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Abstract: Meteorological centers constantly make efforts to provide more skillful seasonal climate
forecast, which has the potential to improve streamflow forecasts. A common approach is to
bias-correct the general circulation model (GCM) forecasts prior to generating the streamflow
forecasts. Less attention has been paid to the issue of bias-corrected streamflow forecasts that were
generated by GCM forecasts. This study compares the effect of bias-corrected GCM forecasts and
bias-corrected streamflow outputs on the improvement of streamflow forecast efficiency. Based on
the Upper Hanjiang River Basin (UHRB), the authors compare three forecasting scenarios: original
forecasts, bias-corrected precipitation forecasts and bias-corrected streamflow forecasts. We apply
the quantile mapping method to bias-correct precipitation forecasts and the linear scaling method
to bias-correct the original streamflow forecasts. A semi-distributed hydrological model, namely
the Tsinghua Representative Elementary Watershed (THREW) model, is employed to transform
precipitation into streamflow. The effects of bias-corrected precipitation and bias-corrected streamflow
are assessed in terms of accuracy, reliability, sharpness and overall performance. The results show
that both bias-corrected precipitation and bias-corrected streamflow can considerably increase the
overall forecast skill in comparison to the original streamflow forecasts. Bias-corrected precipitation
contributes mainly to improving the forecast reliability and sharpness, while bias-corrected
streamflow is successful in increasing the forecast accuracy and overall performance of the
ensemble forecasts.

Keywords: bias-correcting; ECMWF System 4; quantile mapping; linear scaling; Upper Hanjiang
River Basin

1. Introduction

Streamflow forecasts play a significant role in the management of water resources [1–4].
Forecasts at different time scales can provide valuable information for decision-making in water
regulation. Seasonal streamflow forecasts contribute to a series of water resource management activities
including flood preparation [5], reservoir operation [6] and drought management [7]. In general,
two approaches are often used in seasonal streamflow forecasting, namely, statistical methods and
dynamic methods [8]. Recently, mixed methods have also been applied to seasonal streamflow
forecasts, owing to the advances in seasonal predictability of general circulation models (GCMs) and
the use of large-scale climate features. The hydrological ensemble prediction system (HEPS) approach
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is a dynamic method, which uses seasonal forecasts from GCM meteorological forecasts to drive
a hydrological model [9]. This method has been widely adopted, because GCM outputs contain
predictable information of specific climate conditions at the required forecast times. However, the use
of GCM seasonal climate forecasts in hydrology is hampered by several deficiencies. First, the GCM
seasonal climate forecasts are usually biased, which may increase the uncertainty in streamflow
forecasts. Second, the spread of GCM ensemble forecasts may be too wide/narrow, resulting in
too conservative decisions/operational risks. These deficiencies need to be removed before GCM
meteorological forecasts can be effectively utilized in real-time streamflow forecasting.

Accordingly, post-processing is a necessary step before GCM outputs can be applied to streamflow
forecasts. A wide variety of methods have been proposed and tested in previous studies. The examples
include logistic regression [10,11], quantile regression [12,13] and Bayesian model averaging [14,15].
Hamill et al. [16] used logistic regression with the ensemble mean precipitation forecasts, which showed
improvement in forecast skill and reliability. However, the logistic regression method, which is
needed to estimate a large number of parameters, has some drawbacks. Yuan and Wood [17] applied
the Bayesian method to downscale monthly precipitation forecasts and found that downscaling
precipitation for the hydrologic model improved the forecast skill. However, the Bayesian method
would not be suited to post-process daily GCM forecasts at seasonal scale. In seasonal forecasting,
the linear scaling method and quantile mapping method are two popular bias correction methods for
bias-corrected ensemble GCM forecasts [18]. These approaches have been widely adopted, because
they can enhance forecast skill and reliability by reducing forecast errors [19–21].

Similarly, hydrological model biases can also seriously affect the effectiveness of hydrological
ensemble prediction system. For example, despite using accurate meteorological data, the hydrological
forecasts will remain uncertain due to the structural limitation of hydrological models, the model
parameters and the required initial hydrological conditions. Bias in ensemble streamflow traces also
limits their use for water resource decision-making. Therefore, bias-corrected streamflow forecast is also
a useful method to improve the forecast accuracy. A series of methods have been proposed and applied
in earlier studies [17,22,23]. Wood and Schaake [24] applied the bias correction method to correcting
raw streamflow forecasts and demonstrated that the approach improved the performance of ensemble
streamflow forecasts. Roy et al. [25] found that the bias correction of streamflow significantly improved
streamflow forecasts in terms of accuracy. Zalachori et al. [26] investigated the use of statistical
correction techniques in hydrological ensemble prediction, which found that taking hydrological
uncertainties into account could improve the quality of streamflow forecasts.

Generally, there are two categories of bias-correcting methods, namely, unconditional methods and
conditional methods. Unconditional methods include linear scaling [21], event bias correction [23,27]
and quantile mapping [28,29]. Crochemore et al. [30] applied the method of linear scaling and the
quantile mapping method to the precipitation forecasts and found that bias-corrected precipitation
forecasts could improve streamflow forecasts in term of accuracy and reliability. On the other hand,
conditional methods include the Schaake shuffle method [9,31], Bayesian method [17,32] and Bayesian
joint probability approach [33,34]. Zhao et al. [35] used the Bayesian joint probability approach to
bias-correct GCM precipitation forecasts, which achieved not only unbiased but also coherent forecasts.

For monthly to seasonal forecasting, GCM outputs are the primary source for streamflow
forecasts. European Centre for Medium-Range Weather Forecasts (ECMWF), one of the leading
operational meteorological centers has produced seasonal forecasts from GCM simulations since
1997 [36]. Several studies have evaluated the precipitation forecast issued by ECMWF System 4 in
China and East Asia. Peng et al. [37] assessed seasonal precipitation forecasts over China that came
from ECMWF System 4. Despite capturing the features of seasonal precipitation, they also observed
that the ECMWF System 4 precipitation forecasts presents some systematic deficiencies, e.g., a positive
bias in most regions. Kim et al. [38] evaluated the performance of System 4 winter precipitation
forecasts in the Northern Hemisphere and found that the precipitation forecasts have positive bias
in East Asia. In case of hydrological forecasting, the systematic biases of ECMWF System 4 forecasts
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should be removed, which is usually done by bias-correcting the meteorological forecasts. However,
so far only a few studies have focused on bias correction of the ECMWF System 4 precipitation
in hydrological forecasting. Trambauer et al. [27] used the linear scaling method to improve the
hydrological drought forecasting skill in southern Africa. Wetterhall et al. [39] applied the quantile
mapping method to ECMWF System 4 precipitation forecasts for the Limpopo basin during the
rainy season, in which the skill in predicting dry spells was improved in comparison to uncorrected
precipitation forecasts.

The studies mentioned above focused on bias-correction of the ECMWF System 4 precipitation
in hydrological ensemble forecasting. Less attention has been paid to the issue of streamflow
bias correction. To the best of our knowledge, few studies have investigated how pre-processor
(bias-corrected ECMWF forecasts) method and post-processor (bias-corrected hydrological output
directly generated by ECMWF) method contribute to the skill of hydrological ensemble system
prediction. Based on a typical subtropical monsoon region, Upper Hanjiang River Basin, we compare
three forecasting scenarios: (1) Original forecasts (without any bias correction); (2) QMprep forecasts
(with bias-corrected precipitation but without bias-corrected streamflow); (3) LSdis forecasts (without
bias-corrected precipitation but with bias-corrected streamflow). In this study, we aim to compare
the effect of the pre-processor method and post-processor method on the improvement of streamflow
forecast efficiency. This paper is organized as follows. Section 2 describes the study catchment as well as
the forecast and observed data. Section 3 presents the detail of the methods that were adopted in our
study. Results are described in Section 4. In Section 5, the limitations are discussed. The main findings
are concluded in Section 6.

2. Study Catchment and Data

2.1. Study Catchment

The Upper Hanjiang River Basin (UHRB) lies in a subtropical, monsoon-climate region.
The altitude of the basin varies from 3535 m in the northwest to 88 m in the southeast, draining
to the Danjiangkou reservoir with a drainage area of 95,200 km2 (Figure 1a). The Danjiangkou reservoir
is the water source for the central route of China’s South-to-North Water Transfer Project, which plays a
critical role in water supply in North China Plain (Figure 1b). This largest water transfer infrastructure
is designed to transfer 13 billion m3 yr−1 of water from Danjiangkou reservoir (water source region) to
the North China Plain (water destination region) since December 2014 [40]. For better management of
Danjiangkou reservoir, it is of critical importance to improve the accuracy of long-term streamflow
forecasts in the UHRB. The integral precipitation from July to September (rainy season) accounts for
60% of the total annual precipitation [41]. Four hydrological stations were selected for this study
including Yangxian, Ankang, Baihe and Danjiangkou. The four sub-basins area ranges from 14,192 km2

to 95,200 km2. Furthermore, the hydrological stations are also presented in Figure 1a.
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Figure 1. (a) Overview of the Upper Hanjiang River Basin (UHRB); (b) overview of the central of 
China’s South to North Water Diversion Project (SNWDP). 

2.2. Data 

Daily seasonal precipitation and potential evaporation forecasts were sourced from ECMWF 
System 4. In the analysis, the retrospective forecasts, i.e., hindcasts, in the period from 2001 to 2008 
were used. The hindcasts are about 70 km spatial resolution and with a six-month lead time. System 
4 issues ensemble forecasts on the first of each month; there are 51 ensemble members in February, 
May, August and November and 15 ensemble members for other months. In this study, daily 
ECMWF meteorological forecasts data were aggregated at each representative sub-watershed. For 
more information on System 4, the reader can refer to Molteni et al. [36]. 

The daily observed data of precipitation, temperature, wind speed, relative humidity data, etc. 
for model calibration and evaluation were obtained from the China Meteorological Administration 
Daily potential evaporation based on the gauged meteorological data was calculated using the Food 

Figure 1. (a) Overview of the Upper Hanjiang River Basin (UHRB); (b) overview of the central of
China’s South to North Water Diversion Project (SNWDP).

2.2. Data

Daily seasonal precipitation and potential evaporation forecasts were sourced from ECMWF
System 4. In the analysis, the retrospective forecasts, i.e., hindcasts, in the period from 2001 to
2008 were used. The hindcasts are about 70 km spatial resolution and with a six-month lead time.
System 4 issues ensemble forecasts on the first of each month; there are 51 ensemble members in
February, May, August and November and 15 ensemble members for other months. In this study,
daily ECMWF meteorological forecasts data were aggregated at each representative sub-watershed.
For more information on System 4, the reader can refer to Molteni et al. [36].

The daily observed data of precipitation, temperature, wind speed, relative humidity data, etc.
for model calibration and evaluation were obtained from the China Meteorological Administration
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Daily potential evaporation based on the gauged meteorological data was calculated using the Food
and Agriculture Organization (FAO) Penman–Monteith Equation [42]. The precipitation and potential
evaporation data of each sub-basin are interpolated by the classic Thiessen polygon technique. They are
also computed for each representative sub-watershed. Daily streamflow data at Yangxian, Ankang,
Baihe and Danjiangkou station were obtained from the Bureau of Hydrology of the Ministry of Water
Resources of China. The location of gauging stations is shown in Figure 1a, and the time period of
gauged data extends from 2001 to 2008.

3. Method

3.1. Hydrological Model

In this study, Tsinghua Representative Elementary Watershed (THREW) model [43] was used
to simulate the hydrological processes. It is a semi-distributed hydrological model which uses the
representative elementary watershed approach to conceptualize a watershed [44]. This model has
been effectively used in many basins both in the United States and China [45–47]. Further, the detailed
description and theoretical background of the THREW model can be found in Tian et al. [43,47].
The UHRB is divided into 89 representative elementary watersheds. According to the previous
THREW modeling experience and the physical attributes of the UHRB, the initial values and reliable
ranges of each parameter were determined in the model calibration [41]. Further, the automatic
calibration was carried out with an automatic optimization algorithm, namely, the Non-dominated
Sorting Genetic Algorithm II (NSGAII) algorithm [48]. Finally, the parameters were determined
automatically. The objective function for the automatic calibration was the Nash–Sutcliffe efficiency
coefficient (NSE), which has been widely used in previous studies. Based on the observed gauged data
of 1970–2000, THREW model was run at the daily time scale. The model was calibrated for the Baihe
station and validated at the Yangxian, Ankang and Danjiangkou stations. The modeling results shown
that the annual Nash–Sutcliffe efficiency (NSE) criterion at the four stations (from Yangxian station to
Danjiangkou station) in the calibration period were 0.90, 0.88, 0.88 and 0.91, respectively [41].

3.2. Bias Correction Method

An approach introduced by Arlot and Celisse [49], namely, the leave-one-out cross-validation
approach is employed in this study. This approach calibrates the bias correction method in
each representative elementary watershed over independent periods within the 2001–2008 period.
More specifically, for a given target application year, the bias correction method is trained with
observations and forecasts from other years. Then, the cross-validation results are applied to the target
year for bias correcting.

We applied the quantile mapping method to the original System 4 precipitation forecasts and the
linear scaling method to the original System 4 streamflow forecasts. The quantile mapping method
matches the statistical distribution of precipitation forecasts to the distribution of observations. In the
case of ensemble forecasts, the matching occurs at each ensemble member. The quantile mapping
method can be implemented with parametric distribution and non-parametric distribution, however
the parametric distribution methods is less influenced by sampling errors and produce more stable
mapping functions [21]. In the present study, we adopted the setup of the quantile method as proposed
by Lafon et al. [21], namely, Bernoulli-gamma distribution. The Bernoulli distribution fits to the
probability of precipitation, whereas the gamma distribution characterizes precipitation amounts
larger than zero. For a number of outlying precipitation values, the Bernoulli–gamma distribution
could not fit them. In this case, we used a nonparametric empirical cumulative distribution function,
which was derived from the precipitation data.

The linear scaling method corrects the monthly ensemble mean values of the forecasts to match
the monthly mean values of the observation. The scaling factor was obtained through calculating the
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ratio between the forecast values and the observed value. Then the monthly scaling factor was applied
to each uncorrected daily precipitation forecasts of that month.

3.3. Description of HEPS Method

The hydrological ensemble prediction system (HEPS) method was used as an integrator of the
meteorological and hydrological uncertainties [9]. In the HEPS method, the hydrological model state
is initialized with observed meteorological forcing through running the model in simulation mode for
the year preceding to the time of the forecast. Further, the model with initial basin state was driven
by ECMWF System 4 original and bias-correcting ensemble meteorological forecasts. Furthermore,
an ensemble of streamflow traces was generated which represents the uncertainty produced by
meteorological and hydrological forecasts.

We use the term “QMprep” to describe the bias-corrected original System 4 precipitation
forecasts with the quantile mapping method, while the term “LSdis” describes bias-corrected
original System 4 streamflow forecasts with linear scaling method. In order to compare the
benefits of bias corrected precipitation and bias corrected streamflow, different scenarios of the
forecasting experiment are analyzed, including original forecast (without bias-corrected precipitation
and bias-corrected streamflow), QMprep forecasts (with bias-corrected precipitation but without
bias-corrected streamflow) and LSdis forecasts (without bias-corrected precipitation but with
bias-corrected streamflow).

3.4. Forecast Verification

Different scenarios of the forecasts were verified against both deterministic and probabilistic
criteria. Four common performance indices were used to assess the forecasting accuracy, including the
Nash–Sutcliffe efficiency (NSE), the relative mean error (RME), the coefficient of variation of the root
mean squared error (CV) and the correlation coefficient (CC). These metrics have also been widely used
in previous studies [50–52]. For deterministic analysis, the ensemble forecasts should reduce to single
values. In this study, the average of ensemble streamflow forecasts is used to compute deterministic
scores in the validation period.

Reliability describes the statistical consistency of forecast probabilities and observed frequencies,
which can be assessed with the probability integral transform (PIT) diagram [53]. For a reliable forecast,
the observed data should uniformly fall within the prediction distribution and the PIT diagram should
accord with the 1:1 diagonal line. According to Laio and Tamea [53], if the scattered points do not lie on
the 1:1 line in the PIT diagram, the curve in the PIT diagram generally presents four different shapes,
representing four different situations: “over prediction”, “under prediction”, “narrow forecast” and
“large forecast”. We also presented the 5% Kolmogorov–Smirnoff confidence interval from the bisector.

The sharpness of the forecasts is evaluated by the interquartile range (IQR), which indicates the
spread of an ensemble forecast [54]. To compare IQR among different hydrological stations, the IQR is
rescaled by corresponding average discharge, so that IQR becomes dimensionless. The resulting IQR
is referred to as the normalized interquartile range (NIQR).

The overall performance of the ensemble forecasts is assessed with the mean ranked probability
skill score (mean RPSS). This is defined as the sum of the squared differences of cumulative distribution
between the forecast members and observation [55]. The mean RPSS is compared with a reference
forecast. Details of both deterministic and probabilistic skill scores are given in Appendix A.

4. Results

4.1. Forecast Accuracy

Four deterministic scores of bias-corrected forecasts are plotted against the scores for original
forecasts in a scatterplot (Figure 2). Deterministic scores for QMprep forecasts are plotted in the upper
panel while the deterministic scores for LSdis forecasts are plotted in the lower panel. Each score is
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computed for lead times of zero-month, one-month and two-month for four stations. It is evident that
QMprep forecasts and LSdis forecasts have similar effects in improving deterministic skill scores at
different lead times. While the scatterplot of NSE, CV and CC for QMprep forecasts are close to 1:1 line,
the skill scores for LSdis forecasts tend to be more accurate than original forecasts. These results
demonstrate that LSdis forecasts have a much stronger impact on the accuracy of the forecasts.
For instance, in case of the zero-month lead time, the NSEs for the LSdis forecasts were 0.7,0.67,0.74 and
0.68; and for the QMprep forecasts they were 0.46, 0. 67, 0.61 and 0.66 at the four stations, respectively.
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Figure 2. Scatterplots of four deterministic scores, the Nash–Sutcliffe efficiency (NSE), the relative
mean error (RME), the coefficient of variation of the root mean squared error (CV) and the correlation
coefficient (CC) for different lead times. The scatterplots plot bias-corrected original System 4
precipitation forecasts with quantile mapping method (QMprep) forecasts skill scores (a) and
bias-corrected original System 4 streamflow forecasts with linear scaling method (LSdis) forecasts skill
scores (b) against original forecasts skill scores, respectively. Each color represents the skill scores in a
station for forecast horizons within the lead times.

4.2. Forecast Reliability

Figure 3 shows the PIT diagram for each experiment for zero-month, one-month and two-month
lead times. The results demonstrated that the streamflow generated from the ECMWF System 4 has an
obvious overpredicting bias at different lead times. After bias correcting precipitation by the quantile
mapping method, a remarkable improvement is achieved in reliability. This indicates that the quantile
mapping method is able to reduce the errors resulting from overestimation of the ECMWF System 4
meteorological forecasts. As the original streamflow forecasts are bias corrected by the linear scaling
method, the reliability of forecasts is also improved. It suggests that the bias correcting streamflow
generated from the ECMWF System 4 is equally reliable as the bias correcting ECMWF System 4
precipitation. Further, bias correcting streamflow with the linear scaling method from the ECMWF
System original streamflow forecast can reduce most of the overestimate bias. Our results confirm
the findings of Wetterhall et al. [39], who investigated the bias-correcting ECMWF System 4 seasonal
precipitation forecast with the quantile method to improve the skill of forecasts. Zalachori et al. [26]
also demonstrated that applying a bias correction method for streamflow forecasts caused significant
improvements in forecast reliability.
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Figure 3. Probability integral transform (PIT) diagram of streamflow forecasts obtained from original
forecast (a), QMprep forecasts (b) and LSdis forecasts (c) for different lead times. Each line represents the
PIT diagram at a station. Dotted dark lines represent the 5% Kolmogorov–Smirnoff confidence bands.

4.3. Forecast Sharpness

Sharpness is an ideal feature of probabilistic forecasts. The narrower the NIQR, the sharper
the ensemble forecast, and the less uncertainty is conveyed. Three experiments were used to
investigate how meteorological and hydrological uncertainty affects the sharpness of the forecast.
Forecast sharpness is described in Figure 4, which presents boxplots of NIQR for different forecast
lead times. The boxplots describe the distribution of sharpness for the three experiments. For original
forecasts, a striking feature of the NIQR is that the ensemble spread of four sub-basins does not
become wider with increasing lead time. For instance, the median values for Danjiangkou station
are 0.35, 0.56 and 0.53, with a lead time increasing from zero to two months. It can also be seen that
the streamflow obtained directly from System 4 has apparent uncertainties at different lead times.
These results indicate that the use of original ECMWF System 4 seasonal climate forecasts in hydrology
has problems, which induces stochastic uncertainty in streamflow forecasts. In the QMprep forecasts,
the results indicate that bias-corrected precipitation is able to reduce uncertainty from meteorological



Water 2018, 10, 177 9 of 17

forcing. The comparison between the QMprep forecast and LSdis forecasts reveals that taking into
account hydrological uncertainty leads to less sharpness in the hydrological ensemble prediction
system. Furthermore, LSdis forecasts attempt to decrease hydrological uncertainty, thus the ensemble
forecast become more spread. This finding is consist with Bourgin et al. [56], who demonstrated that
post-processing streamflow forecasts achieved less sharpness.
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4.4. Forecast Overall Performance

Figure 5 shows the distribution of the mean RPSS over the four stations. Generally, the forecast
performance decreases with the extension of lead times. The median values of RPSS were 0.34 (QMprep
forecasts) and 0.35 (LSdis forecasts) for the zero-month lead time, and decreased to 0.19 (QMprep
forecasts) and 0.29 (LSdis forecasts) for the two-month lead time. The RPSS values of the original
forecasts decreased slightly with the lead times, which ranged from 0.12 for the zero-month lead time
to −0.04 for the two-month lead times. Furthermore, the RPSS value of the original forecasts were
much lower than the values obtained with the QMprep and LSdis forecasts.

The percentage of positive RPSS is shown in Figure 6, which presents the frequency of forecasts
that are more competent against the reference forecast. The ability of all forecasts decreases as the
forecast lead time increases. Without bias correction, the original streamflow forecasts have a negligible
advantage against reference forecast beyond the one-month lead time. QMprep forecasts present as
more skillful than reference forecasts at the two-month lead time. Compared with original forecasts,
LSdis forecasts show moderate improvement at the zero-month lead time and remarkable improvement
at the two-month lead time. Our results are consist with Yuan and Wood [17], as they showed that
bias-corrected GCM streamflow was more skillful than downscaling precipitation for hydrologic
modeling in terms of RPSS. Our study also shows that bias-corrected streamflow has a more positive
effect on ensemble forecasts, as verified by the RPSS.
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Figure 5. Distribution of mean ranked probability skill score (RPSS) for zero-month, one-month and
two-month lead times. Results for three experiments of forecasts are presented: original, QMprep and
LSdis forecasts.
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Figure 6. Percentages of positive RPSS for zero-month, one-month and two-month lead time streamflow
forecasts averaged over four stations. Results for three experiments of forecasts are presented: original,
QMprep and LSdis forecasts.
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4.5. Forecast Hydrographs Illustration

Figure 7 presents the hydrographs of the forecasts obtained from the original, QMprep and LSdis
forecasts for the time period of January 2001 to December 2008 in Danjiangkou station. Here we only
show the results for the zero-month lead time, because the performances of different lead times are
similar. Ensemble forecasts are represented by the ensemble mean value (blue line) and 90% credible
intervals (gray zone). Observed streamflow is represented by the red line. The hydrograph of
the original forecasts is the least accurate and the dose does not capture the low flows. However,
the streamflow forecasts obtained from the QMprep forecasts shows remarkable improvements in
the sharpness, especially during low flow periods. The hydrograph of LSdis forecasts also shows
improvement when comparing with the original forecasts. In general, the coverage of 90% credible
intervals of QMprep forecasts more accurately capture the observed streamflow than LSdis forecasts,
which indicates that QMprep forecasts have a more positive effect on forecast reliability.
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in Danjiangkou station from January 2001 to December 2008. Gray band represents the 90% credible
interval, the blue lines stand for ensemble mean values and red lines represent the observed streamflow.

5. Discussion

The present study considered the quantile mapping method to bias correct precipitation forecasts
and the linear scaling method to bias correct streamflow forecasts. Zhao et al. [35] demonstrated that
the quantile mapping method could effectively remove bias when the bias was the main deficiency
of the raw forecasts, e.g., ECMWF System 4 precipitation forecasts, Predictive Ocean–Atmosphere
Model for Australia (POAMA) model precipitation forecasts. They also found that quantile mapping
method could not correct the overconfidence of the raw ensemble spread. Several other bias correction
approaches were also used in the previous literature, including model output statistics [57], event bias
correction [58], Bayesian model average [14] and Bayesian joint probability [33]. These could be
applied as preferable options to bias correct precipitation and streamflow forecasts for ensemble
streamflow forecasts. Besides, the benefit of bias correcting precipitation forecasts and bias correcting
original streamflow forecasts is influenced by multiple sources of uncertainty in a hydrological
ensemble prediction system, including meteorological forcing, hydrological models, model parameter
uncertainty and initial hydrological conditions. Our study only focused on bias correcting where the
bias comes from meteorological forcing and the hydrological model. Additional analysis could be
necessary to better investigate which is the primary factor affecting the ensemble streamflow forecast
skill. Further, the hydrological model carried out in this study is a semi-distributed hydrological model,
which was set up on 89 sub-watersheds. The Thiessen polygon method, which was used this study
to obtain the input meteorological data, has been frequently applied to such sub-watershed based
modeling practices with satisfactory results. For example, in our study area (Upper Hanjiang River
Basin), Sun et al. [41] and Yang et al. [59] demonstrated that the rainfall runoff process was simulated
rather well with the same interpolation method and hydrological model. The values of daily NSE
in both the calibration and validation periods were above 0.80. The value of the monthly NSE was
as high as 0.99. Lastly, we only chosen the Upper Hanjiang River Basin as a case study, which is not
influenced by snowmelt flow; while in snow-dominant basins in China, bias-correcting temperature
forecasts also can be considered.

6. Conclusions

This study investigated the benefits of bias-correcting ECMWF System 4 precipitation forecasts
and bias-correcting ECMWF System 4 original streamflow for improving the overall accuracy of the
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hydrological ensemble prediction system in Upper Hanjiang River Basin. The effect of bias-corrected
precipitation and bias-corrected streamflow were evaluated with three experiments, namely, original
forecasts (without bias-corrected precipitation and streamflow), QMprep forecasts (bias-corrected
precipitation with the quantile mapping method), and LSdis forecasts (bias-corrected streamflow with
the linear scaling method). The performance of the ensemble streamflow forecast was assessed in
terms of the forecast accuracy, reliability, sharpness and overall performance.

Compared to original forecasts, bias-correcting precipitation or bias-correcting streamflow is
necessary to correct overestimation/underestimation of the ensemble, which preforms considerably
better in terms of both deterministic and probabilistic skill scores. However, the benefits of the
bias-correcting GCM forcing and bias-correcting hydrologic output present variables in ensemble
streamflow forecasts. Bias-correcting precipitation has a strong impact on improving forecast reliability
and sharpness, while bias-correcting streamflow has a more positive effect on forecast accuracy
and the overall quality of the ensemble forecast. Further, the use of both bias-correcting GCM
forecasts and bias-correcting hydrologic output is highly recommended, which may achieve ideal
forecast performance.

Acknowledgments: This research was supported by Ministry of Science and Technology of P.R. China
(2016YFC0402701), the National Science Foundation of China (NSFC 91647205), Ministry of Science and Technology
of P.R. China (2016YFA0601603), the foundation of State Key Laboratory of Hydroscience and Engineering of
Tsinghua University (2016-KY-03). The authors would like to thank the Information Center of Ministry of Water
Resources and China Meteorological Administration for providing the hydrology and meteorological data.

Author Contributions: Y.L., F.T. and X.L. conceived and designed the study; Y.L., Y.J. and H.D. performed
the modeling experiments; Y.L, Y.J. and H.L. analyzed the results; Y.L. wrote the paper and all of the authors
contributed to the paper writing.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Deterministic Verification Metrics

Appendix A.1.1. Nash–Sutcliffe Efficiency

NSE = 1 −
∑N

t=1

[
qobs(t)− q f c(t)

]2

∑N
t=1[qobs(t)− qobs(t)]

2 (A1)

where qobs(t) is the observed value, q f c(t) is the corresponding ensemble forecasts value and qobs(t) is
the average of observed values. The NSE values range from −∞ to 1. For a perfect forecast, NSE equals
to 1.

Appendix A.1.2. Relative Mean Error

The relative mean error (RME) measures the difference between a series of forecasts and
corresponding observations.

RME =

1
N ∑N

t=1

[
q f c(t)− qobs(t)

]
∑N

t=1 qobs(t)
(A2)

where (q f c(t), qobs(t)) is the tth of N pairs of forecasts and observation. A positive RME indicates
overestimation, whereas negative RME indicates underestimation. For an ideal forecasts, RME equals
to 0.

Appendix A.1.3. Coefficient Variation of Root Mean Squared Error

The root mean squared error (RMSE) represents the standard deviation of the differences between
forecast values and observed values. The coefficient variation of root mean squared error (CV) is
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rescaled by the average discharge that facilitates the comparison of RMSE values among different
hydrological stations.

CV =

√
∑N

t=1[qobs(t) − q f c(t)]
2

N

qobs
(A3)

where (q f c(t), qobs(t)) is the tth of N pairs of observed value and forecast value, the qobs(t) is the
average of observed values. A lower CV score corresponds to a better forecast.

Appendix A.1.4. Correlation Coefficient

The correlation coefficient (CC) measures the linear dependency between forecasts
and observations.

CC =
∑N

t=1(qobs(t)− qobs)
(

q f c(t)− q f c

)
√

∑N
t=1(qobs(t)− qobs)

2 ∑N
i=1

(
q f c(t)− q f c

)2
(A4)

qobs, q f c, qobs and q f c represents the observed value, the forecast value, the average of observed
values and the average of forecast values respectively. The CC values range from 0 to 1, the latter
corresponding to perfect forecasts.

Appendix A.2. Probabilistic Verification Metrics

Appendix A.2.1. Probability Integral Transform (PIT) Diagram

The probability integral transform (PIT) diagram represents the distribution of PIT values, which is
defined by the observed values falling within the prediction distribution. For a reliable forecast, the PIT
diagram should accord with the 1:1 diagonal. The PIT values is calculated as follow:

PITt = Ft(qobs,t) (A5)

where Ft is the cumulative distribution function of the forecast, qobs,t is the corresponding observed
data, t = 1, 2, . . . , N, and N is the number of observations.

Appendix A.2.2. Normalized Interquartile Range

The interquartile range is computed as the range between 75th and 25th percentiles of the spread
of forecast distribution.

NIQR = ∑N
t=1

q75
f c(t)− q25

f c(t)

qobs
(A6)

where the q75
f c(t) and q25

f c(t) is the tth of the 75th and 25th percentile of the forecast
distribution respectively.

Appendix A.2.3. Mean Rank Probability Skill Score

The rank probability score (RPS) measures how well the probability forecast predicts the
corresponding observations (Wilks, 2011).

RPS =
J

∑
m=1

( m
∑

j=1
Yf c,j −

m
∑

j=1
Oobs,j

)2
 (A7)

where Yf c refers to the relative occurrence frequency of ensemble members in the corresponding
category, Oobs represents the observation probability in the category, and J is the number of categories.
In this study, we divided ensemble streamflow into three categories: above normal category,
near normal category and below normal category.
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The RPS is the average RPS value of forecast data. The mean rank skill score (RPSS) is based on
the RPS, which is compared with a reference forecast (Wilks, 2011).

RPSS = 1 −
RPS f

RPSre f
(A8)

where RPS f is the average RPS for ensemble forecast and RPSre f is the average RPS for
reference forecast.
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