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Abstract: The coastal regions of Pingtung Plain in southern Taiwan rely on groundwater as
their main source of fresh water for aquaculture, agriculture, domestic, and industrial sectors.
The availability of fresh groundwater is threatened by unsustainable groundwater extraction and
the over-pumpage leads to the serious problem of seawater intrusion. It is desired to find appropriate
management strategies to control groundwater salinity and mitigate seawater intrusion. In this study,
a simulation–optimization model has been presented to solve the problem of seawater intrusion along
the coastal aquifers in Pingtung Plain and the objective is using injection well barriers and minimizing
the total injection rate based on the pre-determined locations of injection barriers. The SEAWAT code
is used to simulate the process of seawater intrusion and the surrogate model of artificial neural
networks (ANNs) is used to approximate the seawater intrusion (SWI) numerical model to increase
the computational efficiency during the optimization process. The heuristic optimization scheme of
differential evolution (DE) algorithm is selected to identify the global optimal management solution.
Two different management scenarios, one is the injection barriers located along the coast and the other
is the injection barrier located at the inland, are considered and the optimized results show that
the deployment of injection barriers at the inland is more effective to reduce total dissolved solids
(TDS) concentrations and mitigate seawater intrusion than that along the coast. The computational
time can be reduced by more than 98% when using ANNs to replace the numerical model and the DE
algorithm has been confirmed as a robust optimization scheme to solve groundwater management
problems. The proposed framework can identify the most reliable management strategies and provide
a reference tool for decision making with regard to seawater intrusion remediation.

Keywords: seawater intrusion; SEAWAT; management model; artificial neural networks; differential
evolution; Pingtung Plain; Taiwan

1. Introduction

In the 1970s, aquaculture was rapidly developed in the coastal area of Pingtung, Taiwan. To ensure
water quality and increase the profit, groundwater was used to supply aquaculture demand in this area.
The agricultural, domestic, and industrial sectors also used groundwater to compensate the shortage
of surface water due to the uneven distributed rainfall in southern Taiwan. Several decades of
groundwater mining without any regulation caused the drawdown of water levels and resulted in
consequent seawater intrusion along the coast [1]. Although the pumpage has been monitored and
regulated by the government, the total amounts of pumping are still not regulated. The current water
levels are similar to the condition in 1999 and recovered insignificantly [2]. Once seawater intrusion
occurred, its impact on the shortage of water resources and the distortion of environments has been
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confirmed [3–5]. These threats and the reliance on fresh groundwater resources raise the importance of
groundwater management in coastal aquifers to control and mitigate groundwater salinization.

Various strategies have been proposed in the past decades to protect groundwater [6–9]. No matter
what strategies have been selected, one key to control seawater intrusion is to maintain the proper
balance between water being pumped from an aquifer and the amount of water recharging it. From this
point of view, a management model coupled with a numerical model and optimization approach
is desired to remedy seawater intrusion and search for proper strategies of groundwater usage.
Physical-based numerical simulation model can be used to examine a limited number of strategy
alternatives by trial and error [10,11]. However, the optimization approach can be combined with
simulation models to search for the optimal solution in a wide search space of design variables and
identify the optimal strategy [12]. The motivation for the combination of simulation and optimization
models for seawater intrusion management is its optimal solution, possessing the physical meaning
obtained from the numerical model and its searching efficiency for the evaluations of management
strategies. The development of the simulation–optimization model, an approach/technique to link
the physical-based numerical with the optimization algorithm, can account for the complex behavior
of groundwater systems and identify the optimal management strategy by considering appropriate
management objective and constraints. The approach has been shown to be capable of handling
seawater intrusion in several real-world applications [13–16].

The physical processes governing seawater intrusion in coastal aquifers are well understood [17].
A calibrated simulation model can help us understanding the behavior of the modeled system and can
be applied for different purposes, including the evaluation of aquifer response to different groundwater
management strategies. The numerical simulation models used to simulate seawater intrusion can
be divided into two categories, sharp-interface and density-dependent models. The sharp-interface
models consider freshwater and seawater is immiscible and the Ghyben–Herzberg relationship [18,19]
is the most common model [20] which approximates the depth of the sharp-interface between
freshwater and seawater. The relationship considers the advection–dispersion processes to define
the occurrence of seawater intrusion. Density-dependent models consider the varied-density flow
and solute transport resulting from the mixing of freshwater and seawater and the most common
used models include SUTRA (A Model for Saturated-Unsaturated,Variable-Density Ground-Water
Flow with Solute or Energy Transport) [21], FEMWATER (A Three-Dimensional Finite Element
Computer Model for Simulating Density-Dependent Flow and Transport in Variably Saturated
Media) [22], and SEAWAT [23]. SEAWAT is developed by USGS based on the integration of MODFLOW
(three-dimensional finite-difference ground-water model), MT3DMS (A Modular Three A Modular
Three-Dimensional Multispecies Transport Model), and variable-density flow (VDF) package and it
can simulate a three-dimensional variable-density groundwater flow coupled with multi-species.

Optimization models are widely used in groundwater planning and management and the aim
of optimization is to maximize or minimize an objective function subject to various constraints
(e.g., related to regulation of the concentration levels) to protect the water quality of the aquifer.
Several studies have shown the optimization approach can be useful in the solution of seawater
intrusion management problems [6,13,24]. When solving a seawater intrusion management problem,
the objective function is often set to maximize the total pumping rate from several wells while
avoiding seawater intrusion into the aquifer or minimize the total injection rate from several injection
wells while retreating seawater intrusion front back to the sea [6,25,26]. The constraints restrain
the pumping or injection rate between a minimum and a maximum value. As with optimization
approaches, the solution can be solved by traditional gradient-based search methods or heuristic
algorithms. There exists a large body of literature related to the application of gradient-based search
methods in groundwater management problems [27–30]. However, most optimization techniques
are based on evaluating the gradients to locate the optima on given constraints, and the difficulties
in evaluating the derivatives and obtaining a good initial value cannot be avoided. To overcome
the difficulties resulted from gradient-based search methods, several derivative free optimization
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algorithms, also called heuristic search algorithms, have emerged [31,32]. Singh [33] provided
a comprehensive review about various optimization techniques on seawater intrusion management.

To achieve the effectiveness of simulation-optimization models and to identify the optimal
management strategy, integration of simulation and optimization models into a single framework
is necessary. The linkage of simulation and optimization models is usually conducted by
embedded techniques, i.e., binding the discretized governing equations into the constraints of
the optimization model [24,25,29,34] and response matrix methods, i.e., utilizing superposition and
linear systems theory to simulate the response of groundwater system to the stimulation of external
forcing [27,35,36]. In general, the rate of convergence of response matrix methods is faster than that
of embedded techniques [37–42]. Singh [33] and Ketabchi and Ataie-Ashtiani [32] also provided
a comprehensive review about the integration of simulation and optimization models on seawater
intrusion management.

The effectiveness and efficiency of a simulation–optimization model not only rely on the optimization
algorithms but also on the computational time of the simulation model. Due to the complexity of
physical-based numerical models, solving a simulation–optimization model is sometimes infeasible
because the numerical model needs to be run for hundreds to thousands of times during the iteration
procedure. To improve the efficiency of simulation–optimization models, a computational efficient
surrogate model used to replace the original simulation model is desired. Among plenty of
surrogate models, artificial neural networks (ANNs) are the most common approaches used to
approximate complex and nonlinear density dependent models. A well trained/tested ANN model
can accurately approximate the original model and drastically reduce the computational time when
coupled with the optimization algorithm. Johnson and Rogers [43] used ANNs to approximate
SUTRA to simulate the domain of volatile organic compounds (VOCs) and the GA was used to
solve the multi-objective functions to find the optimal solutions. Bhattacharjya and Datta [44,45]
considered the advection–dispersion process to predict saltwater intrusion and implemented the ANNs
to substitute such model. Then, the ANNs were combined with GA to find the maximum pumpage
volume under a threshold of salinity. Kourakos and Mantoglou [46] used SEAWAT to simulate seawater
intrusion and coupled it with evolutionary annealing simplex algorithm to search the optimal pumpage
rates. Dhar and Datta [47] used ANNs to approximate seawater intrusion model of FEMWATER and
applied Non-dominated Sorting Genetic Algorithm II (NSGA-II) to solve the multi-objective functions.
Rao et al. [48] used the ANNs as the surrogate model to replace the SEAWAT model and combined it
with the simulated annealing algorithm (SA) to solve the management problems of seawater intrusion.
Christelis and Mantoglou [49] used the radial basis functions (RBF) as a surrogate model to emulate
the scalar response of a multivariate function which can reduce 96% of computational time and
combined RBF with evolutionary annealing-simplex algorithm in a pumping optimization problem.

In the present study, a computational framework for seawater intrusion management in
coastal aquifer in Pingtung Plain, Taiwan is presented. The objective of this study is to develop
a simulation–optimization model to identify the optimal strategies for the remediation of seawater
intrusion. The proposed procedure in this study is similar to Nikolos et al. [50] and Papadopoulou
et al. [51], but the key features different from their works are indicated as follows. To increase
the computational efficiency of optimization model, MODFLOW-LGR (MODFLOW for Local Grid
Refinement) was implemented when developing the physical-based numerical model of SEAWAT.
Then, the surrogate model of ANNs was trained and used to approximate SEAWAT model to generate
the concentration data. Finally, the ANNs were coupled in the DE algorithm to solve the management
problems of seawater intrusion. Two different management scenarios, one was the injection barriers
located along the coast and the other was the injection barrier located at the inland, were considered in
this study. The management problems were involved in determining the values of optimal injection
rates, and subjected to concentration constraints and injection capacities. Different concentration
constraints were set to evaluate their effects on the performance of remediation and their associations
with the population size setting in the DE algorithm. Under appropriate design and setting of
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simulation–optimization models, the proposed framework can identify the optimal and most reliable
management strategies which can be provided as a reference tool for decision making with regard to
seawater intrusion remediation.

2. Methodology

The flowchart of computational framework implemented in this study is shown in Figure 1.
The brief descriptions of methods applied in this study including the numerical model of SEAWAT,
the surrogate model of ANNs, the general formulation of management model, and the optimization
algorithm of DE are introduced as follows.

Figure 1. Flowchart of solving simulation–optimization model.

2.1. SEAWAT

The SEAWAT program, developed by U.S. Geological Survey (USGS), is used to simulate
three-dimensional, variable-density transient groundwater flow in porous media [52]. The SEAWAT is
developed by combining MODFLOW-2000 [53] and MT3DMS [54] into a single program that solves
the coupled flow and solute-transport equations. The general form of the partial differential equation
for variable-density groundwater flow is

∇
[

ρ
µ0

µ
K0

(
∇ h0 +

ρ− ρ0

ρ0
∇ z

)]
= ρSs,0

∂h0

∂t
+ θ

∂ρ

∂C
∂C
∂t
− ρsq′s (1)

where ρ is the fluid density (M·L−3), µ0 is the dynamic viscosity (M·L−1·T−1) at the reference
concentration and reference temperature, µ is dynamic viscosity (M·L−1·T−1), K0 is the hydraulic
conductivity tensor saturated with the reference fluid (L·T−1), h0 is the hydraulic head (L) measured
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in terms of the reference of a specified concentration, ρ0 is the fluid density (M·L−3) at the reference
concentration and reference temperature, z is the elevation (L), Ss,0 is the specific storage (L−1), t is
time (T), θ is porosity (-), C is species concentration (M·L−3), and q′s is a source or sink (T−1) of fluid
with density ρs. The freshwater is usually used as the reference fluid.

In addition to the groundwater flow equation, a second partial differential equation is required to
describe solute transport in the aquifer. The transport of solute mass in groundwater can be described
by the following partial differential equation

(
1 +

ρbKk
d

θ

)
∂
(

θ Ck
)

∂t
= ∇ ·

(
θD · ∇ Ck

)
−∇ ·

(
qCk

)
− q′sCk

s (2)

where ρb is the bulk density (M·L−3), Kk
d is the distribution coefficient of species k (M·L−3), Ck is

the concentration of species k (M·L−3), D is the hydrodynamic dispersion coefficient tensor (L2·T−1),
q is specific discharge (L·T−1), and Ck

s is the source or sink concentration (M·L−3) of species k.
For a coupled variable-density flow and solute-transport simulation, fluid density is assumed to

be a function of solute concentration only; the effects of pressure and temperature on fluid density
are not considered. A linear equation of state is used to represent fluid density as a function of solute
concentration:

ρ = ρ f +
∂ρ

∂C
C (3)

where ρ f is set to the density of freshwater, and ∂ρ/∂C is calculated for the range of expected densities
and concentrations. Groundwater flow causes the redistribution of solute concentration to alter
the density field, thus, affecting groundwater movement. Therefore, the movement of groundwater and
transport of solutes in the aquifer are coupled processes, and the two equations must be solved jointly.

2.2. Artificial Neural Networks

Artificial neural networks (ANNs), as the name implies, learn from experience and can perform
difficult operations and recognize complex patterns, even if those patterns are noisy. An ANN model
is composed of a set of simple elements, called artificial neurons, and these elements are inspired
by biological nervous systems. The basic structure of an ANN model is usually comprised of three
distinctive layers: (1) the input layer, where data are introduced to the model and computation of
the weighted sum of the inputs is performed; (2) the hidden layer(s), where data are processed; and (3)
the output layer, where the results of ANN are produced.

In this study, a multilayer perceptron neural network was chosen to model seawater intrusion.
The selected network has three layers, i.e., one input layer with varied input variables, one hidden
layer with varied nodes, and one output layer with one output variable. Each layer is connected
to the proceeding layer by interconnection weights. When an input neuron receives a signal, it is
transmitted to the output neuron through the hidden neurons in the hidden layer. The output of
a neuron can be expressed as:

yt = f2

(
J

∑
j=1

ω
(2)
jk ·

[
f1(

I

∑
i=1

ω
(1)
ij xi + bj)

]
+ bk

)
(4)

where xi is the input variable, ω
(1)
ij and ω

(2)
jk are the interconnection weights between input and

hidden layers, and hidden and output layers, respectively. bj and bk are bias values for hidden
and output layers, respectively. f1(·) and f2(·) are the activation functions for hidden and output
layers, respectively.

The back-propagation algorithm introduced by Rumelhart et al. [55] was selected to train
ANNs. The algorithm is akin to the supervised training and modifies the connection intensity to
minimize the error of the considered reply. Commonly, the development of ANN model includes
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the following steps: data collection, data analysis and pre-processing, and training of the neural
network. The training of the neural network embraces the choice of architecture, activation functions,
training algorithms and parameters of the network, testing of the trained network, and using the trained
neural network for simulation and prediction. All these steps are adopted to develop the ANN models
in this study.

2.3. Management Model Formulation

In this study, the objective of the management model is to minimize the total injection freshwater
from pre-determined injection barriers consisting of different injection wells. The constraints that
ensure the mitigation of seawater intrusion are imposed at pre-selected observation locations at the end
of 20-year planning horizon. Restrictions for all the injection barriers regarding the maximum allowable
injecting rate were also set. The mathematical formulation of the problem is summarized as follows:

min
M

∑
m=1

N

∑
n=1

Qn,m (5)

subject to
Ci,T ≤ Cmax

i
(6)

0 ≤ Qn,m ≤ Qmax
n,m (7)

where Qn,m is the injection rate at injection well n belonging to the injection barrier m during
the planning horizon; N is the total number of injection wells belonging to the injection barrier
m; M is the total number of injection barriers; Ci,T is the simulated concentration at monitoring well i
at the end of the planning horizon T; Cmax

i
is the maximum allowable concentration level (MCL) at

monitoring well i; and Qmax
n,m is the maximum injection capacity at injection well n belong to the injection

barrier m.

2.4. Differential Evolution

Differential evolution (DE) algorithm [56], being a recent development in the field of optimization
algorithms, is a simply implemented evolutionary algorithm (EA) that has demonstrated better
convergence performance than other EAs [57]. The DE algorithm originally designed to deal with
the continuous optimization problems of encountered in engineering and environments, and can be
easily modified to handle discrete and integer design variables, and multiple constraints. DE has
been demonstrated to be one of the most promising novel EAs, in terms of efficiency, effectiveness,
and robustness, and these are the reasons for its use in this work [57].

The classic DE algorithm evolves a fixed size population that is randomly initialized. After
initializing the population, DE works through a simple iterative process including the mechanisms of
mutation, crossover, and selection until a stopping condition is satisfied. Three main control parameters
are used in the DE algorithm: the population size, Np, the mutation scaling factor, F, and the crossover
rate, Cr. The kernel mechanism in the classical DE algorithm is the mutation strategy and it is defined
as follows:

Vi,G = Xri
1,G + F ·

(
Xri

2,G − Xri
3,G

)
(8)

where Xi,G is a vector of D× 1 variables, and G is the number of iterations. The indices ri
1, ri

2, and ri
3

are mutually exclusive integers randomly chosen from the range (1, Np), the scaling factor F is
a positive control parameter for scaling the difference vectors. A detailed description of the algorithm
used in this work is presented in Karterakis et al. [58] and Chiu [59]. To consider the violation of
constraints in the constrained management model, a penalty function is added to the objective function
to convert a constrained problem into an unconstrained problem. Then, the added objective function



Water 2018, 10, 251 7 of 28

will be abandoned because of the worse performance. The penalty method can be easily handled by
DE algorithm.

3. Study Area

3.1. General Background

The Pingtung Plain, located in southern Taiwan, is one of the most important aquifers on the island.
The elongated plain, with an area of 1210 km2, is roughly 55 km long and 20 km wide. The plain is
bounded by the Central Mountain Range to the east, the Taiwan Strait to the southwest, and the low
hills to the north and northwest (Figure 2a). The topography of the Pingtung Plain varies from
the elevated Central Mountain Range in the east to the gently sloping alluvial fan in the west and
southwest. Altitudes range from 10 m above sea level at coastal areas to 110 m above sea level in
the mountain range. Streamflow in the Pingtung Plain is perennial and occurs primarily in response to
rainfall. The major streams in this area are Kaoping River, Donggang River, and Linbian River and all
of them discharge into Taiwan Strait (Figure 2a). The average annual precipitation in the plain is about
2400 mm, but the distribution is uneven during a year, with a ratio of wet season (May to October) to
dry season (November to April) of 9:1. Due to uneven distribution of rainfall, surface water supply
is usually insufficient and groundwater is used to satisfy the water demand. Accompanying with
rapid growth of aquaculture activities in the 1970s and the increase of population along the coastal
area, the water supply reliance on groundwater resources is severe and causes groundwater level
drawdown very quickly.

Figure 2. Cont.
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Figure 2. (a) The study area of Pingtung Plain in Taiwan; and (b) the cross-section (A–A′) representation
of the hydrogeological framework.

3.2. Hydrogeology

The Pingtung Plain mainly consists of unconsolidated sediments of the late Pleistocene and
Holocene period based on the drilling record. Two main active faults, Chaochou and Fengshan faults,
are located in the plain and both of them are high-angle and oblique-slip (Figure 2a). Based on
lithologic and downhole geophysical logs, the unconsolidated sediments are vertically divided into
four aquifers (F) and three aquitards (T). The sequence of the aquifer system is illustrated in Figure 2b
and it is referred to as aquifer 1 (F1), aquitard 1 (T1), aquifer 2 (F2), aquitard 2 (T2), aquifer 3-1 (F3-1),
aquitard 3 (T3), and aquifer 3-2 (F3-2) along a vertical direction. F1 consists of gravel and fine-to-coarse
sand and the thickness is about 50 m. F2 is mainly gravel with occasional fine sand and clay and its
thickness is about 60 m. F3-1 consists mainly of gravel and fine-to-coarse sand and it is about 75 m
thick. F3-2 also consists mainly of gravel with some sand and clay but the thickness is undetermined
because there are no wells fully penetrating this aquifer. T1, T2 and T3, which consist mainly of clay
with silt, lie between F1 and F2, F2 and F3-1, and F3-1 and F3-2, respectively.

Estimates of hydraulic conductivity from wells that perforate F1 range from about 0.155 to 364.0 m/day.
For the wells that perforate F2 and F3 (F3-1 and F3-2), estimated hydraulic conductivity ranges from 0.365
to 153 m·day−1, and from 0.005 to 120 m·day−1, respectively. Because no wells perforate the aquitards,
estimates of hydraulic conductivity in aquitards are based on lithology and range from 8.64 × 10−5 to
8.64× 10−2 m·day−1. Estimates of specific storage in the plain range from 7.15× 10−7 to 5.00× 10−5 m−1,
and estimates of specific yield range from 1.25 × 10−7 to 3.97 × 10−1 [60]. Regional groundwater flow
occurs from northeast to southwest, with an average hydraulic gradient of about 0.002 m·m−1.

3.3. Seawater Intrusion in Pingtung Plain

In the 1970s, aquaculture developed rapidly along the coastal area in Pingtung and the water
demand, relying on groundwater resources, increased drastically. The over-pumping seriously
caused the water level drawdown and induced seawater intrusion in the coastal aquifer [60]. Due to
the constitution of coarse sediments along the coast, the aquifers hydraulically connect to sea and form
as the pathway of seawater intruding into the inland. Based on groundwater quality samples and
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geophysical data, Chiang and Wang [1] delineated the pathway of seawater intrusion and demonstrated
that all aquifers F1, F2, F3-1 and F3-2 are connected to the sea and that the most serious areas threatened
by seawater intrusion occurred around the estuaries of Kaoping and Donggang rivers. The second
most serious areas of seawater intrusion occurred in the shallow aquifer F1 around Fangliao during
1980–1998. Peng et al. [61] found that seawater intrusion was more severe in the deep aquifer than
in the shallow aquifer, based on the indication of groundwater quality data. Chiang [62] stated that
seawater intrusion fronts in aquifers F1 and F2 moved inland by the rate of 300 m·year−1 and the area of
contamination is about 50 km2. The seawater fronts in the deeper aquifers F3-1 and F302 moved
into the inland by the rate of 400 m·year−1, faster than those in the shallow aquifers, and the area of
contamination is about 100 km2, also larger than that in the shallow aquifers.

Electric conductivity (EC) data, chloride concentration, and total dissolved solid (TDS) can be
used to indicate the occurrence of seawater intrusion and to locate its front. Taiwan Environmental
Protection Agency (TWEPA) used the TDS to detect saltwater and classified the quality of the sample
water into three categories, i.e., freshwater (TDS < 1000 ppm), semi-brackish water (1000 < TDS <
10,000 ppm), and brackish water (TDS > 10,000 ppm). Based on this classification, Chiang [60] found
that all coastal aquifers were contaminated in Pingtung plain where TDS concentrations were greater
than 1000 ppm. In aquifer F1, Gangdong and Xinpi were identified as the areas with semi-brackish
water, Donggang and Qifeng were identified as the areas with brackish water, and Dexing was
identified as the area with slightly contaminated groundwater (Figure 3a). In aquifer F2, the area of
contamination was smaller and Donggang was the only area identified as contaminated with brackish
water (Figure 3b). In aquifers F3-1 and F3-2, the areas of contamination were the most extensive,
and Xinyuan and Gangdong were the areas identified as contaminated with brackish water (Figure 3c).

Figure 3. The concentrations of TDS in Pingtung Plain: (a) aquifer F1; (b) aquifer F2; and (c) aquifer F3-1.
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3.4. Regional Groundwater Flow Model

The regional groundwater flow model of Pingtung Plain was developed using MODFLOW-2005.
The horizontal discretization consists of 78 rows and 35 columns, and each grid cell is 1000 m
× 1000 m. The aquifer system was vertically discretized into five layers: model layers 1 and 3
represent aquifers F1 and F2, model layers 2 and 4 represent the aquitards T1 and T2, and model layer
5 represents aquifer F3-1. Aquifer F3-2 was not included in the numerical model due to insufficient
measurements. The horizontal model discretization is shown in Figure 4b. The period of 1999–2010
was simulated and the temporal discretization consisted of one-month stress periods for a total of
144 stress periods using one-week time steps. Monthly stress period was made because only monthly
pumping data were available.

Figure 4. Regional groundwater flow model of Pingtung plain: (a) measured head in January, 1999;
(b) grid cells and zones of parameters (hydraulic conductivity, specific storage, and specific yield); and
(c) simulated groundwater levels in December 2010.

The aquifer-system properties for each model layer were assumed to be horizontally isotropic and
vertically anisotropic. The initial estimates of these properties, i.e., horizontal hydraulic conductivity,
vertical hydraulic conductivity, specific storage, and specific yield were set in the model based
on the report [2]. Model layer 1 was set as convertible and the other layers were set as confined.
Three types of boundary conditions were used—specified head, specified flux, and head-dependent
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flux. All lateral model boundaries, except for the southern boundary, were simulated as no-flow
boundaries (Figure 4b). Specified-head boundaries were located at the southern border of the model
corresponding to the sea and at the eastern border corresponding to the lateral point recharges of rivers.
The rainfall recharge was simulated by the recharge package based on the precipitation and estimated
infiltration coefficients [63]. The rivers were not included in the model because their interactions with
aquifers were insignificant. The water levels in 1999 were set as the initial condition in the model
(Figure 4a).

The regional groundwater flow model was calibrated by Chang [2] based on data obtained
from single-borehole pumping tests, cross-borehole pumping tests, monitoring wells, and pumpage.
The Thiessen polygon was used to parameterize the aquifer properties, i.e., hydraulic conductivity,
specific yield, and specific storage (Figure 4b). Due to lack of observation in the aquitards, estimates of
hydraulic conductivity in aquitards were based on lithology, ranging from 8.64 × 10−5–8.64 × 10−2

m·day−1 [64]. The calibrated parameters are shown in Table 1 and the simulated groundwater levels
are shown in Figure 4c. The calibrated regional flow model performed very well (Figure 5) and was
adapted for the development of seawater intrusion (SWI) model in this study. The water budget in
1999 obtained from the calibrated regional flow model (Table S1) confirmed that all aquifers were
overpumped and the regulation or management might be needed.

Figure 5. The scatter plot of sim and meas. of water levels by regional flow model (Chang [2]).

Table 1. The parameter values of Pingtung Plain groundwater flow model and SWI model.

Model Parameter
Regional Flow Model (Calibrated by Chang [2]) SWI Model(Calibrate Based on Historical TDS Data)

Aquifer F1 Aquifer F2 Aquifer F3-1 Aquifer F1 Aquifer F2 Aquifer F3-1

Grid cell size in x and
y-directions (m) 1000 × 1000 333 × 333

Grid cell size in
z-direction (m) 9–85 4–93 5–100 4.3–17.67 1.6–20 10.3–27.7

Horizontal hydraulic
conductivity (m·day−1) 0.15–231.55 0.03–200.30 0.61–230.00 0.15–100.00 17.12–200.30 1.98–230.00

Vertical hydraulic
conductivity (m·day−1) 0.003–4.63 0.0006–4.00 0.01–4.60 0.003–2.00 0.34–4.00 0.04–4.60

Specific storage (m−1) 6 × 10−6–6 × 10−5 6.8 × 10−6–5 × 10−5 6 × 10−6–4 × 10−5 6 × 10−6–4 × 10−5 1 × 10−5–2 × 10−5 6.75 × 10−6–1.8 × 10−5

Specific yield (-) 0.06–0.30 — — 0.06–0.21 — —

Dispersivity (m) — — — 0.01–400.00 0.01–300.00 0.001–500.00

4. Results

4.1. Development of the SWI Model

4.1.1. Refinement of Regional Groundwater Flow Model

Although the regional groundwater flow model was well calibrated, its coarse grid cell size is
unsuitable for the simulation of seawater intrusion and the model should be refined in both horizontal
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and vertical directions to accurately represent the process. However, the refinement of entire regional
groundwater flow model could extremely increase the number of cells and resulted in impractical
computation burden. To overcome the computational challenge and maintain the appropriate
boundary conditions simultaneously, MODFLOW-LGR was selected to complete this task [65].
MODFLOW-LGR allows smaller parts of a large model domain to be refined without refining the entire
model and inherits the boundary conditions from the original flow model.

The domain of the refined flow model should cover the areas where seawater intrusion occurred
and the TDS was used as the index to delineate these areas. Based on the historical data, the groundwater
quality worse than semi-brackish water (TDS > 1000 ppm) was defined as the occurrence of seawater
intrusion. The simulated domain for SWI model is decided based on the areas where seawater intrusion
occurred, i.e., the red rectangular area shown in Figure 6a. Due to the limitation of MODFLOW-LGR
implementation, the shape of refined model is restricted to be a rectangle. Therefore, the process of
model refinement was conducted twice to fully cover the entire irregular domain (red rectangular).
In the horizontal direction, each cell was subdivided into nine (three in each direction) and the refined
grid cell size is 333 m × 333 m. In the vertical direction, each cell was also subdivided into three cells
but its thickness depends on the thickness of original cell, which was not a constant. The new refined
groundwater flow model consists of 15 layers, 57 rows and 60 columns (the original flow model within
the selected domain consists of five layers, 19 rows and 20 columns).

The aquifer properties, i.e., hydraulic conductivity, specific yield, and specific storage, were
inherited from the calibrated regional flow model and directly set in the new refined flow model.
The pumping and recharge data were adjusted based on the grid cell size and even distributed to
each refined cell. The parameters used for building SWI model are shown in Table 1. To confirm
the correctness and accuracy of refinement process, the groundwater levels simulated by the refined
flow model were compared to those by the regional flow model (Figure 6b,c). The results showed
that the groundwater levels obtained from both models were almost identical and the correctness
of the procedure has been confirmed. The new generated refined groundwater flow model can
not only be used to accurately simulate seawater intrusion process but also to reduce the heavy
computational burden.

Figure 6. The refined groundwater flow model of Pingtung Plain coastal area: (a) the model grids;
(b) simulated groundwater levels at Xinpi; and (c) simulated groundwater levels at Qifeng.

4.1.2. SWI Model of Pingtung Plain

After obtaining the refined flow model, the SWI model of Pingtung plain was developed by
coupling MT3DMS and VDF package with the flow model. In MT3DMS, zero concentration values
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were specified at the specified head and flux conditions for any inflowing water, except the southern
boundary where the TDS concentration was set at 38,500 ppm (approximate to 35,000 ppm salt
concentration in seawater). The physical properties that affect mass transport are the retardation factor,
the first-order decay term, and hydrodynamic dispersion. Seawater was the only solute considered
in this study and adsorption was assumed negligible. Hence, the retardation factor for each layer
is equal to 1. Hydrodynamic dispersion, assuming zero molecular diffusion, was a function of
dispersivity and average velocity. In this study, an isotropic aquifer is assumed in the horizontal
plane and the dispersivity components were determined by longitudinal dispersivity (αL), horizontal
transverse dispersivity (αTH), and vertical transverse dispersivity (αTV). The Thiessen polygon used
to parameterize the aquifer properties was also used to parameterize the longitudinal dispersivity.
The initial values of longitudinal dispersivities ranged from 0.01 to 500 m. The αTH/αL (TRPT) and
αTV/αL (TRPT) are set equal to 1.0 and 0.1, respectively. The initial concentrations set for each model
cell were interpolated by using the ordinary kriging method based on historical TDS data, either
directly measured or indirectly converted from measured electrical conductivities, at each monitoring
well between 1999 and 2000 [60,66–68].

In the VDF package, the slope, noted as DRHODC (∂ρ/∂C in Equation (3)), is a critical variable
used to establish the relationship between density and concentration. The calculated slope of 0.7143
was set in the package based on the assumptions that the densities of seawater and freshwater are 1025
and 1000 (kg·m-3), respectively, and the concentrations of seawater and freshwater are 35.0 and 0.0
(g·L−1), respectively.

4.1.3. Calibration of SWI Model

Once the SWI model was developed, the next step is model calibration. The PEST [69], an automatic
parameter estimation software package, was applied to calibrate the mass transport model based on
the historical TDS data. The parameter selected to be calibrated was the longitudinal dispersivity.

Due to spatial scarcity of observations within the model domain, i.e., 134 over an area of 379.2 km2,
the sensitivity analysis was conducted on the parameters to avoid the problem of over-fitting. Only
the parameters with higher sensitivities were selected for calibration and parameters with low
sensitivities were fixed at the initial values. The truncated threshold was set based on Hill et al. [70],
i.e., those parameters whose sensitivity values are less than about 0.01 times the largest sensitivity value
were not estimated. The results of sensitivity analyses and the associated zones of dispersivities with
high sensitivities are shown in Figures S1 and S2. Based on results of the analysis, seven dispersivities
were selected for calibration and the scatter plot of measured and simulated TDS were shown in
Figure 7. The performance of calibration was satisfactory and its coefficient of determination (R2) was
about 0.85. The calibrated values of longitudinal dispersivities ranged from 0.01 to 500 m and they are
shown in Table 1. Once the SWI model was calibrated, the surrogate model of ANNs can be used to
replace the calibrated model through the training and testing processes.

Figure 7. The calibrated results of Pingtung Plain SWI model.
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4.2. The Surrogate Model of ANNs

To reduce the computational burden and increase the efficiency of management model,
the surrogate model of ANNs was used to replace the SWI model and then embedded in
the optimization algorithm. The development of ANNs should be based on the configuration of
management model, and two different scenarios for remediation of seawater intrusion were considered
in this study.

4.2.1. Management Scenario #1

The first management scenario focused on the remediation along the coastal area and tried to
shut down the pathway of seawater intrusion. The pre-determined locations of four injection barriers
are shown in Figure 8a and fixed during the optimization process. Each barrier consists of five
injection wells which were assumed to penetrate through all aquifers, i.e., aquifers F1, F2, and F3-1.
The injection rate varied with the barrier but unvaried with time. The locations of concentration
constraints coincided with the locations of injection wells and the MCL value set at each location was
applied to all three aquifers. Based on this setting, the total number of concentration constraints is
equal to 60 (20 locations × 3 layers).

The injection rates at injection wells and the concentrations at the constraint locations were used
as the input and output data, respectively. Based on the configuration of management scenario,
each different combination of injection rates at four injection barriers corresponded to the simulated
concentrations at 60 locations. The number of input and output nodes set in the ANNs were four
(injection barriers) and 60 (concentration locations), respectively. The number of discretized pumping
rates for each barrier varied from 0 to 1000 m3·day−1 with the interval of 200 m3·day−1 was equal
to six (0, 200, 400, 600, 800, and 1000 m3·day−1). Hence, the total combination of different pumping
scenarios is equal to 64 (=1296) which means the SWI model needs to run 1296 times to generate all
necessary data for the training of ANNs. After determining the architecture of the network, the input
and output data were first normalized to an interval between −1 and +1. The activation functions of
tangent (tansig) and linear (purelin) functions were used for the hidden and output layers, respectively.
The entire dataset was randomly divided into the training, validation, and testing sets by 60%, 20%,
and 20% of data, respectively. Two criteria, the convergent gradient which should be less than 10−7

and the maximum epoch which is equal to 1000, were implemented during the ANNs training process.
If any one of criteria is met, the training process is terminated. The correlation coefficient (R) for
the training, validation, and testing datasets was used to evaluate the performance of identified ANNs.

To prevent overfitting during the ANNs training, 3–9 neurons in the hidden layer from were tested.
The mean square error (MSE) was used as the index to evaluate the performances of the potential
models with different hidden nodes. The testing results are shown in Table 2 and the optimal number
of nodes in the hidden layer is equal to nine. Table 3 and the scatter plot of each dataset (not shown)
have confirmed the good performance of identified ANN model for this management scenario.

Table 2. The testing results of the number of neurons for the hidden layer in ANNs for the management
Scenario #1.

Number of Neurons Mean Square Error (MSE)

3 4.6813
5 0.72893
7 0.2347
9 0.14783
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Table 3. The performance of ANNs model for the management Scenarios #1 and #2.

Data Set
Correlation Coefficient (R)

Scenario #1 Scenario #2

Training 0.99785 0.96787
Validation 0.99787 0.96741

Testing 0.99779 0.96516
All 0.99784 0.9674

4.2.2. Management Scenario #2

The second management scenario focused on the inland areas where the concentrations were high
and the injection barriers were determined based on the distributions of semi-brackish and brackish
waters. According to the historical TDS data, the locations of five injection barriers were deployed
and fixed during the optimization process. Two barriers were assigned in each of aquifer F1 (Barriers
#1 and #2, Figure 8b) and F2 (Barriers #3 and #4, Figure 8c) and one barrier was assigned in aquifer
F3-1 (Barriers #5, Figure 8d). Barriers #1–#5 consisted of 10, 8, 7, 10, and 12 injection wells, respectively,
and these wells were assumed to only penetrate the assigned aquifers only. The injection rate also
varied with the barrier but unvaried with time. The locations of concentration constraints were set
along the high concentration areas in the assigned aquifer, but did not coincide with the injection
wells. The number of constraint locations assigned to aquifers F1, F2, and F3-1 were 16, 16 and 12,
respectively (Figure 8b–d). The total number of concentration constraints is equal to 44.

Again, the injection rates at injection wells and the concentrations at the constraint locations were
used as the input and output data, respectively. Based on the configuration of management scenario,
each different combination of injection rates at five injection barriers corresponded to the simulated
concentrations at 44 locations. The number of input and output nodes set in the ANNs were five
(injection barriers) and 44 (concentration locations), respectively. The number of discretized pumping
rates for each barrier varied from 0 to 1000 m3·day−1 with the interval of 250 m3·day−1 was equal to
five (0, 250, 500, 750, and 1000 m3·day−1). Hence, the total combination of different pumping scenarios
is equal to 55 (=3125) which means the SWI model needs to run 3125 times to generate all necessary
data for the training of ANNs. After determining the architecture of the network, the input and output
data were first normalized to an interval between −1 and +1 as well. The tangent and linear functions
were also used as the activation functions for the hidden and output layers, respectively. The partition
of each dataset and the stopping criteria of the training process used in the management Scenario #1
were implemented in this management scenario. The R was also used to evaluate the performance of
identified ANNs.

The testing of number of neurons in the hidden layer was neglected, because same SWI model
was used for simulation and its characteristics should be very similar. Hence, the tested results from
Scenario #1 was applied directly and the number of neurons was set equal to 9. Table 3 and the scatter
plot of each dataset (not shown) have confirmed the good performance of identified ANN model for
the management Scenario #2.

After completing the training processes of two ANNs models for two different management
scenarios, the computational time for each model has been tested and compared based on a PC with
inter Core i7 1.3GHz and 8GB RAM. A forward run of numerical model took about six to seven minutes,
but a forward simulation of ANNs took only three to four seconds. The computational burden can
be reduced by more than 98%. The reduction of computational time by using ANN as the surrogate
model to replace the numerical model shows a great advantage in the simulation–optimization
(S/O) approach. When conducting the linkage between the optimization algorithm and the complex
numerical model, which is the case in this study, this advantage makes the implementation of S/O
approach more practical and feasible.



Water 2018, 10, 251 16 of 28

Figure 8. The deployment of injection barriers for two management scenarios: (a) Scenario #1; (b) aquifer
F1 in Scenario #2; (c) aquifer F2 in Scenario #2; (d) aquifer F3-1 in Scenario #2.

4.3. Results of SWI Management

In this study, the DE algorithm was selected as the optimization algorithm to solve
the management model. The well trained ANNs was used to replace the SWI model and embedded in
the DE algorithm. The DE codes in MATLAB (Version R2013a, MathWorks, Natick, MA, USA) [56]
were adopted.

4.3.1. The Setting of DE Algorithm

To implement DE algorithm for seawater intrusion management, the injection rate at each well
belonging to the same barrier was varied simultaneously and considered as the decision variable.
The number of decision variables depends on the number of barriers configured in management model,
i.e., four and five for the management Scenarios #1 and #2, respectively. The maximum injection capacity
for all wells were the same and set equal to 1000 m3·day−1 corresponding to the training process of ANNs.
The initial injection rate was randomly generated by the DE algorithm. The convergence criterion of
objective function was set equal to 10−6 and the maximum generation is 200.

Before solving the management problem of seawater intrusion, three control parameters, Np, F,
and Cr implemented in the DE are tested to find the most efficient and robust setting. After trial and
error, Np, F, and Cr were set equal to 30–100, 0.85, and 1, respectively, for both scenarios. The setting of
DE algorithm is summarized in Table 4. The concentration constraints were attacked by the penalty
method. It is accomplished by adding a term to the objective function that prescribes a high cost
for violation of the constraints. The penalty method has already been included in the DE codes in
MATLAB and can be easily handled.
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Table 4. The setting of parameter values in the DE algorithm.

Mechanism of Vector Selection Random (Uniform Distribution)

Number of decision variables 4 in Scenario #1 and 5 in Scenario #2
Lower bound of decision variables 0
Upper bound of decision variables 1000

Population size 30, 50, 100
Max iterations 200
Scale factor F 0.85

Crossover probability 1

4.3.2. The Results of Status Quo

To evaluate the effectiveness of management strategies obtained from Scenarios #1 and #2,
the status quo without any actions was simulated for the comparison. The last year of calibrated SWI
model were repeatedly simulated for 20 years by using the precipitation, recharge, and pumping
data from the last year and the results are shown in the first column of Figure 9a. The figure showed
that seawater intrusion becomes more serious and the areas covered by seawater enlarge in aquifer
F1. In aquifer F2, TDS concentrations along the coastal areas, especially in Qifeng area, significantly
increased from 500 to 34,000 ppm after 20 years. In aquifer F3-1, although the concentrations at
Xinyuan (at the northwest of model) decreased slightly caused by the high recharge rate, values
still maintained at the high levels, ranging 28,000–31,000 ppm. According to this result, the potential
management strategies should be identified and then conducted to control and mitigate the salinization
of groundwater aquifers.

Figure 9. Cont.
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Figure 9. The optimized results in management Scenario #1: (a) the simulated TDS concentrations
after 20-year of remediation using identified optimal injection strategy #1; and (b) the difference of
concentrations between 20-year of remediation and the initial condition.

4.3.3. The Management Results of Scenario #1

For the first scenario, the remediation strategies focused on the areas along the coastal area and
the injection barriers was used to prevent further seawater intrusion. Different setting of MCLs were
considered in the management model to provide alternatives for decision making of seawater intrusion
remediation. The values of MCL were set equal to 5000, 3000, and 1000 ppm at the end of planning
horizon, i.e., 20 years, noted as Cases 1-1, 1-2, and 1-3, respectively. In each case, the population sizes of
30, 50, and 100 were tested and each population size was run six times to ensure the optimal solution
was identified. Regarding violation of concentration constraints, a penalty term with a high cost value
was added to the objective function.

In Case 1-1 (MCL = 5000 ppm), the objective function values obtained from different population
size were very similar and the optimal result was identified by using the population size of 30.
The minimized objective function value was equal to 4840.15 m3·day−1, and the Barriers #3 and #4
has the lowest and highest injection rates, respectively. The second column in Figure 9a showed
the simulated concentrations after 20-year of remediation using the optimal injection strategy.
The difference of concentrations between 20-year of remediation and the initial condition was shown
in the first column of Figure 9b to demonstrate the effectiveness of remediation. A significant reduction
of TDS concentrations was observed around the injection wells. In aquifer F1, the concentrations
around Donggang decreased significantly from 32,780 ppm to 14,385 ppm but those around Qifeng
still maintained at the high level with 32,766 ppm. In aquifer F2, the injection barriers worked well
along the coastal areas where the high concentrations were extensively mitigated from 28,626 ppm
to 6621 ppm. In aquifer F3-1, the injection strategy seemed ineffective and the plume with high
concentrations still covered large areas, especially around the inland. During the optimization process,
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the concentration constraints were never violated and implied that the setting of MCL value was too
high and could be achieved easily. Consequently, the injection strategy was less effective. To improve
the effectiveness of remediation, either a more rigorous concentration constraint should be set or
the planning horizon of remediation should be extended to achieve the ultimate target of converting
brackish water into freshwater.

In Case 1-2, a more rigorous MCL (=3000 ppm) was set and the minimal objective function values
obtained using the population size of 30 was equal to 6415.30 m3·day−1. Barriers #3 and #4 still have
the lowest and highest injection rates, respectively. The third column in Figure 9a showed the simulated
concentrations after 20-year of remediation using the optimal injection strategy. The difference of
concentrations between 20-year of remediation and the initial condition was shown in the second
column of Figure 9b to demonstrate the effectiveness of remediation. The effectiveness of remediation
was very similar to Case 1-1. In general, a significant decrease of TDS concentrations was observed
around the injection wells. The injection barriers performed well around Donggang in aquifer F1 and
along coastal areas in aquifer F2. However, the effectiveness of injection strategy on Qifeng area in
aquifer F1 and entire aquifer F3-1 was still poor. In Case 1-3, the most rigorous MCL (=1000 ppm) was
set and the minimal objective function values obtained using the population size of 100 was equal
to 9,825.00 m3·day−1. The forth column in Figure 9a and third in Figure 9b showed the simulated
concentrations and concentration difference after 20-year of remediation, respectively. The results
were also similar to Cases 1-1 and 1-2. The effectiveness of injection strategy on the Donggang area in
aquifer F1 and coastal areas in aquifer F2 slightly increased, but, for the Qifeng area in aquifer F1 (from
37,206 ppm to 27,219 ppm) and entire aquifer F3-1, it almost did not change and remained with high
concentration. The optimal results are summarized in Table 5.

Table 5. The optimal results of management Scenarios #1 and #2.

Cases Objective
Function

Injection
Rate #1

Injection
Rate #2

Injection
Rate #3

Injection
Rate #4

Injection
Rate #5

Scenario #1

Case 1-1 4840.15 944.85 1193.85 893.45 1808.00 —
Case 1-2 6415.30 1429.75 1619.85 1178.00 2187.70 —
Case 1-3 9825.00 2633.50 2436.65 1991.65 2763.20 —

Scenario #2

Case 2-1 5446.64 2505.50 0.64 0.028 1833.60 1106.88
Case 2-2 12964.55 2694.70 1069.84 1040.41 5010.80 3148.80
Case 2-3 26076.50 6766.50 7253.52 1277.22 5341.10 5438.16

From Cases 1-1 to 1-3, it was observed that when a more rigorous constraint was set, the remedied
areas in aquifers F1 and F2 only slightly increased but the associated costs significantly increase.
The optimal injection strategies have little effect on aquifer F3-1. Overall, the marginal benefit
corresponding to the remedied areas seems not to increase with the cost in terms of injection rates.
A low concentration (<1000 ppm) area located at the northwest in aquifer F3-1 was observed in all cases.
This area was far away from the injection barriers and should not be affected by any management
actions. Hence, the low concentrations might be caused by the recharge of Fengshan reservoir. Barrier
#4 has the highest injection rate among all barriers because its location was closest to the coastal and
coincided with the high concentration brackish water. Barrier #3 has the lowest injection rate among all
barriers because it was located at the areas with higher hydraulic conductivities and the concentration
constraints could be satisfied easier. None of barriers in all cases could remedy seawater intrusion in
aquifer F3-1 and this result implied that the arrangement of injection barriers should be reconsidered.

To verify the robustness of DE algorithm, the identified results from six times of repeated
optimization processes for each different population size were averaged. The results are shown
in Figure 10 for comparison. In each case, although the averaged objective function values obtained
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from different population sizes were slightly different, their associated injection rates were very similar
in terms of the trend and magnitude. This result confirmed the robustness of DE algorithm and
can be applied to solve the nonlinear optimization model. In general, the population size should
be increased with the setting of more rigorous constraints to extend the search domain and enlarge
the probability of identifying the optimal solutions. However, the large population size, i.e., 100 in this
scenario, did not guarantee to identify the optimal injection strategy because of the relative relaxation
of concentration constraints. When the population size increases, the associated computational time
and the iterations needed for convergence also increase. Hence, the trade-off between computational
efficiency and optimal solution should be considered when using the heuristic algorithms to solve
the optimization problems.

Figure 10. The averaged results from six times of repeated optimization processes for each different
population size in management Scenario #1.

In this scenario, the injection wells were set along the coastal areas and coincided with the locations
of concentration constraints. Although the high concentrations can be remedied and seawater intruded
from the sea can be alleviated, the radii of influence for the injection wells (barriers) were limited to
the small areas due to the groundwater flow directions and the high concentrations located at the inland
cannot be mitigated. Hence, the configuration of management scenario should be adjusted to improve
its effectiveness by reducing the areas with high concentrations as large as possible. The locations of
injection barriers should be shifted from the coastal areas toward the inland and the penetrated depth
of each well (barrier) should be designed based on the occurrence of seawater intrusion. The locations
of concentration constraints should not be located at the same locations of injection wells.
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4.3.4. The Management Results of Scenario #2

For the second scenario, the remediation strategies focused on the inland with high concentrations
and the injection barriers were deployed according to the occurrences of seawater intrusion in each
aquifer. Different setting of MCLs were also considered in the management model to provide
alternatives for decision making of seawater intrusion remediation. The value of MCL was set
equal to 15%, 30%, and 50% of reductions of initial concentrations at the end of the planning horizon,
i.e., 20 years, noted as Case 2-1, 2-2, and 2-3, respectively. The reason of using percentages of reduction
of initial concentrations instead of the absolute values set in Scenario #1 is to evaluate the effect of
different constraints on the performance of remediation. As for Scenario #1, the DE algorithm was run
six times with different population sizes of 30, 50, and 100 in each case. The violation of concentration
constraints was also handled by the penalty term.

In Case 2-1, the objective function values obtained from different population size were very
similar, and the optimal result was equal to 5,446.64 m3·day−1 identified by using the population size
of 50. Barriers #1 and #4 have the highest and second highest injection rates, respectively, and Barriers
#2 and #3 were inactivated. This result implied that Barriers #2 and #3 might be unnecessary and
15% concentration reduction at the constraint locations can be accomplished by natural recharge.
The second column in Figure 11a shows concentrations after 20-year of remediation using the optimal
injection strategy. The difference of concentrations 20-year of remediation and the initial condition is
also shown in the first column of Figure 11b to demonstrate the effectiveness of remediation. In aquifers
F1 and F2, the significant reduction of TDS concentrations was not only around the injection wells,
but also extended to the downstream gradient of groundwater. In aquifer F1, the concentrations
at the entire downstream gradient of injection barriers were mitigated significantly. In aquifer F2,
the concentration around Linyuan also decreased obviously from 24,465 ppm to 13,463 ppm. However,
in aquifer F3-1, the radii of influence for the injection wells were still limited to the areas nearby and
the injection strategy could not effectively remedy seawater intrusion at the deep aquifer.

In Case 2-2, a more rigorous MCL (30% of concentration reduction) was set and the minimal
objective function values obtained using the population size of 100 was equal to 12,964.55 m3·day−1.
Barrier #4 has the highest injection rate and the most significant increase of injection rate among
all barrier compared to Case 2-1. Barriers #2 and #3 were both activated due to the tighter
concentration constraints. The third column in Figure 11a and second in 11b showed the simulated
concentrations and concentration difference after 20-year of remediation, respectively. In general,
the effectiveness of injection strategy was very similar to Case 2-1. The reduction of concentrations
around the injection wells and their extents to downstream gradient of groundwater was significant;
however, the remediation in aquifer F3-1 was still not very successful. In Case 2-3, the most rigorous
MCL (50% of concentration reduction) was set and the minimum objective function values obtained
using the population size of 100 was equal to 26,076.5 m3·day−1. All of barriers increased their
injection rates evidently to satisfy the tightest concentration constraints. The barriers in aquifer F1 have
the highest and second highest injection rates, and the Barrier #2 has the most significant increase of
injection rate among all barriers compared to Case 2-2. Barrier #3 has the lowest highest injection rates.
The fourth column in Figure 11a and third column in Figure 11b show the simulated concentrations
and concentration difference after 20-year of remediation, respectively. Compared to Case 2-2, the high
concentrations around Xinpi in aquifer F1 were effectively reduced from 19,503 ppm to 645 ppm due to
the highest injection rate of Barrier #2. In aquifer F2, a slight increase of remedied areas was observed
and its effectiveness of injection strategy was similar to Case 2-2. Again, the remediation of aquifer F3-1
was still limited to the small areas around the wells. The optimal results are summarized in Table 5.

From Cases 2-1 to 2-3, it was observed that, when a more rigorous constraint was set, the remedied
areas in aquifers F1 and F2 could significantly increase associated with the increase of injection rates
(costs). However, the optimal injection strategies still have little effect on the remediation of aquifer
F3-1. A low concentration area located at the northwest in aquifer F3-1 was also observed in all cases
and should be caused by the recharge of Fengshan reservoir. Barriers #1, #4, and #5 can be interpreted
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as the base injectors to meet the target concentration levels and Barriers #2 and #3 can be interpreted as
supplementary injectors to satisfy the extra requirement when the concentration constraints become
tighter. Although the deployment of injection barriers was still not perfect, the effectiveness of injection
strategy has been improved compared to Scenario #1. The purposes of removing high concentrations
located at the inland and increasing the remedied areas in each aquifer were partially achieved.

Figure 11. The optimized results in management Scenario #2: (a) the simulated TDS concentrations
after 20-year of remediation using identified optimal injection strategy #2; and (b) the difference of
concentrations between 20-year of remediation and the initial condition.
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The identified results from six times of repeated optimization processes for each different
population size were also averaged to verify the robustness of DE algorithm. The results are shown
in Figure 12 for comparison. In general, the averaged objective function values obtained from
different population sizes were different and their associated injection rates were also slightly different.
In Case 2-1, the averaged value identified by using the population size of 30 (6398.21 m3·day−1) was
higher than that identified by using the population sizes of 50 and 100 (5,462.34 and 5,446.64 m3·day−1).
In both Cases 2-2 and 2-3, the lowest averaged values were identified by using the population size of
100. This result indicated that the small population size, i.e., 30, probably has the difficulty to solve
a more complicated problem, i.e., more rigorous constraints or more number of decision variables.
In this scenario, the number of decision variables was increased by one and the population size should
be set large enough, i.e., 100, to obtain a robust solution. The increase of population size could increase
the search domain and enlarge the probability of identifying the optimal solutions. Again, the large
population size does not guarantee to find the optimal management strategy but a more robust solution
can be identified by increasing the population size.

Figure 12. The averaged results from six times of repeated optimization processes for each different
population size in the management Scenario #2.

Except the effectiveness of each management scenario on seawater remediation, the performance
in terms of the cost was qualitatively evaluated. The installation cost of a well was assumed to
dominate the entire total cost (installation and pumping costs) and equal for each location (ignore
the depth and the length of penetration). The total cost of each management scenario can be evaluated
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approximately based on the total number of injection wells. The total number of injection wells in
the second scenario was equal to 47 (Barriers #1–#5 consisted of 10, 8, 7, 10, and 12 injection wells)
which was less than the total number of wells in the first scenario, i.e., 60 (4 barriers × 5 wells × 3
layers). Although the pumping cost in the second scenario is higher than that in the first scenario
(assuming the unit cost of pumping for each well is the same), the unit cost of pumping is inexpensive
in Taiwan and the total pumping cost cannot overwhelm the installation cost. Conclusively, the second
scenario qualitatively outperformed the first scenario in terms of effectiveness and cost.

5. Conclusions

In this study, a simulation–optimization model has been presented to solve the management
problem of seawater intrusion along the coastal aquifers in Pingtung Plain, Taiwan. The goal of
the management was to design an injection barrier as a strategy to mitigate seawater intrusion
where the objective was to minimize the total injection rate based on the pre-determined locations of
injection barriers. A computational framework of combining ANNs and DE algorithm was proposed.
The ANNs was used as the surrogate model to replace the numerical model of SEAWAT to increase
the computational efficiency. The heuristic optimization scheme of DE algorithm was selected to
identify the global optimal solution.

Due to the availability of well-calibrated regional groundwater flow model, MODFLOW-LGR was
selected to refine the regional flow model. The new generated flow model was coupled with MT3DMS
and VDF package to constitute the SEAWAT model and then calibrated based on the historical TDS
data. The developed SEAWAT model could not only accurately simulate seawater intrusion process
but also reduce the unnecessary computational burden. The development of ANNs was based on
the configurations of management scenarios and used to replace the SEAWAT model. The well-trained
ANNs can accurately mimic the numerical model with a correlation coefficient higher than 0.96
and the computational time can be reduced by more than 98%. The feasibility and efficiency of
simulation–optimization approach were further improved by embedding the surrogate model of
ANNs in the optimization scheme.

Two different management scenarios for seawater intrusion remediation were considered in this
study. The first scenario focused on the remediation along the coastal areas to prevent further seawater
intrusion. The second scenario focused on the remediation at the inland with high concentrations and
the deployment of injection barriers was based on the occurrences of seawater intrusion in each aquifer.
DE algorithm was selected as the optimization scheme to solve the management model. The injection
rates were considered as the decision variables and the concentration constraints were handled by
the penalty method. The identified optimal injection strategies from two management scenarios
showed that the second scenario has better performance than the first one in terms of the effectiveness
and cost. In the second scenario, the reduction of concentrations was not only around the injection
wells but also extent to the downstream gradient of groundwater in aquifers F1 and F2, However,
the reduction of concentrations was limited to the areas around the injection wells in the deep aquifer
F3-1 for both scenarios. Based on the results obtained from repeatedly solving the management model,
the DE algorithm has been confirmed as a robust optimization scheme to solve the groundwater
management problem. During the test of control parameters in the DE algorithm, the increase of
population size could increase the search domain and enlarge the probability of identifying the optimal
solutions when constraints become more rigorous or the number of decision variables increases. Under
appropriate design and setting of simulation–optimization model, the proposed framework in this
study can identify the optimal and reliable management strategies and provide a reference tool for
decision making with regard to seawater intrusion remediation.

The remediation strategy of injection is the only strategy considered in this study. Plenty
of strategies have been studied and implemented in the field; however, the selection of strategy
is not the scope of this study. The training process of ANNs based on the configuration of
management model was time consuming and inflexible. If the real-time update of ANNs can be
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considered during the training process, the advantage of using ANNs as the surrogate model in
the simulation–optimization approach will be even more apparent. The locations of the injection
barriers/wells were pre-determined and this assumption might downgrade the performance of
injection barriers/wells. To improve the performance of injection strategy, the locations of the injection
barriers/wells can be considered as the decision variables in the management model. However,
the computational time will increase exponentially and confront the challenge of identifying the optimal
solution. Besides, the planning horizon was set equal to 20 years and the short period of remediation
might be the reason that the deep aquifer cannot be remedied effectively. If the planning horizon
can be extended or even treated as the decision variable, a better management strategy for the deep
aquifer might be found. Further studies about the aspects mentioned above are desired to strengthen
the proposed framework for future research.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/10/3/251/s1.
Figure S1: The sensitivity analysis of dispersivity: (a) aquifer F1, (b) aquifer F2, (c) aquifer F3-1. Figure S2:
The associated zones of dispersivities: (a) aquifer F1, (b) aquifer F2, (c) aquifer F3-1 (the zones indicated with “*”
are the high sensitive zones). Table S1: The water budget of Pingtung Plain in 1999.
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