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Abstract: Prevention and remediation strategies for groundwater pollution can be successfully 
carried out if the location, concentration, and release history of contaminants can be accurately 
identified. This, however, presents a challenge due to complex groundwater systems. To address 
this issue, a simulation-optimization (S/O) model by integrating MODFLOW and MT3DMS into a 
shuffled complex evolution (SCE-UA) optimization algorithm was proposed; this coupled model 
can identify the unknown groundwater pollution source characteristics. Moreover, the Grids 
Traversal algorithm was used for automatically searching all possible combinations of pollution 
source location. The performance of the proposed S/O model was tested by three hypothetical 
scenarios with various combinations of mixed situations (i.e., single and multiple pollution source 
locations, known and unknown pollution source locations, steady-state flow and transient flow). 
The field measurement errors was additionally considered and analyzed. Our results showed that 
this proposed S/O model performed reasonably well. The identified locations and concentrations of 
contaminants fairly matched with the imposed inputs with average normalized deviations less than 
1% after sufficient generations. We further assessed the impact of generation number on the 
performance of the S/O model. The performance could be significantly improved by increasing 
generation number, which yet resulted in a heavy computational burden. Furthermore, the 
proposed S/O model performed more efficiently and robustly than the traditionally used artificial 
neural network (ANN)-based model. This is due to the internal linkage of numerical simulation in 
the S/O model that promotes the data exchange from external files to programming variables. This 
new model allows for solving the source-identification problems considering complex conditions, 
and thus for providing a platform for groundwater pollution prevention and management. 
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1. Introduction 

Groundwater is a precious fresh water supply in North China [1,2]. However, in the past 
decades, groundwater has been exposed to man-made pollution due to population growth, 
unplanned and uncontrolled industrialization, and irrigation activities [3]. Polluted groundwater 
was found in 90% of cities in China; among them, ~40% of cities had groundwater quality that 
threatens human health [4]. Groundwater pollution has been a serious environmental problem in 
China [5,6]. Prevention, remediation, and management strategies are necessary to ensure the 
sustainable utilization and development of groundwater. This presents a challenge because the 
accurate identification of pollution source characteristics remains largely unresolved. 

Identification of groundwater pollution sources is essentially an inverse problem. There is a 
large body of literature dedicated to resolving this problem. Atmadja and Bagtzoglo [7] and 
Amirabdollahian and Datta [8] provided a comprehensive review of approaches to solve inverse 
source-identification problems in groundwater systems. The recent research by Prakash and Datta 
[9] improved the accuracy of source identification through an optimized groundwater monitoring 
network. Moreover, Gorelick and Evans [10] used least squares regression and linear programming 
combined with a groundwater solute transport simulation to identify the locations and 
concentrations of aquifer pollutant sources. Foddis and Ackerer [11] investigated an artificial neural 
networks (ANNs)-based optimization model for determining pollutant characteristics in a two-
dimensional aquifer. Other proposed methods also include the stochastic differential equations 
backward in time method [12], an adaptive simulated annealing (ASA)-based solution [13], the 
adaptive multi-scale method [14], the normal-score ensemble kalman filter method [15], the global 
multi-quadric collocation method [16], and the monte carlo type inverse modeling method [17]. 

Although previous studies were able to obtain fairly satisfactory results, there are still a large 
number of limitations of efficiency and accuracy of contaminant source identification. For example, 
the optimized monitoring network method needs numerous sample data, which would cost lots of 
manpower and computational resources. Moreover, this method can only identify the potential 
direction of the pollution sources rather than their accurate locations and concentrations. Another 
example is the traditional least squares regression and linear programming method, which 
sometimes reaches a local optimal solution instead of a global optimal solution; this approach often 
leads to an inaccurate identification of contamination. Additional heuristic search based global 
optimal solution methods, such as ANNs, require enormous data for sample training that is very 
compute-intensive; this method normally results in unaffordable computation. 

Among the above-mentioned methods, numerous studies have proposed that the shuffled 
complex evolution (SCE-UA) algorithm could achieve a more accurate solution than that by other 
global and local search algorithms in terms of identification and calibration problems [18]. Kuczera 
reported that a better performance of the SCE-UA is due to the periodic global sharing of information 
between all local simplex searches [19]. Recently, although new optimization algorithms have been 
developed and some algorithms have indeed demonstrated a great capability for handling certain 
problems, the SCE-UA algorithm is still widely used for identification and calibration problems. 
Researchers have improved and enhanced its capabilities as demonstrated by lots of case studies [20]. 
Table 1 summarizes case studies of SCE-UA’s application over the last eight years (2010–2017) [21–35]. 

Table 1. Applications of shuffled complex evolution (SCE-UA) algorithm during the last eight years. 

Case Study SCE-UA 
Automatic calibration 27 

Identification 9 
Algorithm enhancement 3 
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2. Methodology 

2.1. The Simulation-Optimization (S/O) Model Framework 

To produce reasonable and efficient identifications for unknown pollution source characteristics 
based on observation data, our proposed S/O model was built by integrating the Grids Traversal and 
SCE-UA algorithms into numerical simulators including MT3DMS and MODFLOW. MODFLOW is 
used for simulating a flow field that serves as an input to simulate pollutant transport process in 
MT3DMS [36]. The model structure is shown in Figure 1. More detailed descriptions of each module 
and its interactions with other modules are further discussed in Sections 2.2–2.4. 

 
Figure 1. The model structure and the interactions among the major modules: Basic package(BAS), 
River package(RIV), Layer-Property Flow package(LPF), Evapotranspiration package(EVT), Drain 
package(DRN), Strongly-Implicit Procedure package(SIP), Preconditioned Conjugate-Gradient 
package(PCG), Recharge package(RCH), Sink & Source Mixing package(SSM), Basic Transport 
package(BTN), Flow Model Interface package(FMI), Advection package(ADV), Dispersion 
package(DSP), Chemical Reaction package(RCT), Generalized Conjugate Gradient Solver 
package(GCG) . 

2.2. Numerical and Optimization Methods 

2.2.1. Governing Equations 

Three-dimensional (3D) transient groundwater flow through a heterogeneous, anisotropic, and 
saturated aquifer can be represented by the following partial differential equation [37]: 

xx yy zz s
h h h hK K K W S

x x y y z z t
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 (1) 

where Kxx, Kyy, and Kzz are hydraulic conductivities along the x, y, and z directions, respectively, 
which are assumed to be parallel to the principle flow directions (L T−1), h is the potentiometric head 
(L), W is volumetric flux per unit volume of aquifer representing fluid sources (positive) and sinks 
(negative) (T−1), Ss is the specific storage of the porous media (L−1), and t is the time step (T). The 
governing equation (1) along with the hydrogeological boundary and initial conditions can simulate 
transient 3D ground-water flow in a heterogeneous and anisotropic medium. 

Pollutant transport through the heterogeneous and saturated aquifer is governed by the 3D 
advection-dispersion equation [36,38]: 
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where θ is the dimensionless porosity; Ck is the concentrations of species k (ML−3); Di,j is the 
hydrodynamic dispersion coefficient tensor (L2 T−1); vi is the seepage or linear pore water velocity (L 
T−1), vi = q i/θ, qi is the specific discharge or Darcy flux, qS is the volumetric flow rate per unit volume 
of aquifer representing fluid sources (positive) and sinks (negative), T−1; CkS is the concentration of 
the source or sink flux for species k, ML−3; and ∑Rn are chemical reaction terms, ML−3 T−1. 

2.2.2. SCE-UA Algorithm 

The Shuffled Complex Evolution algorithm (SCE-UA) is a generalized global searching 
optimization algorithm that was originally developed by Qingyun Duan of the University of Arizona 
[39]. The SCE-UA algorithm combines complex procedures with competition evolution theory, 
concepts of controlled random search, the complex shuffling method, and downhill simplex 
procedures to obtain a global optimal estimation. It has been used in many hydrological inverse 
models for determining unknown hydrological parameters [18,19,40–45]. Previous studies have 
indicated that the SCE-UA algorithm is able to accurately identify the appropriate values for model 
parameters. In most cases, the SCE-UA algorithm can robustly and rapidly achieve a satisfactory 
result with a global minimum error. 

2.3. Grids Traversal Algorithm 

Accurate determination of pollution source locations is crucial for groundwater pollution 
treatment. However, in most cases, pollution source locations are often unknown. A common method 
for addressing this is to manually predefine an area covering all possible pollution sources based on 
field investigation. Moreover, the complexity of identification would be increased substantially with 
the increasing number of potential pollution sources. For example, if the predefined area covers 16 
grids and only one pollution location is existent, in theory, we can possibly have 16 combinations of 
locations. However, if there are two potential pollution source locations in this area, then 120 
combinations are theoretically possible with regard to contaminant source locations. 

In this study, we proposed to use the Grids Traversal algorithm, which can automatically search 
all possible combinations of pollution source locations. In the framework of the Grids Traversal 
algorithm, the range of the predefined area is defined by a grid index of two endpoints, as shown in 
Figure 2, the initial and final grids. The initial grid defines the lower bounds of the row, column, and 
layer of the predefined area labeled as Rmin, Cmin, and Lmin, respectively; and the final grid defines the 
upper bounds of the row, column, and layer of the predefined area denoted as Cmax, Rmax, and Lmax, 
respectively. The S/O model requires the inputs for the lower and upper bounds and the number of 
potential pollution source locations. All possible combinations of pollution source locations can be 
automatically searched by the Grids Traversal algorithm within the area bounded by the initial and 
final grids. The search process was performed though a computer program written by FORTRAN 
internally coupled with the S/O model (Figure 3). For example, if the predefined area covers three 
grids which are marked as 1, 2, and 3 and two source locations are existent, the Grids Traversal 
algorithm would search step-by-step, i.e., (1, 2), (1, 3), and (2, 3), until all possible pollution source 
locations have been fully searched. For a transient flow, the Grids Traversal algorithm will search all 
possible pollution source locations at all time steps throughout the running time. 
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Figure 2. Illustration of the initial grid and the final grid. 

 

Figure 3. Fortran code of the Grids Traversal algorithm for the above example. 

2.4. The S/O Model 

2.4.1. Residual Error (RE) 

The identification of unknown groundwater pollution source characteristics aims at minimizing 
the residual error (RE), which is the sum of absolute differences between the simulated and observed 
concentrations divided by the observed concentration. The residual error is mathematically described 
as [46,47]: 

1
1 1

1 1 1

min | | 100
t tNm

t m m
t

m m

Csim CobsRE
Cobs=

 −
= × 

 
∑  (3) 
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Subject to 

( )C f Q=  (4) 

l uQ Q Q≤ ≤  (5) 

where t represents the tth stress period; Nm1 is the total number of observation locations; Csimtm1 is 
the simulated concentration at the m1th observation location of the tth stress period; Cobstm1 is the 
observed concentration at the m1th observation location of the tth stress period; Ql and Qu are the 
lower and upper bounds representing possible ranges for the concentration variables Q of pollution 
sources, respectively; and f(Q) is a function transforming the concentration variables Q of pollution 
sources into concentration variables C of observation locations via the groundwater flow and 
transport models. 

If the RE value is zero, the identified pollution locations and concentrations perfectly match the 
observational data, but in reality the RE is always greater than 0 due to the errors induced by 
simulation and observation. Essentially, a smaller RE suggests a better match between the simulated 
concentration and the observed concentrations. 

2.4.2. Normalized Deviation (ND) 

The performance of the S/O model can be better measured by a normalized difference between 
the actual and simulated concentrations of pollution sources, which is defined as: 

2
2 2

2 1 2

| | 100
t tNm

t m m
t

m m

Qide QactND
Qact=

−
= ×∑  (6) 

where Nm2 is the total number of pollution sources; Qidetm2 is the identified concentration at the m2th 
pollution source of the tth stress period; and Qacttm2 is the actual concentration at the m2th pollution 
source of the tth stress period. A smaller ND value represents that the identified source concentrations 
are closer to the actual values, and thus that the S/O model performs better. 

2.4.3. Incorporating Measurement Errors 

Identified concentrations would be perturbed by the concentration measurement errors that 
generally occur in field measurements or laboratory tests. In order to evaluate how sensitive the S/O 
model is to the measurement errors, an analysis for the S/O model incorporating measurement errors 
was therefore performed. The perturbed concentration value is defined as follows [48]: 

1 1 = +t t
m mCobs Cobs rε′  (7) 

where 1
t
mCobs ′  is the perturbed observed concentration at the m1th observation location of the tth 

stress period; and rε  is the random error term and can be defined as: 

1 = a t
mr Cobsε ×  (8) 

where 0 ≤ a ≤ 1.0. In this study, a varies from 0.05 to 0.3. A larger a indicates a higher level of noise in 
the data; it is assumed that a <0.15 corresponds to a low noise level; 0.15 ≤ a ≤ 0.25 corresponds to a 
moderate noise level; and a >0.25 corresponds to a high noise level. Note that a = 0 represents that 
measurements are free of error. 
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2.4.4. Linkage of Simulation-Optimization Model 

The S/O identification model can be divided into two main sections: simulation and optimization 
models. The simulation model includes MODFLOW and MT3DMS that were used to simulate the 
groundwater flow and contaminant transport processes. The optimization model includes the SCE-
UA algorithm, which was used to automatically alter the concentrations of pollution sources to better 
fit the observational dataset. Figure 4 shows the interactions of the simulation and optimization 
models. The Grids Traversal algorithm mentioned above was incorporated into the S/O model. All 
of these functions are internally linked by FORTRAN interface programs and can be easily compiled 
into one execution file. This novel design modifies the way of data exchange from using external files 
to programming variables, which makes the S/O model feasible to deal with transient flow problems; 
this can significantly improve the accuracy and efficiency of computation for the inverse problem. 

SCE-UA Algorithm

Reflection

DuationContraction

Optimization Model

MODFLOW/MT3D
MS

SSM. File

WEL. FileBTN. File

Simulation Models

RE

Simulated 
Concentration

Observed 
Concentration

Residual Values

Calculate

 
Figure 4. The link of simulation and optimization models. RE: residual error. 

Identification of unknown groundwater pollution source characteristics was performed by four 
procedures at every stress period: (1) The Grids Traversal algorithm generated new possible pollution 
source locations; (2) The SCE-UA algorithm and interface program rewrote input files of simulation 
models, such as .BTN, .SSM, and .WEL, with predefined or updated values; (3) MODFLOW and 
MT3DMS simulated pollutant concentrations of observation locations with updated concentrations 
and locations of pollution sources, and then the interface program calculated the RE values; and (4) 
The SCE-UA algorithm updated pollutant concentrations of pollution sources by three steps 
(reflection, contraction, and duration) based on RE values. When all possible pollution source 
locations have been identified, the identification process will move on to the next stress period until 
all stress periods were implemented. Figure 5 illustrates the identification process of the S/O model. 
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Figure 5. Schematic representation of linked simulation-optimization (S/O) model using the SCE-UA 
optimization algorithm. 

3. Assessment of the S/O Optimization Model 

The performance and robustness of this proposed S/O optimization model was assessed by 
various combinations of simple and complex situations of three hypothetical scenarios as discussed 
below. 

3.1. Hypothetical Scenarios 

In all hypothetical scenarios, a two-dimensional confined aquifer with a simplified aquifer 
domain and boundary conditions was considered. This model grid was taken and modified from 
Datta, Chakrabarty and Dhar [46] and Singh and Datta [49]. The study area was assumed to be 
homogeneous and isotropic. The plan view is shown in Figure 6. The rectangle aquifer model had 
dimensions of 1300 m × 800 m and was discretized into square grid blocks with a grid size of 100 m 
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× 100 m. The boundary conditions were specified as constant head = 100 m at west and constant head 
= 88 m at east, and no-flow was imposed at the upper and lower boundaries. 
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Figure 6. The aquifer model domain. 

The parameters of the groundwater flow and transport models are listed in Table 2. All 
hydrogeological parameters and flow conditions of the numerical model were simplified to test the 
proposed S/O model. 

Table 2. Parameters of the groundwater flow and transport model. 

Parameter Value 
Kxx (LT−1) 0.1 
Kyy (LT−1) 0.1 
△x (L) 100 
△y (L) 100 
b (L) 80 

Di,j (L2 T−1) 40 
ε 0.3 

The control parameters of the SCE-UA algorithm are given in Table 3. 

Table 3. Input control parameters of SCE-UA algorithm. 

Parameter Value 
Generation number 10 

Number of points in each complex 3 
Number of complex 10 

Sample size 30 
Number of points in each sub-complex 2 

Number of each sub-complex evolution step 5 
Ql (mg L−1) 0 
Qu (mg L−1) 80 

Three hypothetical scenarios were designed with varying numbers, locations, and 
concentrations of pollution sources and observation locations: 
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(1) A simple scenario with one pollution source (location is known) and two observation locations 
under steady-state flow; 

(2) A complex scenario with two potential pollution sources (locations are unknown) and four 
observation locations under a steady-state flow condition; 

(3) A more complex scenario with two potential pollution sources (locations are unknown) and four 
observation locations under transient flow conditions with three stress periods. 

3.1.1. Scenario 1 

Identification with Error-Free Concentration Measurements in Scenario 1 

For Scenario 1, one pollution source was considered at A1 (row = 4, column = 1, Qact1 = 48 mg 
L−1). Two observation locations were considered respectively at O1 (row = 4, column = 4, Cobs1 = 1.58 
× 10−5 mg L−1) and O2 (row = 5, column = 3, Cobs2 = 1.16 × 10−5 mg L−1) (Figure 6). The S/O optimization 
model was able to use the observed concentrations Cobs1 and Cobs2 to correctly identify the 
concentration Qact1 of the pollution source. The performance of the S/O model was measured by the 
normalized deviation (ND) between the identified and actual concentration values. The identified 
results with different generation numbers are given in Table 4 and Figure 7. Note that the 
concentration values used for graphing in Figure 7 are the optimal results of each generation. 

Table 4. Effect of variation in the generation number. 

Concentration 
Generation Number 
10 20 50 

Actual concentration (mg L−1) 48 48 48 
Identified concentration (mg L−1) 47.982 47.999 48.002 

ND (%) 0.037 0.002 0.005 
Note: ND: normalized deviation. 

 
Figure 7. Effect of variation in generation number. 

The performance of the S/O optimization model was assessed by using the generation number 
of 10, 20, and 50. As is shown in Table 4 and Figure 7, ND values with a different generation number 
were all trivial, which suggested that the identified concentrations robustly matched the imposed 
concentration. Although the identified concentrations were different from the actual value at the very 
first iteration, the S/O optimization model was able to eventually reproduce the actual concentration 
with increasing generation number. Note that an increase in the generation number from 20 to 50 
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was found to produce only a marginal difference in the identification results but could significantly 
increase the computational burden. 

Identification with Concentration Measurement Errors in Scenario 1 

The performance of the S/O optimization model considering concentration measurement errors 
was assessed and is presented in Table 5. It was observed that when a low noise level was included 
in the observational data, the ND is relatively low, ranging from 0.02% to 9.883%; when the noise 
level was moderate and high, the ND values were relatively high, spanning from 17.828% to 28.183%. 
These facts indicated that the identified results could be slightly affected by a low noise level but can 
be pronouncedly affected by moderate and high noise levels. However, the influence of concentration 
measurement errors could be realistically reduced by (1) more observation locations with (2) more 
concentration measurements. This is further demonstrated by the following scenarios. 

Table 5. Identified results with different noise levels. 

Noise Levels A Actual Concentration (mg L−1) Identified Concentration (mg L−1) ND (%) 
0.05 48 48.009 0.020 
0.1 48 50.516 5.242 

0.15 48 52.744 9.883 
0.2 48 56.557 17.828 

0.25 48 59.036 22.991 
0.3 48 61.528 28.183 

3.1.2. Scenario 2 

In many cases, we can hardly access useful information about pollution source locations and 
concentrations. To evaluate the capability of the S/O optimization model for addressing this kind of 
issue, a complex scenario with additional pollution sources and observation locations was 
considered. 

In Scenario 2, it was assumed that there were two pollution sources and that their potential 
locations were spread over a predefined subarea of 24 grids (covered by red color in Figure 8) of the 
study area. Therefore, these two pollution sources could be located in any two of the 24 possible grids 
and a total 276 combinations of locations needed to be searched and identified. 

 
Figure 8. Distribution of potential pollution sources, actual pollution sources, and observation 
locations. 
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The actual locations of these two pollution sources were assumed to locate in A1 (row = 3, 
column = 2, Qact1 = 48 mg L−1) and A2 (row = 7, column = 3, Qact2 =36 mg L−1), respectively. The four 
observation locations and their relevant concentrations are O1 (row = 2, column = 4, Cobs1 = 1.13 × 10−5 
mg L−1), O2 (row = 3, column = 5, Cobs2 = 0.17 mg L−1), O3 (row = 7, column = 4, Cobs3 = 3.53 × 10−6 mg 
L−1), and O4 (row = 7, column = 6, Cobs4 = 6.46 × 10−6 mg L−1), respectively. 

A large number of pollution source locations have been determined, but we only show the most 
satisfying results with smaller ND values (Table 6). The pollution source locations have been correctly 
identified from the 276 possible locations. The minimum ND value was 0.323%; this showed that both 
locations and concentrations matched well with the actual values. The best identified concentrations 
were 47.95 mg L−1 and 35.81 mg L−1, respectively, which is identical to the actual concentrations 48 mg 
L−1 and 36 mg L−1. Note that when the identified locations were correctly located, the ND values varied 
from 0.323% to 1.945% with satisfactory estimated concentrations; when the identified locations were 
missed, the ND values varied from 8.236% to 90.765% and the identified concentrations were very 
different from the imposed concentrations. The above suggests that a correct determination of 
pollution source locations is necessary for further correctly identifying the pollution source 
concentrations. 

Table 6. Comparison of actual and identified pollution sources characteristics for generation = 10. 

Results No. 
Locations of Pollution Sources 

Concentrations of Pollution 
Sources ND (%) 

 Actual (mg L−1) Identified (mg L−1) Actual (mg L−1) Identified (mg L−1) 

1 
A1 (3, 2) (3, 2) 48 47.950 

0.323 
A2 (7, 3) (7, 3) 36 35.805 

2 A1 (3, 2) (3, 2) 48 48.067 0.570 
A2 (7, 3) (7, 3) 36 36.360 

3 
A1 (3, 2) (3, 2) 48 49.561 

1.945 
A2 (7, 3) (7, 3) 36 35.770 

4 
A1 (3, 2) (3, 2) 48 47.996 

8.236 A2 (7, 3) (8, 1) 36 30.073 

5 
A1 (3, 2) (2, 1) 48 47.99 

47.108 
A2 (7, 3) (7, 3) 36 69.91 

6 
A1 (3, 2) (8, 2) 48 2.120 

90.765 A2 (7, 3) (8, 3) 36 66.941 

The effect of variation in generation number was additionally analyzed. The optimal identified 
results for generation numbers 10, 20, and 50 were both lower than 1%, which demonstrates that the 
S/O model is robust for inversely capturing the contaminant concentrations and locations (Table 7 
and Figure 9). The identified results indicate that ND values could be reduced by increasing the 
number of generations, but with only a negligible improvement after the 10th generation. 

Table 7. Effect of variation in generation number. 

Generation 
Locations of Pollution Sources  Concentrations of Pollution Sources  

ND (%) 
Title Actual Identified Actual (mg L−1) Identified (mg L−1) 

10 
A1 (3, 2) (3, 2) 48 47.950 

0.323 
A2 (7, 3) (7, 3) 36 35.805 

20 
A1 (3, 2) (3, 2) 48 48.005 

0.064 
A2 (7, 3) (7, 3) 36 36.042 

50 
A1 (3, 2) (3, 2) 48 47.998 

0.008 
A2 (7, 3) (7, 3) 36 36.004 
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Figure 9. Effect of variation in generation number. 

3.1.3. Scenario 3 

This scenario represents the most real-world application, where the pollutant concentrations of 
pollution sources are varying at different stress periods. Therefore, a more complex hypothetical 
scenario was designed for a transient flow with a 3-year time domain. The temporal space had three 
stress periods; each period was one year that was further divided into 10 equal time steps. 

In this hypothetical scenario, there were two pollution sources that potentially spread over a 
predefined subarea comprising 24 grids (covered by red color in Figure 10). In principle, these two 
pollution sources may be located in any two of the 24 grid locations and a total of 276 possible 
combinations of locations needed to be searched and identified at each stress period. The actual 
locations of these two pollution sources were set to be located in A1 (row = 3, column = 2) and A2 
(row = 7, column = 3). Six observation locations were considered and located at O1 (row = 2, column 
= 4), O2 (row = 3, column = 4), O3 (row = 4, column = 5), O4 (row = 5, column = 5), O5 (row = 6, column 
= 4), and O6 (row= 7, column = 4), respectively. The concentrations of these two pollution sources 
differed at each stress period. The imposed concentrations and locations of actual pollution sources 
(Qact) and observation location (Cobs) at each stress period are listed in Table 8. 

For a transient flow problem, the identification of the current stress period was based on the 
identified results of the previous stress period. For example, the identification of the first stress period 
was solved by treating the flow system as at steady-state. During the second stress period, the S/O 
optimization model directly used the identified results of the first stress period as input that serves 
as an initial guess for the second stress period. The same procedure is applied until the end of 
simulation time to fully accomplish the whole identification process. Note that the identified results 
of the current stress period would be significantly affected by the identified results of the previous 
stress period. Therefore, the ND value (i.e., errors) would accumulate with the increasing stress 
periods. 

The optimal identification results of each stress period are shown in Table 9 and Figure 11 when 
the generation number was 10. The ND value is 2.91 at the first stress period, which was acceptable 
(Table 9), but the identified location and concentration does not match well with the actual values at 
the second and the third stress periods; the ND value increased up to 58 at the end of the third stress 
period. This indicates that satisfactory results cannot be inversely resolved if the generation number 
is 10. 
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Figure 10. Distribution of potential pollution sources, actual pollution sources, and observation locations. 

Table 8. Concentrations and locations of actual pollution sources and observation locations for each 
stress period. 

Title Locations Stress Period 1 (mg L−1) Stress Period 2 (mg L−1) Stress Period 3 (mg L−1) 
A1 (3, 2) 48 36 24 
A2 (7, 3) 36 0 24 
O1 (2, 4) 8.7 × 10−6 1.23 × 10−4 5.57 × 10−4 
O2 (3, 4) 6.21 × 10−4 4.34 × 10−3 1.28 × 10−2 
O3 (4, 5) 2.88 × 10−8 7.18 × 10−7 5.04 × 10−6 
O4 (5, 5) 7.13 × 10−7 1.67 × 10−5 9.77 × 10−5 
O5 (6, 4) 1.38 × 10−2 8.63 × 10−2 0.21 
O6 (7, 4) 0.47 1.16 1.85 

Table 9. Comparison of actual and identified characteristics when the generation number is 10. 

Stress Period No. 
Locations Concentrations 

ND (%)  
 Actual Identified Actual (mg L−1) Identified (mg L−1) 

1 
A1 (3, 2) (3, 2) 48 47.035 

2.91 
A2 (7, 3) (7, 3) 36 37.378 

2 
A1 (3, 2) (3, 2) 36 42.484 

- 
A2 (7, 3) (7, 1) 0 34.892 

3 
A1 (3, 2) (8, 2) 24 47.128 

58 
A2 (7, 3) (8, 3) 24 19.286 

 

  
(a) Location A1 when generation number is 10. (b) Location A2 when generation number is 10. 

Figure 11. Identified results of A1 (a) and A2 (b) when generation number is 10. 
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When the generation number was set to be 20, only the first and the second stress periods can 
obtain acceptable results (Table 10 and Figure 12). However, if the generation number was further 
increased to 50, the S/O model can produce satisfactory results at all three stress periods (Table 10 
and Figure 12). 

Table 10. Comparison of actual and identified characteristics when the generation number is 20 and 50. 

Generation Stress 
Period No. 

Location Concentrations 
ND (%) 

 Actual Identified Actual (mg L−1) Identified (mg L−1) 

20 

1 
A1 (3, 2) (3, 2) 48 47.795 

0.45 A2 (7, 3) (7, 3) 36 35.833 

2 
A1 (3, 2) (3, 2) 36 38.004 

- 
A2 (7, 3) (7, 3) 0 0.901 

3 
A1 (3, 2) (3, 2) 24 14.740 

23 
A2 (7, 3) (7, 3) 24 22.188 

50 

1 
A1 (3, 2) (3, 2) 48 47.994 

6 × 10−5 
A2 (7, 3) (7, 3) 36 36.003 

2 
A1 (3, 2) (3, 2) 36 36.067 

- 
A2 (7, 3) (7, 3) 0 0.004 

3 
A1 (3, 2) (3, 2) 24 23.816 

0.93 
A2 (7, 3) (7, 3) 24 23.736 

The results from the above with different generation numbers suggests that, when the situation 
refers to transient flow identification, a larger generation number is required to achieve satisfactory 
results than that for the steady state cases, since the identified errors would keep accumulating 
throughout the whole identification process. Moreover, if the identification problem has more stress 
periods, a large generation number is needed to obtain more accurate results. 

  
(a) Location A1 when generation number is 20. (b) Location A2 when generation number is 20. 

  
(c) Location A1 when generation number is 50. (d) Location A2 when generation number is 50. 

Figure 12. The identified results of A1 and A2 when generation number is 20 and 50. 
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3.2. Comparison with an ANN-Based Model 

The performance of the S/O identification model was further assessed by comparing it to an 
artificial neural network (ANN) model [11]. In the ANN-based model, the ANN optimization 
algorithm does not explicitly link with physical simulation models, such as MODFLOW and 
MT3DMS. However, the solutions of the flow and transport models are still required for the training 
of the ANN. Therefore, the simulated results produced by the physical simulation model are 
externally added to the training process of the ANN, which makes the performance of the ANN-
based model less efficient. The identified results using the proposed S/O model are comparatively 
more efficient than those using the ANN-based model (Table 11). The ND value was 0.24 in the first 
stress period obtained using the ANN-based model. However, the ND value increased to 10.38 in the 
third stress period, suggesting that the identified results were very different from the actual dataset. 
This is partly because the ANN-based model requires numerous data for sample training; hence, a 
larger generation number was needed to achieve a better solution. 

Table 11. Comparison of identification errors using the proposed S/O model and the artificial neural 
network (ANN)-based model. 

Stress Period No. 
S/O Model ANN-Based Model 

Generation Number ND (%) Generation Number ND (%) 
1 50 6 × 10−5 50 0.24 
2 50 - 50 - 
3 50 0.93 50 10.38 

4. Conclusions 

In this study, a SCE-UA-based simulation-optimization (S/O) model and a Grids Traversal 
algorithm were introduced to address the inverse problem of identifying groundwater pollution 
sources. This proposed S/O model is applicable for scenarios where there is little information about 
the starting release time, locations, and concentrations. Moreover, the S/O model can handle multiple 
sources having different source activities in each stress period with a transient flow field. The case 
studies showed that the S/O model can effectively and accurately identify unknown groundwater 
pollution, while the artificial neural network (ANN) model is less computationally efficient. The 
performance of the S/O model can be improved by increasing the number of generations, but this 
only produces marginal improvement after reaching the threshold generation number while 
increasing computational cost. When solving a transient flow inverse problem, a larger generation 
number is needed for reducing the accumulation of identification errors from the previous stress 
periods. 

However, it is still a challenge for the S/O model and other existing source identification models 
to reliably handle a real-world case. This is because of following reasons. First, in the S/O model, we 
use MODFLOW and MT3DMS to simulate groundwater flow and contaminant transport processes. 
The performance of the S/O model depends on how closely the physically based simulation model 
represents the complex aquifer properties and relevant transport behavior. Specifically, groundwater 
systems are typically heterogeneous and anisotropic in terms of aquifer properties (i.e., hydraulic 
conductivity). Moreover, boundary conditions typically vary greatly in both space and time. 
Therefore, the accurate characterization of a reliable physically based model itself presents a 
challenge with limited field data. Second, there are almost infinite possibilities of contaminant release 
activities in reality. For example, the releasing time and durations of the sources are normally 
unknown and the source location can be potentially everywhere in the study area. Although the 
proposed Grids Traversal algorithm can automatically search all possible combinations of pollution 
source locations, the absence of exact prior information, including the timing of release and the 
duration of the contaminant source, makes the S/O model and other existing source identification 
models less efficient, and also makes it sometimes impossible to complete the inverse problem. Third, 
although the inverse models are viable to identify all possibilities with great computational efficiency 
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(i.e., the S/O model proposed here), a complex real-world case may require hundreds of thousands 
of simulation runs. This consequently induces an intensive computational burden and elongated 
execution time; this needs enormous efforts and usually it is unaffordable to do so. 

Overall, this study developed a novel S/O optimization model to resolve unknown groundwater 
pollution problems. However, further developments are still necessary to relax the limitations of the 
S/O model to solve more complex problems. Advanced analysis and computation techniques, 
reduced-order model techniques, including parallel computing techniques, parameter 
regularization, and new optimization algorithms, would be useful to save computational cost and 
facilitate future model development. Last but not least, a user-friendly operational software package 
can broaden the model’s applications. More case studies are needed to further demonstrate its 
applicability. 
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