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Abstract: Global sensitivity analysis is the key to establishing advanced and complex water
quality models and measurements of ecological parameters. In this paper, the Sobol’s sensitivity
analysis method was applied to a quantitative analysis of the important factors governing a water
quality model, which has been developed to simulate algal dynamics in Caotang Bay, one of
the tributary bays in the Three Gorges Reservoir, China. The analysis focused on the response
of chlorophyll-a and dissolved oxygen to 11 parameters. The results show that chlorophyll-a is
influenced mainly by the maximum phytoplankton growth rate, the lower optimum temperature
for algal growth, the phosphate half-saturation constant, and the phytoplankton linear mortality
rate; while dissolved oxygen is influenced mainly by the maximum phytoplankton growth rate,
the lower optimum temperature for algal growth, the phytoplankton basal respiration rate, and the
detritus remineralization rate. These parameter sensitivities change with time and have a marked
seasonal pattern. The parameter sensitivity differences between a shallow lake or reservoir and a
deep reservoir suggest that mechanisms of cycling in nutrients and dissolved oxygen are different.

Keywords: global sensitivity analysis; water quality model; chlorophyll-a; dissolved oxygen;
deep-water embayment; Three Gorges Reservoir

1. Introduction

Water quality models are valuable tools for the quantitative analysis of a water system’s evolution
processes [1–3]. Research on water quality models is aimed at exploring the varying mechanisms of
the ecosystem, simulating or predicting its changes, and providing scientific and decision-making
rationales in order to maintain its health and recover its injured parts. Parameters are an important
component of the ecological model, ranging from ten to dozens of variables [4–7] depending on the
complexity of the model. It is very difficult to increase the precision of each parameter at the same
time, as surface water is a highly nonlinear system, so each ecological process will be subject to various
uncertain factors.

The model is the mathematical expression of the ecological process, and Sensitivity Analysis (SA)
aims to characterize the impact that changes in the model’s input factors (e.g., parameters, initial states,
input data, time/spatial resolution grid) have on the model’s output (e.g., a statistic of the simulated
time series, such as the average simulated stream flow, or an objective function, such as the Root
Mean Squared Error). SA represents how the sensitive the modeled ecological process response is
to the environmental condition input to the model. SA methods can be classified based on their
scope, applicability, and characteristics. The simplest and most common classifications are local
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sensitivity analysis (LSA) and global sensitivity analysis (GSA) [8–10]. LSA is focused on the effects
of uncertain inputs around a point (or base case), whereas GSA is focused more on the influences
of uncertain inputs over the whole input space [11]. LSA identifies the changes in model output
resulting from a small perturbation of one of the model parameters while holding the other parameters
constant [12,13]. The advantages of LSA are its simplicity and generally lower computational costs,
while its disadvantage is that it does not represent the full impact of the uncertainty of a parameter
on model output [12,14]. GSA gives a better estimate of uncertainty [14] to express the uncertainty
of model parameters, rather than by perturbing these parameters. The Sobol’s method [15] is a
variance-based GSA method that can quantitatively analyse the parameters’ impacts. This method
quantifies sensitivity exactly rather than to identify which input variables are contributing significantly
to the output uncertainty in high-dimensionality models, compared with other GSA methods, such as
Morris [16,17]. In other words, the Sobol’s method not only represents the full impact of the uncertainty
of a parameter on model output, but also is a quantitative analysis method, so it is a valid method for
uncertain parameter analysis in a water quality model. Besides, the qualitative analysis method has
been selected and applied to aquatic ecosystem models [18–20] in previous studies, but few studies
focus on the quantitative analysis of a large and deep reservoir water quality model.

The Three Gorges Reservoir (TGR) is a large and deep reservoir. The impacts of the TGR on the
ecosystem and environment have been widely discussed, and increasingly serious eutrophication
and multiple occurrences of algal blooms of tributary bays in the TGR are the most severe water
environmental issues in China [21,22]. Previous studies have mainly focused on how phytoplankton
grow rapidly under favorable environmental conditions, including nutrients limits, appropriate light
and temperature, and low flow velocity [23–26], but few studies have focused on water ecosystem
model sensitivity analysis. The sensitivity analysis is one of the key steps in a water quality model’s
establishment and an important base for parameter optimization. Furthermore, the parameter
sensitivity differences between the TGR and other surface water systems can show the biochemistry
and geochemistry differences in different types of water bodies.

In this study, the Sobol’s method was selected and applied to one of the TGR tributary bays
with a water quality model. The parameter impact variations with time for the water quality model
of the TGR tributary bay were studied. The result of this study will be used to establish and direct
the optimization of a biochemical process in a three-dimensional water quality model. The paper is
organized as follows. Descriptions of the Yangtze River, TGR are presented in Section 2. The theoretical
background of the water quality model and the sensitivity analysis method are introduced briefly in
Section 3. Section 4 describes in detail the GSA results. Section 5 discusses the ecological implications
of parameter sensitivities. A summary of the findings is provided in Section 6.

2. Study Area

The construction of the Three Gorges Dam (TGD) is one of the most intense anthropogenic
impacts on surface water in China. As the third longest river in the world and the longest river in Asia,
the Yangtze River, extending from the Tibetan Plateau to eastern China, spans a total length of 6300 km
and drains an area of 1,800,000 km2 [27]. Its annual flow is 951.3 km3. The TGD, located at the end
of the upper Yangtze River, is 185 m high. Construction began in 1998 and was completed in 2003.
The TGR is currently the one of the largest reservoirs in the world, with a capacity of 39.3 billion m3

over a length of 663 km and an average width of 1.1 km [28,29].
After the impoundment in 2003, the TGR was formed along the Yangtze River, starting from

Chongqing to the dam site at Yichang. Approximately 40 tributaries were transformed into tributary
bays and became a part of the TGR. The total area of these bays accounts for 1/3 of the whole surface
area of the TGR. It has dramatically changed the aquatic ecosystem from a continuous lotic ecosystem
to a huge reservoir.

The Caotang River is a primary tributary of the north bank of the Yangtze River (Figure 1),
located in the middle of the TGR. It is 156 km away from the TGD. It has a watershed area of 394 km2,
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a length of 33 km, and an annual average discharge of 7.5 m3 s−1. After impoundment of the TGR,
a 7-km-long bay was formed, which was influenced by TGR regulation, which ranges the water level
from 145 m to 175 m. Hereafter, this area is called Caotang Bay (CB) in this paper. The CB’s average
depth is 18.39 m when the TGR is at the lowest level in the summer (up to 145 m). The CB’s average
depth is 33.54 m and its maximum depth is 70 m when the TGR is at the highest level in the winter
(up to 175 m).
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3. Materials and Methods

3.1. Tributary Bay Water Quality Model

The Land Ocean Interaction Zone model [30] was applied to dynamic mass balances (Figure 2).
The water budget is

dV
dt

= VQ + VP + VG + VO + Vin −Vout −VE (1)

where V is the water storage, VQ is the stream runoff, VP is the direct precipitation, VG is the
groundwater, VO is the set of other inflows, such as sewage, Vin is the hydrographically driven
advective inflow, Vout is the advective outflow of water from the system, and VE is the evaporation.
In this study, precipitation, groundwater, other inflows, and evaporation are smaller than 5% of VQ,
so we assume VP = VG = VO = VE = 0.
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The material balance is

dCV
dt

= VQCQ + VinCin −VoutCout + ∆C (2)

where C represents the phytoplankton, ammonium, nitrate, phosphate, dissolved silicon, dissolved
oxygen (DO), and detritus.

The CB ecological water quality model is based on the observed features, and the structure
of the water quality model and the interactions between state variables are illustrated in Figure 3.
The mathematical formula of these are given in detail in Appendix A. All of the bio-parameters and
their values [1,31–33] are listed in Table 1.
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Figure 3. Schematic of the water quality model in TGR. P, DET, DO, NO3, NH4, PO4 and Si
are phytoplankton, detritus, dissolved oxygen, nitrate, ammonium, phosphate, and dissolved
silicon, respectively.

Table 1. The parameter values of the ecological water quality model applied in the Caotang Bay (CB).

Parameter Description Value Unit Selected to
GSA (Y/N)

r0 Maximum phytoplankton growth rate 3.039 day−1 Y

T1 Lower optimum temperature for algal growth 24 ◦C Y

T2 Upper optimum temperature for algal growth 29 ◦C Y

KW Light extinction coefficient for all absorption
components (except algae) 1 m−1 Y

KC Factor for light extinction coefficient for algae 0.01 m−1 mmolC−1 N

Iopt Optimum light intensity 80.0 W m−2 Y

KNO3 Nitrate half saturation constant for algae 0.040 mmolN m−3 N

KNH4 Ammonia half saturation constant for algae 0.030 mmolN m−3 N

KP Phosphate half saturation constant for algae 0.285 mmolP m−3 Y

KS Silica half saturation constant for algae 1.16 mmolSi m−3 N

µ1 Phytoplankton linear mortality rate 0.335 day−1 Y

µ2 Phytoplankton second order mortality rate 0.001 mmolC day−1 Y
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Table 1. Cont.

Parameter Description Value Unit Selected to
GSA (Y/N)

αP Phytoplankton excretion rate 0.15 day−1 N

bP Phytoplankton basal respiration rate 0.2 day−1 Y

γP Phytoplankton active respiration rate 0.1 day−1 N

Ocr Oxygen critical concentration for nitrification 11.161 mmolO2 m−3 Y

dcr Oxygen confinement factor for nitrification 6.0 – N

rDET Detritus remineralization rate 0.127 day−1 Y

Tscd
Temperature confinement factor for
remineralization 20.0 – N

Thsr Reference temperature for remineralization 13.0 ◦C N

rnit Nitrification rate 0.045 day−1 N

rden Denitrification rate 0.01 mmolN m−3 day−1 N

KDET Detritus half saturation constant 6.625 mmolC m−3 N

dDN Denitrification ratio of detritus 1.25 – N

dNN Ammonia release ratio for denitrification 0.189 – N

dPN Phosphate release ratio for denitrification 0.012 – N

dSN Silica release ratio for denitrification 0.259 – N

RPC Redfield ratio P:C 1:106 – N

RNC Redfield ratio N:C 16:106 – N

RSC Redfield ratio Si:C 22:106 – N

mCO Stoichiometric number of carbon to oxygen 1 mmolO2 mmolC−1 N

mNO Stoichiometric number of nitrogen to oxygen 2 mmolO2 mmolN−1 N

GSA: global sensitivity analysis.

3.2. Global Sensitivity Analysis

Sobol’s method is based on the decomposition of the output variance of the model, which can be
represented by

Y = f (X) = f (X1, . . . , Xk) (3)

where Y is the model output, and X = (X1, . . . , Xk) is the set of factors. The variance decomposition of
f is

V(Y) =
k

∑
i=1

Vi +
k−1

∑
i=1

k

∑
j>i

Vij +
k−2

∑
i=1

k−1

∑
m>i

k

∑
n>m

Vimn + . . . + V12...k (4)

where Vi is the variance contribution of individual parameter Xi to the total variance, Vij is a part of
the total variance caused by the interactions between Xi and Xj, and V12 . . . k is the variance due to the
interactions between all parameters. Using this variance decomposition, the first-order sensitivity Si
and the total sensitivity index Sti are given as (see notations in Table 2):

Si =
VXi

[
EX∼i (Y|Xi)

]
V(Y)

(5)

Sti =
EX∼i

[
VXi (Y|X∼i)

]
V(Y)

= 1−
VX∼i

[
EXi (Y|X∼i)

]
V(Y)

. (6)
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Table 2. Notations used in the text.

Symbol Description

N Sample size
k Number of factors

Xi Generic factor
X N × k matrix of input factors

X∼i N × (k − 1) matrix of all factors but Xi
VXi (·), EXi (·) Variance or mean of argument (·) taken over Xi

VX∼i (·), EX∼i (·) Variance or mean of argument (·) taken over all factors but Xi

A Monte-Carlo-based procedure [16], using a quasi-random sampling of model factors, was used
to obtain the total effects indices for each factor. Table 3 heuristically classifies the input parameters [34].

Table 3. Relevance of an input parameter from its global sensitivity index.

Condition Description

0.8 ≤ Sti ≤ 1 Very important
0.5 ≤ Sti < 0.8 Important
0.3 ≤ Sti < 0.5 Unimportant
0 ≤ Sti < 0.3 Irrelevant

3.3. Design of Numerical Experiments

We started our numerical experiments at a 1-D site located at the CT02 station, where algae
blooms frequently occurred. The daily water temperature was interpolated based on monthly
observations. As the N:P (weight) is greater than 15, CB is a phosphorus-controlled water body.
Therefore, 11 parameters (Table 1) were selected for the GSA in order to reduce the computational cost
of Sobol’s method. A free GSA tool for Sobol’s method, which has been developed by Cannavó [34],
was used in this paper.

The required sample size N is function of model complexity [35]. The sample size has been
estimated by performing stochastic simulations for an increasing sample size and comparing mean
value profiles for the main differential variables. In this study, we chose 2000 in GSA. The Sobol
method’s total sensitivity indices have been calculated on a daily basis within a time horizon of one
year, starting at the beginning of 1 January 2014.

3.4. Initial Conditions

The initial distributions for temperature and the biological variables were specified using the
monthly observation data in 2014, in which water temperature: 12.5 ◦C; chlorophyll-a: 0.97 µg L−1;
detritus: 0.24 mmolC L−1; dissolved oxygen: 9.11 mg L−1; nitrate: 1.76 mg L−1; ammonium:
0.08 mg L−1; phosphate: 0.11 mg L−1; and dissolved silicon: 8.16 mg L−1. The physical and biological
state variables were assumed to be vertically and horizontally homogenous in the numerical domain.

4. Results

Chlorophyll-a and DO concentrations are important ecological and environmental indexes in lake
water systems. The respective parameter sensitivities of these two outputs were calculated.

4.1. Simulation Result for the Water Quality Model

The simulation results of the water quality model are shown in Figure 4. The simulation result of
the chlorophyll-a concentration and the observational result have the same tendency, which both show
that the main growth stage of algae is from May to October. The simulation result of DO concentration
and the observational result also have similar trends, which stay at a higher concentration throughout
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the year, and there is no hypoxia. The model reflects the main change of the water environment, so the
parameters reflect the water environment’s condition and process. The root mean square error (RMSE)
is widely used to evaluate model performance. The RMSE of Chlorophyll-a is 12.51 µg L−1 and the
RMSE of DO is 1.92 mg L−1. The parameter sensitivity will be analyzed in the following section.
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4.2. Parameter Sensitivity Temporal Variation for Chlorophyll-a

The numerical results from the global sensitivity analysis are shown in Figure 5, which show the
temporal variation of the total effect sensitivity indices (Sti) for chlorophyll-a.

Chlorophyll-a is a state variable that shows the temporal variation throughout the entire time
horizon. In summer, most of the parameters have an influence on the chlorophyll-a profile, but the
main factors are r0 (maximum phytoplankton growth rate), T1 (lower optimum temperature for algal
growth), Kp (phosphate half saturation constant for algal), and µ1 (phytoplankton linear mortality
rate). Although none of these parameters can be classified as an important parameter according to
Table 3, the summation over these four parameters explains around 82% of chlorophyll-a variance.
The remaining parameters are irrelevant during this season. These indicate that the algae growth in
summer is a combined effect of several factors instead of one key factor. In the early autumn, it is the
same as in the summer, while in the middle and later autumn, T1 becomes a very important parameter.
In winter and spring, T1 and µ1 become very important parameters alternatively.Water 2018, 10, 153 8 of 14 
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4.3. Parameter Sensitivity Temporal Variation for DO

DO concentration is also a state variable that shows the temporal variation throughout the entire
time horizon (Figure 6), whereas it is different from phytoplankton. From July to November, which
is from the middle summer to late autumn, the main factors are T1, µ1, bp (Phytoplankton basal
respiration rate), and rDET (Detritus remineralization rate). The summation over these four parameters
explains around 93% of DO concentration variance. The remaining parameters are irrelevant during
this period. During the rest of the year, T1 and µ1 become very important parameters alternatively.
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An important feature of the dynamic sensitivity analysis is that the influential parameter set
changes with time, which indicates changes in the dynamic behavior of the model throughout the time
horizon. As can be seen in these figures, the sum of Sti is seldom equal to 1, because the summation of
the sensitivity indices is a measure of model additivity [8].

5. Discussion

5.1. Ecological Implication from Parameter Sensitivity for Chlorophyll-a

Previous studies have shown that background light attenuation, light limitation of phytoplankton
growth-related parameters, and algae growth rates have been classified to be the main parameters
in a number of freshwater and marine models with both local [36–39] and global [40,41] analyses.
In our study, the maximum phytoplankton growth rate, the lower optimum temperature for algal
growth, the phosphate half saturation constant for algae, and the phytoplankton linear mortality rate
(r0, T1, Kp, and µ1) have a greater influence compared with other parameters, which indicates that
the TGR tributary bay is similar to other water bodies and has difference with them as well. A GSA
on Lake Dianchi [42], which is a shallow lake with an average depth of 5.2 m in China, shows that
the max growth rate of algae, the basal respiration rate, the chlorophyll-a induced light extinction
coefficient, and the lower bound of optimal temperature for algae have an important influence on
Chlorophyll-a. These indicate that there are sufficient nutrient or no nutrient limits in Lake Dianchi.
A GSA on the Paso de las Piedras Reservoir [43], which is a shallow reservoir with an average depth
of 8.2 m in Argentina, shows that the most important parameters for phytoplankton are the organic
phosphorus mineralization rate, phytoplankton death and respiration, and the background light
attenuation coefficient. These indicate that there are also no nutrient limits due to organic phosphorus
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mineralization in the Paso de las Piedras Reservoir. Therefore, light is not an important parameter in
the TGR compared with shallow lakes and reservoirs.

The sensitivity differences between the shallow lake and reservoir and the deep reservoir suggest
that the mechanisms of nutrient supply and the nutrient cycle are different. For the large deep
reservoir, due to slow changes in nutrient supplies, the algae growth rely on external loading. In this
case, nutrition limits have a great influence on the Chlorophyll-a and the phosphate half saturation
constant becomes an influential parameter. For the shallow lake and reservoir, changes in nutrient
supplies are relatively fast, external loading and the release of internal loading may be sufficient for
algae growth, and the nutrition limits have a slight influence on the Chlorophyll-a; simultaneously,
other environmental conditions, such as light, become more influential to the ecological system.

Since none of the four parameters are a decisive factor, this suggests that the algae blooms in
the TGR tributary bay may be caused by several factors and that its eutrophication mechanism is
more complex.

5.2. Ecological Implication from Parameter Sensitivity for DO

Oxygen concentrations reflect the momentary balance between supply from photosynthesis on
one hand and the metabolic processes that consume oxygen on the other. Previous studies have
shown that the sensitive parameters for DO concentration are almost same as those for Chlorophyll-a
in shallow lakes [42], which are the algae growth rate, the Chlorophyll-a-induced light extinction
coefficient, and the lower bound of optimal temperature for algae. The most influence parameters
on DO concentration are different from Chlorophyll-a in this study, and these indicate that the DO
bio-chemistry processes may be different in this two-water system.

The sensitivity differences between the shallow lake or reservoir and the deep reservoir suggest
that the mechanism of DO supply and the DO cycle is different. For the large deep reservoir, the oxygen
consumption by organic carbon remineralization has a great influence on the DO, and at some
special time in the year, the oxygen consumption cannot be neglected compared with the supply by
photosynthesis and external loading. For the shallow lake, the oxygen consumption by remineralization
can be neglected compared with the supply by photosynthesis and external loading; in this case, algae
growth has a great influence on the DO concentration, and they have the same sensitive parameters.

6. Conclusions

In this study, Sobol’s method was applied to conduct a global sensitivity analysis for a water
quality model of a TGR tributary bay. This method provides a quantitative analysis on factor sensitivity
and interactions. The analysis focused on the response of chlorophyll-a and dissolved oxygen to
11 parameters. We developed the following conclusions: the results show that the chlorophyll-a is
influenced mainly by the maximum phytoplankton growth rate, the lower optimum temperature for
algal growth, the phosphate half saturation constant, and the phytoplankton linear mortality rate,
while dissolved oxygen is influenced mainly by the maximum phytoplankton growth rate, the lower
optimum temperature for algal growth, the phytoplankton basal respiration rate, and the detritus
remineralization rate. Although none of these parameters can be classified as a single important
parameter, the summation over the four parameters explains around 82% of chlorophyll-a and 93% of
dissolved oxygen variance, respectively. The remaining parameters are irrelevant during the summer
growth season. These indicate that the algae bloom in summer is a combined effect of several factors,
instead of one key factor. The parameter sensitivity differences between the shallow lake and reservoir
and the deep reservoir suggest that the mechanisms of the nutrient and dissolved oxygen cycles
are different.
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Appendix A

The governing equations of CB ecological water quality model are given as:

dP
dt
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where P, DET, DO, NO3, NH4, PO4 and Si are phytoplankton, detritus, dissolved oxygen, nitrate,
ammonium, phosphate, and dissolved silicon, respectively. Superscript represents the biochemistry
process, subscript represents the related variables. gpp, mor, exc, res, rmn, denit, nit and upt
represent gross primary production, respiration, excretion, mortality, remineralization, denitrification,
nitrification and uptake.

The mathematical expression for each term in the model are given below.
Phytoplankton growth

dP
dt

∣∣∣∣gpp

O2

= rPP (A8)

rP = r0 f T
P f I

P f N,P,Si
P (A9)

f T
P =


e−0.1×(T−T1)

2
T < T1

1 T1 ≤ T ≤ T2

e−0.1×(T−T2)
2

T > T2

(A10)

IZ = I0e−(KW+KC·P)D (A11)

f I
P =

IZ
Iopt

e
(1− IZ

Iopt
)

(A12)

f NO3
P =

NO3/KNO3

1 + NO3/KNO3 + NH4/KNH4

(A13)
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f NH4
P =

NH4/KNH4

1 + NO3/KNO3 + NH4/KNH4

(A14)
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,
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(A15)

Phytoplankton mortality
dP
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Nitrification process
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Release nutrient process of phytoplankton respiration
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