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Abstract: This study presents an approach that integrates remote sensing evapotranspiration into
multi-objective calibration (i.e., runoff and evapotranspiration) of a fully distributed hydrological
model, namely a distributed hydrology–soil–vegetation model (DHSVM). Because of the lack of
a calibration module in the DHSVM, a multi-objective calibration module using ε-dominance
non-dominated sorted genetic algorithm II (ε-NSGAII) and based on parallel computing of a Linux
cluster for the DHSVM (εP-DHSVM) is developed. The module with DHSVM is applied to a humid
river basin located in the mid-west of Zhejiang Province, east China. The results show that runoff
is simulated well in single objective calibration, whereas evapotranspiration is not. By considering
more variables in multi-objective calibration, DHSVM provides more reasonable simulation for both
runoff (NS: 0.74% and PBIAS: 10.5%) and evapotranspiration (NS: 0.76% and PBIAS: 8.6%) and great
reduction of equifinality, which illustrates the effect of remote sensing evapotranspiration integration
in the calibration of hydrological models.
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1. Introduction

Parameter values of hydrological models must be evaluated through calibration to match
the model response to historical observed data [1–4]. Model calibration is usually based on the
comparison of observed and simulated runoff at a limited number of stations [1]. Considering the
multiple processes and numerous parameters in distributed hydrological models, this approach is
not very effective and often leads to parameter equifinality problems [5]. Moreover, calibration with
single model objective (that is to say, runoff) is unlikely to optimize other model outputs (such as
evapotranspiration and soil moisture) owing to the underlying principle in distributed hydrological
models. The application of multi-objective calibration in distributed hydrological models can optimize
multiple model outputs simultaneously and therefore reduce possible equifinality problems [6].

Evapotranspiration is the key element in the hydrologic cycle and has an important impact on
agricultural management and water resources [7,8]. However, the observation of evapotranspiration is
often more difficult than other variables, such as runoff and precipitation. Observed evapotranspiration
from hydrological stations is measured by evaporation pans, which can represent potential
evapotranspiration but not actual evapotranspiration [9]. Remote sensing data provide an alternative
solution for this problem. Over the past decades, remote sensing data have been widely used for
precipitation estimation, land use classification, evapotranspiration inversion, vegetation indices and
soil moisture prediction [10–17]. For ungauged basins, remote sensing data are particularly useful
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in drought forecasting, runoff estimation and rainfall frequency analysis [18–23]. Zhang et al. [17]
adopted a leaf area index (LAI) product from a moderate resolution imaging spectrometer (MODIS) to
derive evapotranspiration at an eight-day scale. Rajib et al. [5] applied remote sensing soil moisture,
together with observed runoff, to calibrate a soil and water assessment tool (SWAT) model. Previous
studies employing remote sensing data includes many fields [24–30]. However, less work has been
done in integration of remote sensing evapotranspiration into multi-objective calibration of a fully
distributed hydrological model.

There are various remote sensing-based models for evapotranspiration estimation [31], including
the surface energy balance system (SEBS) [32], the surface energy balance algorithm for land
(SEBAL) [33], the two-source energy balance model (TSEB) [34–36] and mapping evapotranspiration
at high resolution with internalized calibration (METRIC) [37]. Of these models, SEBAL can map
evapotranspiration with minimum ground-based data [38]. Moreover, the SEBAL model has been
successfully applied to derive evapotranspiration under different climatic conditions at both field
and catchment scales in more than 30 countries around the world, and it was found that the accuracy
of derived evapotranspiration at the field scale was 85% and 95% at daily and seasonal time scales,
respectively [39–41].

Multi-objective automatic calibration can reduce equifinality in parameter selection and overcome
the disadvantages of manual calibration. However, the demand in terms of computation time is
quite onerous [42]. Therefore, parallel computing is applied for multi-objective calibration in this
study. For multi-objective evolutionary algorithms, genetic algorithms (GAs) [43,44] have drawn
increasing attention and have been successfully applied to multi-objective problems in many fields,
including hydrological modelling. Kollat and Reed [45] proposed ε-domination non-dominated sorting
genetic algorithm II (ε-NSGAII), based on non-dominated sorting genetic algorithm II (NSGAII) and
ε domination archiving. Kollat and Reed [46] compared the performances of four multi-objective
algorithms, and the result revealed that ε-NSGAII is efficient, reliable and easy-to-use. In addition, the
application of ε domination, adaptive population sizing, and self-termination in ε-NSGAII minimizes
the population need for searching for an optimal solution. To compensate for a lack of calibration module
in the distributed hydrology–soil–vegetation model (DHSVM) [7,47], a multi-objective calibration
module using the ε-dominance non-dominated sorted genetic algorithm II (ε-NSGAII) and based on
parallel computing of a Linux cluster for the DHSVM (εP-DHSVM) is developed in this study.

The motivation of this study is to explore the effect of integrating remote sensing evapotranspiration
into multi-objective calibration on model performance of runoff and evapotranspiration simulation
based on the DHSVM. Moreover, it is worthwhile to investigate the feasibility of deriving long
time-series of evapotranspiration from MODIS via the SEBAL method. As far as the authors know,
development of an auto-calibration module for the DHSVM is rare. This study is carried out for a
humid region of China, namely, the Jinhua River Basin. Hence, the objectives of this study are to:
(1) estimate actual evapotranspiration at a daily time scale based on MODIS and meteorological
data via the SEBAL model; (2) develop a multi-objective calibration module (ε-NSGAII) based
on parallel computing of a Linux cluster for the DHSVM (εP-DHSVM); (3) assess performance of
evapotranspiration simulation when the DHSVM model is calibrated with single objective (runoff);
and, (4) integrate remote sensing actual evapotranspiration into multi-objective calibration of the
DHSVM and evaluate how runoff and evapotranspiration simulation are affected.

2. Study Area

The Jinhua River Basin is located in the mid-west of Zhejiang Province, east China (Figure 1a).
The length of this river is 195 km and its catchment area above the Jinhua hydrological station is
5996 km2. The study area is subject to an Asian monsoon climate, and precipitation is strongly
summer-dominant, occurring mostly from May to September. Based on fifty years (1962–2011) of
meteorological data, the mean annual precipitation in Jinhua River Basin is 1404.9 mm. As shown in
Figure 1c, the elevation ranges from 29 to 1296 m, and most areas of this watershed are located at low



Water 2018, 10, 1841 3 of 18

altitudes. The average air temperature is about 17 ◦C, and the maximum air temperature is more than
40 ◦C. Soils are mainly clay loam, sandy loam and loam, with percentages of 55.4%, 16.5% and 15.8%,
respectively. The land use types of the study area are primarily croplands, mixed forest and grasslands,
with percentages of 36.7%, 29.6% and 22.9%, respectively. Figure 1 shows the location, elevation of the
study area (digital elevation model, DEM), and hydro-meteorological stations used in this study.

Figure 1. (a) Location of study area, (b) hydro-meteorological stations and (c) digital elevation model
(DEM) used in the study.

3. Data and Methods

3.1. Experiment Design

The general framework of this study is presented in Figure 2. In a previous study by the
authors [48], a two-step sensitivity analysis method was coupled to the DHSVM, owing to the lack of
sensitivity analysis module in the hydrological model. A global sensitivity analysis method (ANOVA)
was adopted in the first step of sensitivity analysis to obtain preliminary sensitive parameters in the
hydrological model. In the second step, final sensitivity parameters and their interactions could be
obtained through a more sophisticated global sensitivity analysis method called Sobol’s sensitivity
analysis. These final sensitivity parameters were then used in model calibration in this study. Sobol’s
sensitivity analysis method is a variance-based method, which can measure the contribution of a single
parameter to model outputs and its interactions with others. The criteria for determining sensitivity of
parameters in Sobol’s method are sensitivity indices, including first order, second order and total order
indices [49,50]. The first order sensitivity index measures the main effect of single parameter, while the
second order sensitivity index measures the interaction effect between two parameters. The total order
sensitivity index measures the main effect of single parameter and interactions with other parameters,
indicating that the difference between total order and first order sensitivity indices measures the
interactions of one parameter with others. All details about the first part of this framework (Box I,
Figure 2) can be found in [48].

Box II (Figure 2) shows the main methods used in the present study. In multi-objective calibration,
remote sensing evapotranspiration derived from MODIS data via SEBAL is used as the observation
data. Moreover, the performance of simulating runoff and evapotranspiration in multi-objective
calibration after remote sensing evapotranspiration integration will be evaluated.
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Figure 2. General framework used in the study.

3.2. Data

Five meteorological stations were used in this study, i.e., Yiwu, Dongyang, Yongkang, Jinhua and
Wuyi (Figure 1b). The climate variables included daily maximum and minimum air temperature, air
relative humidity, wind speed, sunshine duration and precipitation. These climate data were used
to calculate potential evapotranspiration (PET) via the FAO (Food and Agriculture Organization of
the United Nations) Penman-Monteith method [7,51]. The hydrological station was Jinhua Station.
The period of hydro-meteorological data for model calibration was 2004–2008.

MODIS was the key instrument of Terra (originally called EOS AM-1) and Aqua (originally called
EOS PM-1) satellites. Terra passes from north to south over the equator in the morning, while Aqua
passes south to north across the equator in the afternoon. MODIS receive data in 36 spectral bands and
the spatial resolution includes 250 m, 500 m and 1000 m. The period of MODIS data used in this study
was 2004–2008, corresponding to that of hydro-meteorological data. The following MODIS Collection
3 land data products were extracted from NASA website [52]:

(a) MOD09GA: 1-day, 500 m land surface reflectance;
(b) MOD11A1: 1-day, 1-km land surface temperature;
(c) MOD13A1: 16-day, 500 m vegetation indices (NDVI).

3.3. SEBAL Model

SEBAL (surface energy balance algorithm for land) is a remote sensing evapotranspiration inversion
model originally proposed by Bastiaanseen et al. [33], which is based on energy balance, aerodynamics
and empirical relationship. This model is widely used owing to its limited data requirement and easy
calculation [53]. The theoretical basis of remote sensing inversion evapotranspiration is land surface
energy balance, and the equation is shown as follows:

Rn = G + H + λ · ET + PH (1)

where Rn is net radiation flux, G is soil heat flux, H is sensible heat flux, λ · ET is latent heat flux,
λ is latent heat of vaporization, ET is evapotranspiration, and PH is the energy used for vegetation
photosynthesis. The unit of various flux in Equation (1) is W/m2.

The determination of sensible heat flux is the key to the SEBAL model, and the equation is
presented as follows:

H = ρ · CP · dT/γa (2)
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where ρ is air density (kg/m3), CP is the specific air heat capacity (J/kg · K), dT is temperature
difference between different heights (K), and γa is Aerodynamic resistance (s/m). The calculation of
sensible heat flux should be through iterative algorithms, owing to the fact that the variables H, dT and
γa are all unknown and associated with each other. For the specific details of iterative algorithms and
calculation of other fluxes, refer to Bastiaanseen et al. [33], Papadavid et al. [54], and Tang et al. [55].

In order to derive actual ET via the SEBAL method, climate data are also needed, such as air
relative humidity and solar radiation. Moreover, elevation and latitude of meteorological stations are
necessary for radiation calculation.

3.4. DHSVM

The distributed hydrology–soil–vegetation model (DHSVM) is a physically-based distributed
hydrologic model, which provides a dynamic representation of spatial distribution of runoff,
evapotranspiration, snow cover, and soil moisture at the spatial scale of digital elevation model (DEM)
data [56,57]. The horizontal resolution of the DEM is typically 10–200 m. The river basin is divided
into numerous computational grids based on the DEM. Soil and vegetation characteristics are allocated
to each grid. The grid has hydrological connections with its adjacent neighbors through surface and
subsurface flow routing. Routing surface runoff in the model has two approaches, a cell-by-cell method
or a unit hydrograph method. Unsaturated moisture movement through multiple rooting zone soil
layers was assessed by Darcy’s law. Channel flow was routed by a cascade of liner channel reservoirs.
Evapotranspiration was simulated by a two-layer canopy model, and each layer is divided into wet
and dry areas. Modules related to snow were not considered in this study, due to the fact that snow is
very rare in the study area. In this model, parameters included 3 categories, i.e., constant parameters,
soil parameters and vegetation parameters. The constant parameter means that its value was set to a
constant for the whole river basin and the entire data period used in this study, and included ground
roughness and rain LAI multiplier.

The input data of the DHSVM included vegetation, soil, soil depth, stream network, the DEM
and meteorological data (maximum and minimum air temperature, air relative humidity, wind speed,
sunshine duration and precipitation data from 5 stations). DEM data with a resolution of 90 m were
downloaded from the Shuttle Radar Topography Mission (SRTM) website (http://srtm.csi.cgiar.org/)
and is redefined to 200 m due to computational burden. The vegetation and soil data were obtained
from WESTDC Land Cover Products 2.0 (2006) (http://westdc.westgis.ac.cn) and Nanjing Institute of
Soil Research, respectively.

This model has been widely applied to study land use change, hydrologic prediction and the
effects of climate change on hydrologic processes [9,58–61].

3.5. Multi-Objective Calibration

As described in Section 3.1, the final sensitivity parameters were obtained through a two-step
sensitivity analysis method (first step: ANOVA sensitivity analysis, second step: Sobol’s sensitivity
analysis) [48]. Table 1 displays ranges, meaning, unit and abbreviation of 16 parameters of the DHSVM
in Sobol’s sensitivity analysis (second step) and Figure 3 shows the total order sensitivity index of
these parameters. According to Tang et al. [62], a parameter is regarded as highly sensitive if its
sensitivity index is larger than 0.1. Therefore, 8 parameters were highly sensitive parameters based on
the total order sensitivity index shown in Figure 3, and then selected for model calibration in this study,
including 1 constant parameter (rain LAI multiplier), 4 soil parameters (lateral conductivity, porosity,
field capacity and wilting point of clay loam), and 3 vegetation parameters (understory monthly LAI,
understory minimum resistance and root zone depths of croplands).

http://srtm.csi.cgiar.org/
http://westdc.westgis.ac.cn
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Table 1. Ranges, meaning, unit and abbreviation of 16 parameters of the DHSVM in Sobol’s
sensitivity analysis.

Parameter Meaning Unit Abbreviations Range

Rain leaf area index (LAI)
multiplier

Multiplier for LAI to determine interception capacity
for rain m Rj 0.00001~0.001

Wilting point (L) Wilting point for loam, used to calculate
evapotranspiration m3/m3 θwp(L) 0.05~0.25

Lateral conductivity (CL) Lateral saturated hydraulic conductivity for clay
loam, used to calculate movement of lateral runoff m/s K(CL) 0.00001~0.09

Lateral conductivity
exponential decrease (CL)

Exponent describing the decrease of lateral
conductivity with soil depth for clay loam / f(CL) 1~4

Porosity (CL) Porosity for clay loam, soil moisture content when
soil is saturated m3/m3 ϕ(CL) 0.35~0.6

Field capacity (CL) Field capacity for clay loam, used to estimate
available water for subsurface layers m3/m3 θfc(CL) 0.16~0.4

Wilting point (CL) Wilting point for clay loam, used to calculate
evapotranspiration m3/m3 θwp(CL) 0.05~0.25

Bulk density (CL) Bulk density for clay loam, used to estimate dry soil
thermal conductivity kg/m3 ρB(CL) 1000~3000

Understory height (MF) Understory height for mixed forests m Uh(MF) 0.3~2.5

Overstory minimum
resistance (MF)

Overstory minimum stomatal resistance for
understory of mixed forests s/m ORsmin(MF) 300~800

Understory minimum
resistance (MF)

Understory minimum stomatal resistance
for mixed forests s/m URsmin(MF) 50~300

Understory monthly LAI
(CrL) Understory leaf area index for croplands m2/m2 ULAI(CrL) 0.3~3

Understory minimum
resistance (CrL)

Understory minimum stomatal resistance
for croplands s/m URsmin(CrL) 50~300

Soil moisture threshold
(CrL)

Soil moisture threshold above which soil moisture
does not restrict transpiration for croplands m3/m3 θ*(CrL) 0.1~0.35

Vapor pressure deficit
(CrL)

Vapor pressure deficit threshold above which
stomatal closure occurs for each vegetation layer

for croplands
pa Ec(CrL) 1000~6000

Root zone depth (CrL) These are in effect the depths of the various soil
layers for croplands m D(CrL) 0.1~0.8

The abbreviations L, CL, MF and CrL in Table 1 represent loam and clay loam in soil types, and mixed forest and
croplands in land use types, respectively.

Figure 3. Total order sensitivity index of sixteen parameters of the DHSVM in Sobol’s sensitivity
analysis [48] (The abbreviations of 16 parameters are shown in Table 1).
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ε-NSGAII (ε-dominance non-dominated sorted genetic algorithm II) [46] is a multi-objective
evolutionary algorithm inspired by the process of natural selection. Compared with NSGAII [63],
ε-NSGAII has been supplemented by ε-dominance, adaptive population sizing, and automatic
termination. ε-dominance enables the user to specify the precision for each objective in a multi-objective
problem. A scheme of 25% injection was used in the ε-NSGAII algorithm to direct the search. That is
to say, 25% of the subsequent populations consisted of ε-non-dominance archive solutions from
current populations and the other 75% were generated randomly. Automatic termination could
minimize the need by terminating search based on user-specified criteria in a multi-objective problem.
The application of ε-dominance, adaptive population sizing, and automatic termination make the
ε-NSGAII easier to implement and could provide more reliable results than other evolutionary
algorithms [64,65]. The flowchart of ε-NSGAII is showed in Figure 4.

Figure 4. Flowchart of multi-objective calibration method ε-NSGAII (adapted from Kollat and
Reed, [46]).

The selection of the objective functions (shown in Equation (5)), i.e., objectives set by users according
to their demands, is very important for model calibration. In this study, Nash–Sutcliffe efficiency
coefficient (NS) and model estimation bias in the percentage (PBIAS) of runoff and evapotranspiration
were chosen as objective functions. The Nash–Sutcliffe efficiency determines the relative difference of
residual variance compared with the observation variance [66]. PBIAS could ensure the water balance
in model simulation. The equations for NS and PBIAS are presented as follows:

NS = 1−

n
∑

i=1
(Oi − Si)

2

n
∑

i=1
(Oi −

−
O)

2 (3)
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PBIAS(%) = abs

100×
n
∑

i=1
(Si −Oi)

n
∑

i=1
(Oi)

 (4)

where Oi represents observed runoff, Si represents simulated runoff, and O represents the average of
observed runoff.

The multi-objective calibration of the DHSVM can be described as follows:

Minimize{1− NSE, PBIASE, 1− NSR, PBIASR} (5)

where NSE refers to NS for evapotranspiration; PBIASE refers to PBIAS for evapotranspiration; NSR
refers to NS for runoff; and PBIASR refers to PBIAS for runoff.

Due to high computation demands of the DHSVM and large sample requirements in sensitivity
analyses and model calibration, parallel computing is applied in this study. A self-constructed cluster
consisting of five personal computers with the same configuration was used. The logistical setup of the
cluster was a master–slave distribution (i.e., one processor set as master and the other processors set as
slaves). In model calibration, multiple model runs were in parallel with a message passing interface
(MPI) program. In each generation, the master allocated individuals equally to slaves, and gathered
objective values from slaves after they are evaluated. The next generation was then determined based
on the rules of ε-NSGAII, including elite strategy, selection, crossover and mutation.

4. Results

4.1. Time Series of Remote Sensing Evapotranspiration

Time series of MODIS evapotranspiration on a daily time scale are obtained through the SEBAL
model. Owing to the lack of actual evapotranspiration observation in the study area, potential
evapotranspiration (PET) calculated by the FAO Penman-Monteith method is used to examine the
accuracy of MODIS-ET [39,41,67]. Figure 5 presents the comparison of monthly areal MODIS-ET and
PET time series of Jinhua River Basin. From this figure, it can be observed that MODIS-ET shows
reasonable performance. Overall, MODIS-ET is lower than PET, which is rational, owing to the fact
that PET is the quantification of evapotranspiration ability with sufficient moisture, i.e., the maximum
of actual evapotranspiration. The correlation coefficients between MODIS-ET and PET on daily and
monthly time scales are 0.89 and 0.94, respectively.

Figure 5. Monthly areal moderate resolution imaging spectrometer- evapotranspiration (MODIS-ET)
and potential evapotranspiration (PET) time series of Jinhua River Basin.



Water 2018, 10, 1841 9 of 18

4.2. Single Objective Model Calibration Results

Figure 6 shows the solution distribution of objective space from single objective calibration (only
runoff is used as calibration objective). In order to present a better search process, only ranges (0–1
for NS and 0.0006–60% for PBIAS) are shown in Figure 6. From this figure, it can be observed that
some relationship may exist between NS and PBIAS. Hence, a function is found to fit the relationship
between them and its fitting effect is quite reasonable, as shown in Figure 6. The bottom left corner
represents the optimal solution, i.e., the values for NS is 1.0 and for PBIAS is 0. The smaller the distance
between the solution and the bottom left corner, the better the performance of the runoff simulation.
From the solution distribution, it is found that the maximum value of NS is 0.79 and minimum value
of PBIAS is 0.0006%, but the optimal solution does not exist (i.e., where the best values of two objective
functions occur in one solution). To analyze the performance of runoff simulation, a tradeoff solution,
which makes compromises between the two objective functions, is shown as R1 (minimum value of
sum of distance’s square to the optimal point, i.e., NS is 1.0 and PBIAS is 0) in Figure 6.

Figure 6. Solution distribution in objective space of Nash–Sutcliffe efficiency coefficient (NS) and
percentage estimation bias (PBIAS) of runoff obtained by single objective calibration.

The comparison between observed and simulated runoff for solution R1 is shown in Figure 7a.
The NS and PBIAS for R1 are 0.79 and −0.5%, respectively. Table 2 shows the evaluation standard
of hydrological indices for the performance of the model simulation [59]. According to Table 2, the
performance of runoff simulation is very good overall. From Figure 7a, it can be observed that peak
flows are to some extent underestimated. Possible reasons for this include that: (1) preferential flow is
not considered in the DHSVM; (2) there is the assumption that the understory or bare soil covers the
entire cell in evapotranspiration module; and (3) meteorological data on a daily instead of an hourly
time scale is used. Similar conclusions are obtained by Kelleher et al. [68] and Kuraś et al. [69], who
found the underestimation of peak flow in hydrologic simulation using the DHSVM.

The comparison of simulated monthly areal actual ET and MODIS-ET for R1 is shown in Figure 7b.
It is obvious that the performance of evapotranspiration simulation is not very good. Underestimation
of actual ET is very common, especially in summer. The NS and PBIAS for actual ET on a daily time
scale are 0.14% and −30.8%, respectively. On a monthly time scale, the NS value is 0.25. Therefore, it
can be concluded that the good performance of runoff simulation could not guarantee the performance
of other hydrologic elements, for example, actual evapotranspiration, in this study. This conclusion
is consistent with that of [70], who calibrated the HBV rainfall–runoff model with a single objective,
either runoff or evapotranspiration, and found that the other output variable was poorly simulated in
both cases.
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Figure 7. (a) Comparison of daily observed and simulated runoff and (b) comparison of simulated
monthly areal evapotranspiration and MODIS-ET for R1 solution from single objective calibration.

Table 2. Evaluation standard of hydrological indices for performance of model simulation [59].

PBIAS (%)
15% < PBIAS < 25% 10% ≤ PBIAS ≤ 15% PBIAS < 10%

average performance good very good

NS
0.35 < NS < 0.5 0.5 ≤ NS ≤ 0.7 0.7 < NS

average performance good very good

R2 0.49 < R2 ≤ 0.64 0.64 < R2 ≤ 0.81 R2 > 0.81
average performance good very good

4.3. Multi-Objective Calibration Results

Results of multi-objective calibration are obtained through εP-DHSVM, with both runoff and
evapotranspiration as objectives (i.e., NS of runoff and evapotranspiration and PBIAS of runoff and
evapotranspiration). The self-developed εP-DHSVM model with parallel computing algorithm is able
to conduct multi-objective calibration efficiently and effectively, with its calculation speed improved
by more than 20 times. Figure 8 shows the solution distribution in objective space of NS (Figure 8a)
and PBIAS (Figure 8b) of runoff and evapotranspiration. Figure 9 presents the solution distribution
in objective space between NS and PBIAS for runoff (Figure 9a) and evapotranspiration (Figure 9b).
Similarly, functions are found to describe the relationship between NSR/NSE and PBIASR/PBIASE and
their fitting effect is very good. In order to clearly analyze the simulation performance of runoff and
evapotranspiration in multi-objective calibration, three tradeoff solutions (R, E and RE) are selected
and shown in Figures 8 and 9. Solutions R and E are derived by making compromises between two
objective functions of runoff and evapotranspiration, respectively. Solution RE is obtained by making
compromises among four objective functions of runoff and evapotranspiration.

Figure 10 shows the daily observed and simulated runoff for solution R. The NS efficiency
coefficient and PBIAS for R are 0.79 and −1.6%, respectively. Compared with solution R1 in the single
objective calibration (shown in Section 4.2), the model performance of runoff simulation by solution R
is slightly improved.
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Figure 8. (a) Solution distribution in objective space of NS of runoff and evapotranspiration, and (b) in
objective space of PBIAS of runoff and evapotranspiration from multi-objective calibration for runoff
and evapotranspiration.

Figure 9. (a) Solution distribution in objective space of NS and PBIAS of runoff, and (b) in
objective space of NS and PBIAS of evapotranspiration from multi-objective calibration for runoff
and evapotranspiration.

Figure 10. Comparison of daily observed and simulated runoff for solution R from multi-objective calibration.
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Figure 11a presents the monthly areal simulated ET and MODIS-ET for solution E. As shown in
this figure, the simulation of evapotranspiration by the DHSVM is very reasonable. The NS and PBIAS
for daily evapotranspiration are 0.86 and −1.9%, respectively. On a monthly time scale, the NS value
is 0.95. According to Table 2, the performance is very good. PBAIS between the simulated ET and
MODIS-ET on a monthly time scale for solution E are presented in Figure 11b. The range of PBIAS is
−13.2–19.9%, within the acceptable range (−25–25%). Except for a few months (September, November
and December), evapotranspiration is underestimated. The PBIAS values are various for different
months. The maximum value is 19.9% for November and the minimum value is −0.2% for October.

The model performance of runoff and evapotranspiration for solutions R and E were analyzed,
respectively, above. As shown in Figure 8, two efficiency values of evapotranspiration for R, and runoff
for E, are not good.

Figure 11. (a) Comparison of monthly areal simulated ET and MODIS-ET, and (b) PBAIS between
simulated-ET and MODIS-ET for solution E from multi-objective calibration.

For solution RE based on four objective functions, the NSR and PBIASR values are 0.74 and
−10% on a daily time scale, respectively. On a monthly time scale, the NSR value is 0.89. This shows
a very satisfactory performance of runoff simulation by solution RE. In addition, the simulation of
evapotranspiration is also satisfactory, based on the comparison of simulated evapotranspiration and
MODIS-ET shown in Figure 12b. On a daily time scale, the values are 0.76 and −8.6% for NSE and
PBIASE respectively. On a monthly time scale, the NSE value is 0.86. According to Table 2, solution
RE shows very good model performance for runoff and evapotranspiration in this study area.

Figure 12. (a) Comparison of daily observed and simulated runoff, and (b) comparison of monthly
areal simulated-ET and MODIS-ET for solution RE from multi-objective calibration.

5. Discussion

In this study, the DHSVM was calibrated for the Jinhua River Basin using observed runoff
and remote sensing evapotranspiration obtained from MODIS via the SEBAL method. In order
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to illustrate whether the equifinality problem is improved in multi-objective calibration, Table 3
shows values of eight calibrated parameters for trade-off solutions (R1, R, E, RE) from single and
multiple objective calibrations. For solution R1, the DHSVM performs well for runoff modelling and
simulates evapotranspiration poorly. As shown in Table 3, the value of understory LAI of croplands is
much smaller than the other three trade-off solutions (R, E, RE). A small value of LAI will result in
underestimation of actual evapotranspiration, owing to the fact that LAI has a great impact on the
capacity of canopy interception and acquisition of solar radiation. Moreover, vegetation minimum
resistance affects vegetation transpiration. A high value of lateral conductivity speeds up lateral flow
movement, which may lead to decrease of soil evaporation. The vegetation parameters are completely
concentrated in croplands, which may be owing to its maximum percentage (55.4%) in the study area.
This leads to vegetation parameters of croplands playing larger roles than other for land use types.

For single objective calibration, high equifinality occurred, due to the broader parameter ranges
for good performance (NS > 0.7 and PBIAS < 10%) of runoff simulation. For porosity of clay loam, the
range is 0.4–0.6 m3/m3. The narrower the parameter range, the lower the equifinality or uncertainty.
For multi-objective calibration, the parameter ranges of good performance (NSR > 0.7, NSE > 0.7,
PBIASR < 10% and PBIASE < 10%) are much lower than for single objective calibration, such as
0.55–0.59 m3/m3 for porosity of clay loam. Therefore, multi-objective calibration can, to a great
extent, mitigate the problem of equifinality, which is in line with the work of Rajib et al. [5] and
Wanders et al. [71]. The results of these studies confirmed the strong effect of remote sensing data in
reducing equifinality when integrated into multi-objective calibration. Moreover, reducing the number
of calibration parameters [72] or adding more observations can also address the equifinality issue
to some extent [73]. In addition, the increasing applications of remote sensing data in hydrological
modeling has the potential to mitigate the equifinality problem [74].

Table 3. Specific values of eight calibrated parameters for trade-off solutions from single and
multi-objective calibration (R1, R, E, RE).

Parameters R1 R E RE

Rj 0.0007 0.0004 0.0003 0.0003
K(CL) 0.02620 0.00008 0.00013 0.00012
ϕ(CL) 0.60 0.59 0.58 0.59
θfc(CL) 0.34 0.36 0.38 0.39
θwp(CL) 0.05 0.06 0.05 0.06

ULAI(CrL) 0.38 0.98 1.52 1.11
URsmin(CrL) 174 206 216 209

D(CrL) 0.02 0.17 0.17 0.17

Runoff and evapotranspiration are two major outputs of hydrological models. Changes in one
will influence the other. Therefore, the accuracy of evapotranspiration acts in an important role in
achieving reasonable simulation of runoff. For remote sensing data, its accuracy varies greatly owing
to heterogeneity of land surface and variation of climate [75]. As a result, solely MODIS-derived
actual evapotranspiration data (MOD16 ET) may not be able to capture landscape heterogeneity [76].
Yang et al. [75] compared three remote sensing ET models with observations and revealed that two
energy balance-based models perform much better in terms of accuracy of deriving evapotranspiration
than the MOD16 ET model. In this study, the accuracy of remote sensing ET obtained through the
SEBAL method coupled with MODIS products and meteorological variables, such as air relative
humidity [55], can be further enhanced, resulting in better accuracy. Nevertheless, how to verify
the accuracy in remote sensing ET is still a crucial issue. In this study, PET estimated by FAO
Penman-Monteith is used as a benchmark to check the accuracy of remote sensing evapotranspiration
derived from MODIS via the SEBAL model. However, PET refers to the maximum potential of
evapotranspiration under adequate water supply [7] while remote sensing evapotranspiration refers
to actual evapotranspiration instead of potential evapotranspiration. Hence, PET and remote sensing
evapotranspiration are different. In fact, observation data of actual evapotranspiration is very rare.
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Observation equipment used to measure actual evapotranspiration is usually in the form of evaporation
pans, including Φ 20 cm, Φ 80 cm, E601 and class A pans [9,77,78]. As is known, evaporation pans
have adequate water when used to measure actual evapotranspiration. This is more similar to PET
but is still not actual evapotranspiration. One frequently used approach to solve this issue is isotope
measurement [79–84]. The advantage of isotope measurement is its accuracy, while the disadvantages
are that it is time-consuming and not suitable for large-scale problems. Remote sensing data is indeed
an effective resource to obtain actual evapotranspiration for large-scale problems. The models or
methods applied to derive actual evapotranspiration from remote sensing data should be improved
and developed in the future [75,85,86].

This study can provide useful insights for hydrological modeling, in particular for regions where
data are scare. More studies should follow to explore the effect of different remote sensing products
for hydrological modeling and other fields.

6. Conclusions

This study integrated remote sensing evapotranspiration into multi-objective calibration of a
fully distributed hydrological model (DHSVM) in a humid region in east China. The remote sensing
evapotranspiration was derived from MODIS through the SEBAL model. Moreover, this study
developed a multi-objective calibration module based on parallel computing of a Linux cluster for the
DHSVM (εP-DHSVM) and applied it to Jinhua River Basin. Eight sensitivity parameters, obtained
from a two-step sensitivity analysis approach, were used in model calibration, including single
objective calibration and multi-objective calibration. In single objective calibration, runoff was the only
objective and two objective functions (NSR and PBIASR) of runoff were adopted. In multi-objective
calibration, remote sensing evapotranspiration was integrated. Two objectives, including runoff
and evapotranspiration, and four objective functions (NSR, PBIASR, NSE, and PBIASE) were used.
The following conclusions can be drawn:

1. Compared with potential evapotranspiration, MODIS-ET estimated by SEBAL showed a
satisfactory performance, with high values of efficiency coefficients on daily (0.89) and monthly
(0.94) time scales, which illustrates the accuracy of MODIS-ET in the Jinhua River Basin.

2. Runoff was simulated reasonably in single objective calibration with an NS value of 0.79 and a
PBIAS value of 0.5%, whereas evapotranspiration was not. High equifinality occurred in single
objective calibration.

3. The multi-objective calibration by integrating remote sensing evapotranspiration showed
good performance for runoff and evapotranspiration simulation with reasonable value of
objective functions (NSR: 0.74, PBIASR: −10%, NSE: 0.76 and PBIASE: −8.6%). Furthermore,
multi-objective calibration to a great extent alleviated the problem of equifinality.

4. The self-developed model, εP-DHSVM, can implement multi-objective calibration effectively and
efficiently, with its calculation speed improved more than 20 times.
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