
The amount of solar radiation [12] in the model was expressed as the form of q(t) by Equation (44).

q(t) =


0 0 ≤ t ≤ 12− c

2
q0 cos mω(t− 12) 12 + c

2 ≤ t ≤ 12 + c
2

0 12 + c
2 ≤ t ≤ 24

, (44)

where q0 is the maximum radiation intensity at midday, q0 = 0.131 mQ, m = 12/c; Q is the total amount
of solar radiation in the day, J/m2; c is the actual effective sunshine time, h; and ω is angular frequency,
ω = 2π/24, rad.

The changing rule of the daily air temperature [12] was shown in Equation (27)

Ta =
−
Ta + Tm[0.96 sin ω(t− t0) + 0.14 sin 2ω(t− t0)] (45)

where Ta is the air temperature, ◦C; Ta is the average value of the temperature in a day,
Ta = (Tmax + Tmin)/2, ◦C; Tm is the daily temperature variation, Tm = (Tmax − Tmin)/2, ◦C; t0 is the
initial phase; and Tmax = 40 ◦C, Tmin = 26 ◦C, t0 = 3.

Because the temperature at the bottom of the middle surface has the greatest influence on rutting,
the change of temperature in the depth of 10 cm within 24 h was studied. The calculation results of AC
and S5 were shown in Figure 10.
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temperature. The amount of solar radiation [12] in the model was expressed as the form of q(t) by 
Equation (44). 
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where q0 is the maximum radiation intensity at midday, q0 = 0.131 mQ, m = 12/c; Q is the total amount 
of solar radiation in the day, J/m2; c is the actual effective sunshine time, h; and ω is angular frequency, 
ω = 2π/24, rad. 

The changing rule of the daily air temperature [12] was shown in Equation (27) 

0 0[0.96sin ) 0.14sin 2 ( )]aa mT T T t t t tω ω
−

= + − + −（  (45) 

where Ta is the air temperature, °C; a is the average value of the temperature in a day, a = (Tmax + 
Tmin)/2, °C; Tm is the daily temperature variation, Tm = (Tmax − Tmin)/2, °C; t0 is the initial phase; and Tmax 
= 40 °C, Tmin = 26 °C, t0 = 3. 

Because the temperature at the bottom of the middle surface has the greatest influence on 
rutting, the change of temperature in the depth of 10 cm within 24 h was studied. The calculation 
results of AC and S5 were shown in Figure 10. 
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Figure 10. Temperature at the bottom of the middle surface. 

It can be seen from Figure 10 that the temperature would be more stable and the maximum 
temperature would lower in the permeable pavement. It indicated that the permeable pavement 
could reduce the internal maximum temperature and be more environmental-friendly. The 
maximum temperatures at the bottom of middle surface of each pavement type were calculated and 

Figure 10. Temperature at the bottom of the middle surface.

It can be seen from Figure 10 that the temperature would be more stable and the maximum
temperature would lower in the permeable pavement. It indicated that the permeable pavement
could reduce the internal maximum temperature and be more environmental-friendly. The maximum
temperatures at the bottom of middle surface of each pavement type were calculated and shown in
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Table 13. Additionally, the cooling performance was represented by the reduced temperature between
AC and permeable pavements.

Table 13. Cooling performance of all structures.

Type Maximum Temperature (◦C) Reduced Temperature (◦C)

AC 43.00 0.00
S1 42.71 0.29
S2 42.51 0.49
S3 42.37 0.63
S4 42.18 0.82
S5 41.82 1.18

From the theoretical calculation results, it can be seen that the cooling performance would be
better with the increase of porosity. The maximum value of cooling performance could reach 1.18 ◦C.
So it was an effective method to contrast the urban heat island effect by adopting permeable pavement
in the building of sponge cities. The results in Table 13 were shown in Figure 11.
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In addition, for the permeable pavement, as the porosity was 16.68%, the maximum temperature 
of the bottom of the middle surface was only 0.29 °C lower than that of traditional pavement. There 
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In addition, for the permeable pavement, as the porosity was 16.68%, the maximum temperature
of the bottom of the middle surface was only 0.29 ◦C lower than that of traditional pavement.
There was almost no cooling performance, and the porosity of permeable pavement was usually
20%, whose cooling performance was about 0.63 ◦C. So it can be judged that the cooling performance
of the permeable pavement would reduce by over 50% as the porosity changed from 20% to 16.68%.
Additionally, there was a linear relationship between the cooling performance and porosity in the
single layered permeable pavements, which was shown in Figure 12.
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The simplified model of cooling performance and porosity can be used to judge the attenuation
of cooling effect of permeable asphalt pavement quickly in practical engineering and determine the
clean cycle of the pavement.

6. Conclusions

In this paper, the temperature field distribution model of a layered pavement system was obtained
based on Green’s function. The internal temperature of PAC specimens with different porosities was
studied by comparing theory calculations to test results. The temperature field model was applied
to evaluate cooling performance of the permeable pavement under different clogging conditions.
Through the analysis of the results, the following conclusions were obtained:

(1) The prediction model of the temperature field of permeable pavement was obtained based on
Green’s function, and the model was verified by the experimental results. The values of theoretical
calculation were close to the experimental results. This indicated that the model had a wide
applicability, which could be applied to the theoretical analysis of heat conduction problem for
asphalt pavement.

(2) The linear fitted model was proposed based on the Williamson formula and the results of the test.
The model could explain the relationship between thermal conductivity of the mixture and that
of the components well.

(3) According to the results of test, the cooling performance of pavement became worse with the
attenuation of porosity. When the porosity of permeable asphalt pavement reaches 23.05%,
the cooling performance at the depth of 10 cm could reach 1.18 ◦C. When the porosity reached
16.68%, the cooling effect declined to 0.29 ◦C.

(4) Void clogging has a great influence on the cooling effect of drainage pavement. At present,
the porosity of single layered drainage pavement is about 20%. The cooling effect of the pavement
under this porosity was about 0.63 ◦C. If the porosity declined by about three percent, the cooling
performance would be less than half of the original.

(5) Through the regression analysis of the relationship between cooling performance and porosity in
the permeable pavement, a linear model was set up. The model could be used as a reference for
rapid judgment of pavement cooling performance in the field, so as to determine the cleaning
cycle of permeable pavement.
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