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Abstract: Oilfield-produced brine is a major source of salt contamination in soil and groundwater.
Salt transport in the upper soil layers is controlled by the atmospheric interactions via infiltration of
meteoritic water. In lower layers, it is controlled by fluctuations in the groundwater table, which are
also linked to atmospheric interactions via groundwater recharge. Therefore, climate is an important
factor in the movement of contaminants in the unsaturated zone. A one-dimensional variably
saturated flow and transport model with soil atmospheric boundary conditions was used to estimate
the effect of climate type and soil texture on soil water and salt dynamics in variably saturated soils.
Numerical simulations were run with Hydrus-1D, using daily climate data. Simulations were run for
nine-year climate datasets for different ecoclimatic locations in Alberta, Canada. Results indicated
that coarse-grained materials are good evaporation barriers, resulting in water gain conditions
at the ground surface, irrespective of the climate type. However, the quantity of water gain and
associated advective fluxes are a function of climate. Results also indicated that flow and transport
in fine-textured soils is more dependent on the climate type. For fine-grained soils in arid climatic
conditions, net water loss at the ground surface and upward migration of salt can be expected.
For wetter climates, the upward migration of salt is less probable.

Keywords: unsaturated flow and transport; oilfield brine; soil–atmosphere interaction; finite element
methods; climate

1. Introduction

Groundwater resources play an important role in the development of the modern society. On a
global scale, the growing groundwater demand has become crucial for the livelihood and food
security, especially in areas with arid and semi-arid climates [1]. In Canada, approximately 30% of the
population depends on groundwater resources for domestic use [2].

Over the past few decades, the study of the unsaturated zone has received a great deal of attention
in relation to understanding the effect of water dynamics and solute transport in the unsaturated
zone [3]. The unsaturated zone or vadose zone is the portion of subsurface that lies above the water
table, and acts as a natural filter by attenuating pollutants that might migrate from near or at the
ground surface before reaching and polluting surface and groundwater resources.

Large oil and gas operations have existed in the Great Plains Area of Canada since the mid-20th
century [4]. The extraction and processing of these natural resources sometimes result in spills of
highly concentrated drilling fluids and co-produce saline water released at the ground surface or in
the subsurface. The spill of salts poses a severely adverse effect on the near-subsurface environments.
The transport of the produced saline water in the unsaturated zone leads to contamination of
groundwater resources and degradation of soil chemical and physical properties caused by excess of
sodium and chloride concentrations [5]. The transport becomes more complex due to the heterogeneity
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of the soil profile. Soil texture and soil layering configurations impact salt migration during the
infiltration (I) and evaporation (E) processes, which in turn increase the risk of salinization and
sodification in the root zone [6]. The I and E are controlled by many variables, such as: soil hydraulic
properties, depth to the groundwater table, interconnectivity between the unsaturated zone and
groundwater systems, presence of diurnal or nocturnal phreatophytes, root water uptake distribution,
and seasonal climatic conditions [7]. According to an estimate, the salt-affected area due to various
reasons covers about 1 × 109 ha in the world [8].

The current methods of risk assessment and site-specific remediation controls are regulated by
the Alberta’s Environmental policy framework on sustainable soil and groundwater contamination
management practices. Under the framework, one of the options for the management of contaminated
sites requires the use of a software called subsoil salinity tool [9]. The subsoil salinity tool (SST) is a
software program designed for the development of soil salinity guidelines applicable below the root
zone regarding the net vertical and lateral movement of salt over time. In essence, SST program is
a chloride-mass-balance-based fate and transport guideline calculator, which employs a conceptual
model based on vertical chloride transport in soil as a function of hydraulic gradient, and saturated
hydraulic conductivity [9]. The SST program relies on pre run simulations and the user can either
make use of a pre-assigned vertical gradient corresponding to a specific natural region and subregion
for the province of Alberta [10] or use field measured vertical gradient values.

Figure 1 shows the various natural regions and subregions for the province of Alberta. The same
figure also shows the climate moisture index (CMI) for various regions and associated upward or
downward drainage rates (gradients) (mm/year) for fine and coarse soil materials. For each climate
and soil type, two different drainage rates are provided. The first drainage rate is used to develop
guidelines for receptors located in closer proximity to the soil surface such as the root zone, shallow
groundwater and aquatic life. The second drainage rate is used to develop guidelines for deeper
receptors, such as drinking water aquifers. For example, for Foothills and Rocky Mountain Natural
Regions, where climate is estimated to be moderately wet/semi-humid, the highest drainage rates
only in the downward direction are assigned. This is based on the assumption that for this subregion,
there is a net moisture surplus, and salts will transport downward in a manner associated with
recharge conditions for both coarse and fine materials. Similarly, drainage rates for moist/semi-humid
climate for some regions of Rocky Mountain and Boreal Forest are also only downward but are in
smaller in magnitude than the wet/semi-humid climate. It can also be observed that for Parkland and
certain Boreal Forest subregions where the water balance is near neutral, both upward and downward
drainage rates are assigned. In general, higher drainage rates are associated with wetter climates
and coarse soils, while lower drainage rates are associated with drier climates and fine-grained soils.
In addition, the magnitude of drainage rate used to develop guidelines for receptors located in closer
proximity to the soil surface appears to be fixed at 1 mm/year. The SST program also does provide the
flexibility to modify the drainage categories if information on vertical hydraulic gradient from nested
wells at particular site is available [9].

The assignment of a constant drainage rate, either in the upward or downward direction, has
a number of limitations. Water fluxes in the vadose zone could vary significantly from site to site,
even for similar climate conditions. Even with the same average flux, salt migration will be different
with constant flux than with seasonally varying flux. Therefore, using constant recharge/discharge
rates does not represent possible significant difference between sites and may overestimate or
underestimate salt migration at the site. Field measurements of vertical gradient at salt-contaminated
sites require significant effort and availability of this information does not necessarily address concerns
associated with seasonally varying flux. It is anticipated that a more practical solution could be
using representative climate datasets with different regional and representative parameters to predict
the salt movement using variably saturated flow and transport modeling. Additionally, use of a
soil atmosphere boundary with representative climate datasets will ensure that soil atmosphere
interaction is taken into consideration, and direction and magnitude of the flux at the ground surface
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is appropriately estimated. The importance of soil atmosphere interaction has been highlighted in a
number of recent publications [11–14].
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The present research attempts to understand the relationship between the effects of soil texture
and climate type on water and salt dynamics in the variably saturated zone for different ecoclimatic
regions in Alberta, Canada, using numerical modeling. The flow and transport modeling was carried
out using Hydrus-1D [15]. Hydrus-1D is a computer code, which can be used to simulate water flow,
heat, carbon dioxide and major ion solute transport in variably saturated porous media. Hydrus has
been used in the past for similar studies [16].

Hydrus-1D uses the finite element method to solve relevant governing differential equations of
energy and mass transfer. Multiyear climate datasets were compiled and classified for six different
natural regions of province of Alberta and constituted the upper boundary of the models. The soil
atmosphere boundary was used to estimate the direction and magnitude of the water flux at the
ground surface. Estimated unsaturated soil hydraulic properties for commonly occurring surficial
soils in Alberta were used in the modeling. Results from the simulations indicate that the direction
and magnitude of the salt movement is dependent on the climate and soil types. The results from this
work can be used for site-specific risk assessments for the vertical migration of salt for various general
climate and soil types.
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2. Theoretical Considerations

2.1. Water Flow and Solute Transport in Variably Saturated Soils

Richards [17] defined the governing partial differential equation for uniform water movement
in unsaturated soils by combining the mass balance equation with the Darcy-Buckingham flux law.
For one-dimensional vertical domain, the equation can be expressed as:

∂θ

∂t
=

∂

∂z

[
K(h)

(
∂h
∂z

+ 1
)]
− S (1)

where θ is the volumetric water content (L3/L3), t is time (T), h is the soil water pressure head (L), z is
the vertical spatial coordinate (L), K(h) is the unsaturated hydraulic conductivity function (L/T) and S
is the sink term (L3/L3T) that accounts, for example, for root water uptake (transpiration).

In order to solve the above equation, two sets of hydraulic properties are required.
These properties are soil–water characteristic curve (SWCC) and the unsaturated hydraulic
conductivity function [15]. The unsaturated soil hydraulic properties are of great importance, especially
when numerical models are used in the analysis of variably saturated water flow and salt transport [18].
van Genuchten [19] estimated the unsaturated hydraulic conductivity in terms of SWCC parameters
based upon the theory of Maulem [20]. The van Genuchten function [19] for SWCC is as follows:

θ =
(θs − θr)[

1 + (|αh|)n]m + θr (2)

where θs is the saturated water content (L3/L3), θr is the residual water content (L3/L3), α (1/L), n (−),
and m (−) are curve fitting parameters, and other parameters are as defined earlier. The parameter α can
be related to the inverse of air entry value (also referred to as the bubbling pressure which is the negative
pressure head that must be exceeded before air recedes into the soil pores [21]. The parameter n is
related to the pore size distribution index. Using the assumption that m = 1 − 1/n, van Genuchten [19]
formulated the following equation for the unsaturated hydraulic conductivity function:

K(h) = KsS`
e

[
1−

(
1− S

1
m
e

)m]2

(3)

where the effective saturation, Se, is computed as shown below:

Se =
θ − θr

θs − θr
(4)

Ks is the saturated hydraulic conductivity (L/T); ` (−) is an empirical parameter that is normally
assumed to be 0.5 [15] and all the other parameters are as described earlier. It should be noted that in
most instances, Equation (2) is fitted to the measured SWCC data and the fitted parameters are used to
estimate the unsaturated hydraulic conductivity function using Equation (3).

The governing partial differential equation for one-dimensional vertical transport of inert,
non-adsorbing solutes during transient water flow in a variably saturated rigid porous medium
can be expressed as [22]:

∂

∂t
(θC) =

∂

∂z

(
θDe

∂C
∂z

)
− ∂

∂z
(qC) (5)

where C is the total concentration of chemical (ML−3), q is the volumetric flux density (LT−1), and De

is the hydrodynamic dispersion coefficient (L2T−1).
The hydrodynamic dispersion coefficient is given by [23]:

θDe = DL|q|+ θDwτw (6)
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where Dw is the moLecular diffusion coefficient in free water (L2T−1), τw is a tortuosity factor in the
liquid phase (−), |q| is the absolute value of the Darcian fluid flux density (LT−1), and DL is the
longitudinal dispersivity (L).

The tortuosity factor can be estimated as a function of the water content using the relationship [24]:

τw =
θ7/3

θ2
s

(7)

2.2. Soil Atmosphere Interactions

The magnitude and direction of the water flux across the soil–atmosphere interface depends upon
the prevailing climatic conditions and transient near surface soil moisture [12,25]. The soil–atmosphere
interface can be represented in the form of a system-dependent boundary condition (BC), where the
flux across this interface is not known as a priori and is calculated as part of the solution [15].
This system-dependent BC can change from a prescribed flux to prescribed head and vice versa,
and can be represented as following [15]:∣∣∣∣−K(h)

[
∂h
∂z

+ 1
]∣∣∣∣ ≤ E (8)

and
hA ≤ h ≤ hs (9)

where h (L) is the pressure head at the soil surface and E(LT−1) is the maximum rate of I or E across the
soil atmosphere interface and hA and hS are the minimum and maximum pressure heads, respectively,
allowed under the prevailing soil conditions. The value of hA can be calculated from the air humidity,
Hr, as follows [15]:

hA =
RT
Mg

ln(Hr) (10)

where Hr is relative humidity of the atmosphere (dimensionless); R is the gas constant
(8.31 kg m2 s−2 K−1 g moL−1); M is the moLecular weight of water (0.018 kg g moL−1); g is the
gravitational acceleration (9.81 m s−2); and T is the temperature (K). In instances where the precipitation
(P) rate exceeds the I capacity of the soil, the BC at the soil surface is changed from prescribed flux
(precipitation flux) to head boundary (h = hs) and any excess water on the soil surface is immediately
removed as a surface runoff (RO). Similarly, in instances that the potential evaporation (PE) rate exceeds
the capability of the soil to deliver enough water toward the soil surface (h≤ hA) the system-dependent
BC changes from prescribed flux (PE rate), to head boundary. In this case, the PE reduces actual
evaporation (AE) that is estimated by the prevailing pressure head at the ground surface.

3. Materials and Methods

3.1. Meteorological Data Input

Continuous daily climatic datasets were compiled for 10 different locations across Alberta.
The locations and their association with various ecoclimatic regions are identified in Figure 1.
These datasets consisted of daily values of maximum and minimum temperatures, mean relative
humidity, total precipitation, wind speed and net radiation. These datasets covered a period from
January 2005 to December 2014. The Thornthwaite climate classification is an empirical system that
was developed from climatic data collected in the United States [26,27]. It forms an adequate basis for
evaluating the climate for engineering purposes, especially for analysis associated with soil atmosphere
boundary [25]. The climate can be classified by computing the moisture index as follows:

Im = 100
(

Pa

PEa
− 1

)
(11)
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where Im is the 1955 Thornthwaite’s annual moisture index, Pa is the total annual precipitation
(compiled from weather stations), and PEa is the annual PE. PE was estimated using the Penman
method [28] and the compiled climate data. The moisture index may vary from positive values
indicating moist/humid climates to negative values indicating dry climates. An Im value of zero
signifies that the annual precipitation and PE are equal. Based on the computed annual moisture
indices, the climate classification for various locations in the province of Alberta (Figure 2) can be
divided into three main climate conditions as follows: dry sub-humid (Bighorn Dam and Edson);
semi-arid (high level, Fort McMurray, Beaverlodge, high prairie, Lloydminster, Neir AEDM); and arid
(Calgary and Medicine Hat).
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3.2. Soil Hydraulic Properties

As mentioned earlier, two sets of soil hydraulic properties, namely SWCC and unsaturated
hydraulic conductivity function, are required for the solution of unsaturated flow equation. Both of
these properties can be measured in the laboratory and in the field. Field or laboratory measurements
for unsaturated soil hydraulic properties are difficult, time-consuming and costly [29]. Therefore,
several methods have been proposed to estimate soil hydraulic properties from easily measured soil
properties, e.g., texture, bulk density, and particle size distribution. A review of the techniques over
the last two decades has been reported recently [30]. Figure 3 compares the Canadian system of
soil classification to the system used by the United States Department of Agriculture (USDA). It can
be observed that the two procedures of soil classification are very similar. For current soil salinity
guidelines [9], two generalized soil lithology groupings (coarse and fine) are used to categorize soil
texture at sites across Alberta. These lithology groupings are marked on the Canadian system of soil
classification, shown in Figure 3. It can be observed that lithology groupings represent a wide range.
For example, fine-grained groups can have anywhere between 18% to 100% clay fraction.
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Figure 4 shows the SWCCs for all different USDA textural classes. These SWCCs are available
in Hydrus-1D soil catalogue and are approximately averages for the different USDA textural classes.
The curves were developed using multiple linear regression from a large database of some 2540 soil
horizons by various researchers [31,32]. For the current research, two different soil types (sand
and clay) were considered. The soil hydraulic properties of selected soil types were taken from
the above-mentioned soil catalog available in Hydrus-1D. The SWCC used are shown in Figure 4.
It should be noted that the selection was made to compare and contrast the water and salt transport
for two entirely different types of textural classes corresponding to coarse- and fine-grained materials.
In instances where any site-specific soil information is available, one can use the computer program
Rosetta [33], which employs pedotransfer functions (PTFs) to predict van Genuchten [19] water
retention parameters and the saturated hydraulic conductivity. Rosetta offers five different PTFs and
uses a hierarchical approach, which allows for the estimation of hydraulic parameters using limited
(textural classes only) to more extended (texture, bulk density, and one or two water retention points)
input data. This hierarchical approach allows for optimal use of available input data. Rosetta is
available as a dynamically linked library in Hydrus-1D.
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3.3. Model Development

The model was comprised of a one-dimensional (1D) soil column with a 3 m depth. This was in
line with recommendation in the literature for shallow-rooted vegetation covers [34]. In all simulations,
an atmospheric BC with a surface RO was imposed at the top of the column. The top boundary was
comprised of the nine-year daily climate records. The simulations were only run for the active period
of the calendar year. The active period represents thawed ground conditions, when precipitation can
either make its way into the ground as I, or can flow away as a RO [25]. Running the simulations only
for the active period greatly reduces the unnecessary complexities and higher computation time [25],
and this approach has been successfully used and described in the literature [12]. The active season for
each ecoclimatic region was estimated by a detailed statistical analysis of daily records of maximum,
minimum and average temperatures for the nine-year period.

In this paper, the analysis of the effect of climate type on water and salt dynamics was based on
the climate classification of various regions in Alberta (Figure 1). For the study of the dry climatic
condition, the climate data from the Calgary region was used. The analysis of semi-arid climatic
condition (or neutral climatic condition) was carried out using climate data from the Lloydminster
region. The Bighorn region was chosen for the analysis of the sub-humid climate (or wet climate
condition). A zero-gradient water flow BC was set at the bottom of the column to simulate free
drainage; this is representative of deep groundwater table conditions [15].

For the simulation of the solute transport, a non-reactive solute input source equal to a relative
concentration of 1.0 was assumed to be located at a depth between 1.0 m and 1.5 m. A concentration
flux BC was used as the upper boundary and a zero-concentration gradient was assumed as the lower
BC. The period of analysis considered for the salt transport simulation matched with the compiled
nine-year continuous climate data for the active period.

For coarse materials, the solute migrated through the domain in less than 3 years. However,
for fine materials, the solute movement was substantially slower than in coarse materials. Therefore,
simulations were run for the 18-year period by combining the two nine-year climate datasets.

4. Results and Discussion

4.1. Arid Climatic Condition

Figure 5a summarizes the water balance at the ground surface for simulations run with fine and
coarse soil hydraulic properties for arid climatic conditions. The results presented are cumulative
values over 9 years of an active period. The quantities that appear as negative values represent water
leaving the system or water loss, while positive values represent water entering the system or water
gain conditions. Net infiltration (NI) is the quantity of precipitation that overcomes the E and makes
its way into the soil column. It is estimated as the difference of precipitation and sum of the AE and
the surface RO.

The review for Figure 5a indicates that AE values for coarse- and fine-grained show significant
differences. The cumulative AE value of fine-grained material is 80% more than the AE value for
coarse-grained material. This difference is attributed to fine material’s lower hydraulic conductivity
value and higher water retention when compared to coarse-grained material. The fine material tends
to hold more water in the near-the-surface soil layers owing to its higher retention capacity and lower
hydraulic conductivity resulting in higher AE. The difference in AE values for fine and coarse materials
results in different water balance conditions at the ground surface.

From the NI plot for coarse materials, it can be observed that there is water gain of 1187 mm
over the nine-year period. This amount is approximately 50% of the average yearly precipitation.
These observations lead one to conclude that for coarse materials, there would be a significant amount
of downward water movement in the system as 50 percent of the meteoric water makes its way into
the soil profile. On the other hand, the NI plot for fine-grained soil materials indicates that there is
minimal or no water loss or gain at the ground surface. This indicates that for the fine-grained soil
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materials, most of the meteoric water will be lost by E at the ground surface. Based on this observation,
and considering the fact that the system is a representation of deep groundwater table condition, it can
be concluded that there probably would be no appreciable downward or upward water movement in
the system.Water 2018, 10, x FOR PEER REVIEW  9 of 18 
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Figure 5. Estimated water balance for different climatic conditions: (a) arid, (b) semi-arid, and (c)
dry sub-humid.

Figure 6a shows results of solute displacement in coarse- and fine-grained materials over
the simulated period for arid climatic conditions. These concentration contours provide vertical
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distribution of solute over a period of three years for coarse-grained materials and 18-year period for
fine-grained materials. These different time periods relate to the time taken by the solute to reach any
of the model boundaries.Water 2018, 10, x FOR PEER REVIEW  10 of 18 
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Two black horizontal continuous lines are drawn in Figure 6a to represent the initial location of
the salt. Graphical results indicate that soil texture has a strong effect on the rate and direction of the
salt movement. For instance, in the homogenous coarse-grained soil material, the direction of the salt
displacement is exclusively downwards. The estimated time for the infiltrating water to fully drain the
initial solute concentration appears to be slightly less than 2.4 years. The salt movement depicted in
Figure 6a is consistent with the water balance results presented previously. In Figure 5a, it was shown
that for coarse-grained soil materials, almost half of the meteoric water makes its way into the soil
profile overcoming E. In addition, it was concluded that the water movement in the system will be
predominantly downwards. Therefore, the salt movement results for coarse-grained materials shown
in Figure 6a are consistent with anticipated behavior. The results also clearly indicate that even for
dryer climatic conditions, there is a potential for the salt to migrate downwards over a short period of
time to potentially impact deeper groundwater resources.

Results from simulation run with fine soil hydraulic properties illustrate the spreading of solute
in both upward and downward directions (Figure 6a). There appears to slightly higher affinity for
the solute to move in the downward direction. These observations are consistent with the water
balance results for the fine-grained soil profile. As mentioned above, little or no water loss or gain was
predicted at the ground surface for the fine-grained material. Therefore, the I of meteoric water in the
soil domain was expected to be minimal. However, any downward water movement in the system
is expected to be due to gravity drainage. Upward movement, if any, would have been attributed to
either capillary rise from the groundwater table or upward diffusion due to the concentration gradient.
Considering that the depth of ground water table is deep, it can be concluded that in fine-grained
materials, the upward vertical solute displacement would be a diffusion-dominated transport process.
The difference in more slightly downward migration could be due to slight downward advection in
the system owing to the gravity drainage and downward diffusion due to the concentration gradient.
The results for the fine-grained material in arid climatic conditions clearly indicate that there is a
potential for the salt to migrate into the root zone.

4.2. Semi-Arid Climatic Condition

The results for water balance at the ground surface for coarse- and fine-grained materials under
semi-arid climatic conditions are shown in Figure 5b. These results appear to be quite similar to those
for arid climatic conditions presented in Figure 5a. Results in Figure 5b, once again, show no RO for
either fine- or coarse-grained materials. The numerical model predicts ROs when the soil near the
ground surface becomes saturated and the potential surface flux at the ground surface (P-PE) exceeds
the saturated hydraulic conductivity of the soil [12]. The maximum precipitation intensity for semi-arid
climate is 2.6 mm/h based on daily average data. This value is two orders of magnitude lower than the
Ks of the coarse-grained material and only 0.6 mm/h higher than the Ks of the fine-grained material.
However, there was only one precipitation event greater than 2.0 mm/h during the period of analysis.
Therefore, the RO was expected to be negligible.

The cumulative AE value of fine-grained soil material over 9 years for semi-arid climatic
conditions was approximately 70% higher than the AE of coarse-grained material. The difference
between these values is due to difference in conductivity and retention properties of the coarse- and
fine-grained soil materials as explained in the previous section.

The NI values for semi-arid climatic conditions are also plotted in Figure 5b, indicating net
water gain conditions for coarse-grained materials and near neutral conditions for fine-grained
materials. These values are higher than those for arid climatic conditions owing to larger precipitation
events, and lower potential and AE. For coarse-grained materials, approximately 50% of meteoric
water makes its way in the soil profile. In comparison with arid conditions, although it is a similar
percentage of meteoric water, it accounts for approximately 25% more water influx at the ground
surface (NIsemi-arid/NIarid = 1.25). This observation leads one to conclude that the downward movement
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in coarse-grained materials for semi-arid climatic conditions could potentially be higher than that in
arid climatic conditions.

For fine-grained materials, less than 2% percent of the meteoric water made its way into the soil
profile. Although it is a very small quantity, in comparison with arid conditions, it can be expected
that on a relative basis, there could be more downward water movement.

Figure 6b shows the migration of salt under semi-arid climatic conditions in coarse- and
fine-grained soil materials. The results are consistent with the water balance conditions for this region.
It can be observed that there is downward migration of salt for both coarse- and fine-grained soils, as a
result of water gain conditions at the ground surface. In coarse-grained materials, the higher amount
of infiltrating water (NI = 1498 mm) resulted in faster downward solute displacement throughout the
soil domain.

In coarse-grained materials, the estimated time to drain 50% of the initial concentration out of
the domain is less than one year. The downward solute displacement resulted in an average seepage
rate of 150 mm/year. In comparison to arid conditions, the rate of downward migration in semi-arid
conditions is much faster. The total time to flush out all the solute from the soil domain reduces
to 1.4 years from 2.4 years. This can partially be explained by the fact that more water flux at the
ground surface makes its way into the soil domain, when compared to that under arid conditions.
For semi-arid conditions, the downward solute displacement in fine-grained soils is much slower than
that in coarse-grained soil. For instance, it took over 14 years for the 5% contour curve to reach the
bottom of the soil column. In terms of solute displacement rate, 50% of the initial concentration moved
from the source to the bottom of the soil column at an approximate seepage rate of 12.9 mm/year.
Important to note is that in semi-arid climatic conditions, the vertical solute displacement shows a
downward trend in comparison with arid climatic conditions, where for up to 18 years none of the
solute reached the bottom boundary.

4.3. Dry Sub-Humid Climatic Condition

Figure 5c shows the water balance at the ground surface for sub-humid conditions. A review
of this figure indicates that similar to arid and semi-arid regions, there is no RO for either coarse- or
fine-grained materials. The maximum precipitation intensity for this region’s climate is 2.9 mm/h
based on daily average data. This value is two orders of magnitude lower than the Ks of the
coarse-grained material (Ks = 297 mm/h) and only 0.9 mm/h higher than the Ks of the fine-grained
material (Ks = 2.0 mm/h). However, this event was recorded to occur only once over the 9-year period
considered in this study.

The NI values for dry sub-humid climatic conditions plotted in Figure 5c show the highest
net water gain for both coarse- and fine-grained materials for the three different climatic conditions
considered in this study. For coarse-grained materials, more than half of meteoric water would enter
in the soil domain based on the calculated net infiltration–precipitation ratio (NI/P = 54%). This water
gain is higher when compared to semi-arid climatic conditions (NIdry-subhumid/NIsemi-arid = 1.32) and
arid climatic conditions (NIdry-subhumid/NIarid = 1.66). This observation leads one to conclude that the
downward solute displacement would be faster than the semi-arid climatic conditions and much faster
than that in arid climatic conditions.

For fine-grained materials, the cumulative ratio NI/P indicates that approximately 10% of meteoric
water would overcome E. This ratio turned out to be greater than that of semi-arid climatic conditions.
This is consistent with results shown in Figure 5b,c, where the total cumulative precipitation value
(P) for dry sub-humid climate is 7% higher and total cumulative PE is 22% lower than the values for
semi-arid climatic condition.

Results from dry sub-humid climatic conditions show a similar trend, as described in previous
climatic conditions. A review of Figure 5c indicates a large difference between the AE values for
coarse- and fine-grained materials. The computed total cumulative PE value in dry sub-humid
climatic conditions (5300 mm) is lower than those from Calgary and Lloydminster regions (6687 mm
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and 7953 mm, respectively). The cumulative AE/PE ratio of fine-grained soil material (61%) is
approximately 100% higher than the AE/PE ratio of coarse-grained material (32%). As mentioned in
previous sections, the difference can be attributed to fine material’s lower hydraulic conductivity value
and higher water retention properties compared to the coarse-grained material.

A review of Figure 6c shows the fastest downward salt movement response in both course- and
fine-grained materials among the three different climatic conditions in the province of Alberta, Canada.
For instance, in the coarse-grained material (Figure 6c), the estimated time for the salt to reach the
bottom of the soil column is less than 1 year. The estimated salt movement indicates a seepage rate of
374 mm/year. It is important to note the rapid downward salt displacement occurred throughout the
first water year of analysis, which is in line with the meteorological data behavior as explained before.
This can also indicate a higher risk of aquifer contamination for natural areas having higher humid
climatic conditions.

Figure 6c also shows the salt displacement for the fine-grained material in dry sub-humid climatic
conditions. The results are consistent with the observations derived from water balance. In this figure,
it can be observed that the spreading of concentration contours extends beyond the limits of the 18-year
of analysis. It is noted that the amount of the infiltrating water was not enough to drain the total
mass of the contaminant out of the soil domain. In this graph, the 5% contour curve indicates the
threshold of salt displacement located at the bottom of the soil column at the 7th year. The estimated
salt movement for the 5% concentration contour indicates a seepage rate of 44.7 mm/year.

4.4. Detailed Water Balance Assessment

A review of Figure 5 indicates a general trend of cumulative amount of water gain (NI) in the
soil domain over the nine-year period. The water gain is larger for wetter climates, i.e., more P and
less E. It was also observed that larger water gain conditions result in faster vertical solute transport.
The following graphical information presents the water balance for the whole domain. First, an analysis
of the input to the models in the form of precipitation and PE intensities is presented, followed by the
detailed water balance. These results further enhance our understanding of the system in relation to
various climate and soil types.

Figure 7 provides a graphical comparison of the precipitation records for the three different
climatic conditions used in the analysis. Precipitation records from arid climatic conditions show the
lowest precipitation occurred during the first year of analysis, amounting to only 108 mm. For the same
first water year, the Lloydminster and Bighorn precipitation records show quite similar precipitation
quantities with cumulative yearly values of 397 and 418 mm, respectively. The presentation of the
records in this manner indicates that the precipitation intensities appear to be quite similar, at least
from a visual perspective. Therefore, it is not possible to observe changes in the precipitation pattern
that can potentially affect water and solute dynamics over time. Further analysis of precipitation
intensities, and occurrence of events of specific intensity are presented below.

The occurrence of precipitation events was estimated and is plotted in Figure 8. The plot indicates
that the Bighorn region (dry sub-humid) clearly has higher occurrence of larger precipitation events
compared to Calgary (arid) and Lloydminster (semi-arid climatic conditions). It can also be observed
that Calgary appears to have the highest occurrence of precipitation events of less than 1 mm. In general,
it can be concluded that for the nine-year period considered in this study, Bighorn appears to have
higher occurrence of larger precipitation events, followed by Lloydminster and Calgary. It is important
to note that for same precipitation quantity, a higher intensity event can result in faster solute transport.
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Figure 8. Daily precipitation occurrence over the nine-year period for three different climatic conditions
in Alberta.

Figure 9 shows the statistical evaluation of the PE values for the three different climatic conditions
in the form of Box and Whisker plots. Graphical results indicate that the highest median value is for
the arid climatic condition (4.4 mm/day, marked by a horizontal line in the red box). Conversely,
the Bighorn region (blue box) shows the lowest median value (2.9 mm/day). It can also be observed
that for arid climatic conditions, PE values show much larger variation in comparison with those of
the semi-arid and dry sub-humid climatic conditions (from 0.6 to 7.9 mm/day, displayed with vertical
lines). A review of this figure clearly indicates that the daily PE values for Calgary are highest followed
by Lloydminster and Bighorn. This observation implies that over a given time period, the water
balance and associated water and solute transport could be different as a result of difference in quantity
and distribution of PE.
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Water balance for simulation run with coarse soil hydraulic properties (Figure 10) indicate water
gain (positive NI values) in the following order: Calgary region, 1187 mm; Lloydminster region,
1498 mm; and Bighorn region, 1880 mm. This observation leads one to conclude that most of meteoric
water that enters the soil domain exists on the bottom boundary of the soil domain. Consistent with the
NI values, the cumulative bottom flux (BF) values are highest for Bighorn followed by Lloydminster
and Calgary, hence supporting the observation of fastest solute transport for the Bighorn region.
The differences in the NI and BF values match closely with the change in water storage in the domain.
Change in water storage results reveals that although the cumulative values at the end of nine-year
period are quite similar for the three regions, the Bighorn region shows much higher saturation during
the simulated period.

Water balance results for fine-grained soil materials shown in Figure 10 are in contrast to those for
coarse-grained soils. It can be observed that the NI values for Bighorn (336 mm) and Lloydminster
(41 mm) show water gain conditions, while the NI values for Calgary (−2 mm) present water loss
conditions. The total cumulative BF values over the simulated period were: Calgary region, −101 mm;
Lloydminster region, −146; and Bighorn region, −367 mm. These observations imply that overall,
for all three climate types, the soil domain goes through water loss. The difference between the amounts
of water coming in and out of the system is consistent with the water storage values. Depletion of
water storage implies that the saturation within the soil domain will be lower, resulting in less
advective transport.
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5. Concluding Remarks

The climate classification carried out for 10 different locations in Alberta indicated that the climate
in Alberta varies from arid to dry sub-humid climatic conditions. This classification was based on
the estimation of annual moisture index, Im (Thornthwaite and Hare, 1955) [27]. An Im value of zero
signifies that the annual precipitation and PE are equal. The compiled data revealed that for the
province of Alberta, annual PE values are higher than the annual precipitation values. As such, in
general, moisture loss conditions can be expected across the province. However, it should be noted
that the Im and many other indices such as Thornwaite moisture index (TMI, as cited by Thornwaite,
C.W., 1948) [26] are estimated based on the assumption that limitless supply of water is available to
meet the evaporative demand dictated by prevailing atmospheric conditions. This assumption is only
valid for water bodies or soil surfaces, which always remain saturated. The AE is not only the function
of prevailing atmospheric conditions but also the transient soil moisture conditions. This is essentially
the crux of this research as it was shown that transient soil moisture conditions are a function of soil
texture and play a crucial role not only in subsurface flow and transport but also in the water balance
at the ground surface. The accurate estimation of the AE requires a multiyear accurate climate dataset.
Therefore, it can be concluded that the site-specific climate data are essential for accurate estimation of
water balance at a particular site.

Numerical simulation results for water balance at the ground surface and vertical transport of
the solute in variably saturated profiles indicated that the effect of climate type is closely linked to the
soil texture.

It can also be concluded that the hydraulic properties of the soil, namely soil water characteristic
curve and hydraulic conductivity, play a very important role in water balance at the ground
surface. Coarse-grained materials have low retention and high conduction, facilitating the downward
movement of the meteoric water. This makes them good E soil barriers, resulting in positive water
balance at the ground surface, regardless of the climate type. However, the quantity of water gain and
associated advective fluxes are a function of climate. Coarse materials in wetter climate are expected to
have higher water gain at the ground surface and larger downward advective flux values. Net water
gain conditions at the ground surface, however, would result in downward movement of salt and
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therefore pose a risk for contamination of deeper groundwater resources. The risk of contamination of
deeper groundwater resources for coarse-grained environments will be higher for wetter climates.

Flow and transport in fine-textured soils seem to be even more dependent on the climate type.
For arid climatic conditions, net water loss conditions exist for fine-grained soils. This is the result
of the meteoric water, being held in soil layers closer to the ground surface due to higher retention
and lower conduction of fine-grained soils. Although such soils restrict the downward migration
of the solute, upward transport to the root zone is probable. Therefore, for fine-grained materials
and arid climatic conditions, it can be concluded that the vertical upward solute displacement from a
diffusion-dominated transport process can contaminate near-surface soil layers. For wetter climates,
the upward migration of salt in fine-grained soils is less probable. The results indicate that even very
small quantities of water gain at the ground surface can induce enough downward advection to limit
any upward diffusion. Based on the results, it can also be concluded that for fine-grained soils in wetter
climates, there is a higher probability of the salt to remain near the vicinity of its original location for
longer periods of time.
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