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Abstract: This study developed a methodological framework to update the rainfall
intensity-duration-frequency (IDF) curves under climate change scenarios. A model output statistics
(MOS) method is used to downscale the daily rainfall of general circulation models (GCMs), and an
artificial neural network (ANN) is employed for the disaggregation of projected daily rainfall to
hourly maximum rainfall, which is then used for the development of IDF curves. Finally, the 1st
quartiles, medians, and 3rd quartiles of projected rainfall intensities are estimated for developing IDF
curves with uncertainty level. Eight GCM simulations under two radiative concentration pathways
(RCP) scenarios, namely, RCP 4.5 and RCP 8.5, are used in the proposed framework for the projection
of IDF curves with related uncertainties for peninsular Malaysia. The projection of rainfall revealed
an increase in the annual average rainfall throughout the present century. The comparison of the
projected IDF curves for the period 2006-2099 with that obtained using GCM hindcasts for the based
period (1971-2005) revealed an increase in rainfall intensity for shorter durations and a decrease for
longer durations. The uncertainty in rainfall intensity for different return periods for shorter duration
is found to be 2 to 6 times more compared to longer duration rainfall, which indicates that a large
increase in rainfall intensity for short durations projected by GCMs is highly uncertain for peninsular
Malaysia. The IDF curves developed in this study can be used for the planning of climate resilient
urban water storm water management infrastructure in Peninsular Malaysia.

Keywords: rainfall intensity-duration-frequency curves; statistical downscaling; climate change;
general circulation model; peninsular Malaysia

1. Introduction

Rainfall Intensity-Duration-Frequency (IDF) curves are one of the most frequently used tools in
hydrology and water resources for the planning, design, and operation of hydraulic infrastructures [1].
The expected increase in rainfall intensity and frequency due to climate change can alter the IDF
curves [2,3]. In such situations, the urban storm water management infrastructure based on IDF
curves developed using the observed data can become insufficient to deal with the unexpected
increase in runoff [4-6]. Several studies assessed the impact of climate change in designing urban
water management infrastructure in Canada [7,8], Sweden [9], Vietnam [10], United Kingdom [11],
and United States [12]. These studies have a consensus that urban water management infrastructure
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will not be able to mitigate the impact of increased rainfall intensity if the design is not rectified properly
considering future climate change. Estimation of adaption investment proportional to climate related
risks is one of the vital challenges in infrastructure planning and management [13]. Development of an
optimized and secure water resources management system is even more significant [14]. Analysis of the
cost and adaption investment due to impacts of climate change is of prime importance in the planning
of water management infrastructure systems [15]. Significant cost-effective steps should be taken for
the identification of water resources investments that can reduce risks [16,17]. For such analyses, it is
very important to quantify the impact of climate change on urban water management infrastructure.

Future climate change is often studied using the projections of General Circulation Models
(GCMs). Numerous studies reported that there are several uncertainties in climate projections [18].
Incorporation of climate uncertainties in IDF curves can facilitate better decision making in urban
hydraulic infrastructure planning and management. It can also be used for the assessment of climate
change impacts on soil erosion with uncertainty levels. However, the projections of GCMs are not able
to provide reliable information on spatial scales below about 200 km, and therefore, cannot be used for
impact assessment on a local scale [19,20]. In order to assess climate change on local scales, a technique
known as downscaling is used to bridge the gap between the higher resolution GCMs and the local
climatic process [21,22].

Climate downscaling is broadly classified as statistical or dynamical downscaling. Due to
simplicity and lower computational cost, a statistical downscaling technique is widely used for
assessing climate change on local scales [23,24]. Ahmed et al. [20] reported that statistical downscaling
is often preferred for its simplicity, ease of use, and flexibility, without compromising on downscaling
accuracy [19,20,25]. Pour et al. [26] reported that statistical downscaling is more appropriate as it
allows scenarios to be tailored for specific localities, scales, and problems. The statistical downscaling
methods are broadly subdivided as perfect prognosis (PP) and model output statistics (MOS) [27].
A statistical relationship between observed climate variables (predictand) and observed large-scale
predictors is established in PP, while the statistical relationship between GCM simulated predictors
and observed climate variable is established in MOS. The statistical relationship is then used for the
projection of climate variables using GCM simulated predictors for future scenarios. Among statistical
downscaling methods, MOS is the most widely used due to its ability to explicitly account for
GCM-inherent error and bias [21,26,28]. However, the relationship between GCM-simulated climate
variables and the observed climate variable are often very complex, particularly in the case of rainfall.
Therefore, non-parametric and non-linear methods are preferred over parametric and linear methods
for correction of biases in GCM simulation [28]. Thus, distribution-wise bias correction functions are
mostly widely used for the correction of biases in GCM simulations [20]. Among the distribution-wise
bias correction approach, the Quantile Mapping (QM) is most widely used to correct GCM biases
across the empirical cumulative distribution function [29]. The QM is a non-parametric bias correction
method, and is generally applicable for all possible distributions of rainfall without any assumption on
rainfall distribution. Therefore, it is widely used in recent years for the correction of biases for rainfall
downscaling [30-32].

The main objective of this study is to develop IDF curves with related uncertainties under climate
change scenarios. A MOS approach is used to downscale daily rainfall from eight CMIP5 (Coupled
Model Intercomparison Project, Phase 5) GCMs under two radiative pathways concentration (RCP)
scenarios namely, RCP 4.5 and RCP 8.5. An artificial neural network (ANN)-based model is employed
for the disaggregation of projected daily rainfall to hourly maximum rainfall, which is then used for
the development of IDF curves. In addition, model correction factors (MCF) are used to overcome over-
and under-estimation in the projected IDF curves. Finally, the 1st quartiles, medians, and 3rd quartiles
of projected rainfall intensities are estimated for developing IDF curves with uncertainty levels.
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2. Study Area and Datasets

2.1. Study Area

The methodology adopted in this study is implemented across some stations of Peninsular
Malaysia. Locations of the selected stations with station IDs are given in Figure 1. Geographically,
Peninsular Malaysia is situated in the tropics between latitude 1.20° north to latitude 6.40° north,
and longitude 99.35° east to longitude 104.20° east. The mean temperature ranges from 21 °C to
32 °C [33,34]. The climate of the study area is categorized by the two regimes of monsoon winds,
i.e., northeast monsoon and southwest monsoon. The southwest monsoon regime exists during May
to August, and the northeast monsoon regime during November to February. The whole country
has a drier period during the southwest monsoon, whereas the northeast monsoon brings heavy
rainfall in the coastal areas of peninsular Malaysia. In contrast, the areas sheltered under mountainous
topography are almost free from their influence. Furthermore, maximum rainfall is recorded during
the transition period between monsoon regimes, the ‘inter-monsoon period’ (March—April and
September—October), especially at the rainfall stations located in the western areas [35,36].

S.No Station ID Station Name
1. 1437116 Stor JPS Johor Bahru
Zr 2. 6103047 Stor JPS Alor Setar
© 3. 5806066 Jeniang Klinik
4, 2224038 Chin Chin (Tepi Jalan)
5. 2725083 Ldg. New Rompin
Zzr 6. 3411017 Stor JPS Tg.Karang
[ 7. 3516022 Loji Air Kuala Kubu Bahru
wn 8. 37100086 Rumah Pam JPS Bagan Terap
9. 3519125 Kuala Marong di Bentong
| 10. 3930012 Sg. Lembing P.C.C.L Mill
oz 11. 4012143 Ldg. Bikam, Sungkai
< 12. 42070438 Pejabat JPS Sitiawan
13. 4409091 Rumah Pam Kubang Haji
14. 5710061 Dispensari Kroh
Z[ 15. 6019004 Rumah Kastam Rantau Panjang
5 16. 4234102  JPS Kemaman
[ 17. 5331048 Setor JPS Kuala Terengganu
. 18. 3117070 JPS Ampang
= 19. 5302001 Taliair Besar Sg. Pinang
° I T
. 0

100°E 102° E 104° g

Figure 1. Location of the selected rain gauges on the map of peninsular Malaysia. The number in circle
represents the station name and ID, as shown on the right side in figure.

2.2. Data and Sources

Thirty-five years (1971-2005) of hourly rainfall data—recorded at 19 stations mostly distributed
over urban areas of Peninsular Malaysia, collected from the Department of Irrigation and Drainage
(DID), Malaysia—is used in this study. The GCM simulations of CMIP5 that form the basis for the fifth
assessment report (ARS) of the Intergovernmental Panel on Climate Change (IPCC) are used.

It is not feasible to use all the CMIP5 GCMs for climate change projection and impact assessment
due to constraints in human and computational resources [37]. In practice, a small ensemble of GCMs is
selected, considering that they will able to provide whole range of uncertainties in the projections [26].
In this study, one GCM from each participating modeling center in CMIP5 that have future projections
for both RCP 4.5 and RCP 8.5 are selected, considering that projections from all centers will provide the
full range of uncertainty in future projections. Thus, total 8 GCMs are selected in this study, as listed in
Table 1.
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Table 1. List of IPCC CMIP5 GCMs used in the present study:.

Centre(s) Model Resolution (Lat X Long)
Beijing Climate Center China BCC-CSM1.1 2.8° x 2.8°
Commonwealth Scientific and Industrial Research
Organization/Queensland Climate Change Centre of CSIRO-MK3.6.0 1.8° x 1.8°
Excellence Australia
Institut Pierre Simon Laplace France IPSL-CM5A-MR 1.25° x 2.5°

Atmosphere and Ocean Research Institute (The University
of Tokyo), National Institute for Environmental Studies,

and Japan Agency for Marine-Earth Science and MIROC-ESM 28° x28°
Technology, Japan

Met Office Hadley Centre UK HadGEM2-ES 1.25° x 1.875°
Meteorological Research Institute Japan MRI-CGCM3 1.12° x 1.125°
National Center for Atmospheric Research USA CCSM4 0.94° x1.25°
Bjerknes Centre for Climate Research, Norwegian NorESM1-M 1.90° x 2.5°

Meteorological Institute, Norway

The simulated historical and future daily precipitation of eight GCMs over the climatic domain of
peninsular Malaysia is collected from IPCC portal (http://www.ipccdata.org/sim/gem_monthly /
AR5/ReferenceArchive.html). The GCMs simulated historical rainfall for the period of 1971-2005
and projected rainfall for 2006-2099 under two RCPs (RCP 4.5 and RCP 8.5) is used in this study.
The RCP 4.5 is an intermediate pathway scenario which provides a common platform for climate
models to explore the climate system response to stabilizing the anthropogenic components of
radiative forcing [38]. The latest policy of the global community is environmental sustainability
and lower greenhouse gas emissions, and therefore, the RCP 4.5 scenario is often considered to be a
very-good-case scenario in the context of recent policy directions [39]. On the other hand, RCP 8.5
provides data which most closely resemble the present observations so far, and therefore, gives the
possible highest impact. For cost-effective risk analysis, knowledge of the possible range of impacts
is very important. As RCP 4.5 and RCP 8.5 provide the best- and worse-case scenarios, respectively,
those are selected in this study.

3. Methodology

3.1. Procedure

The methodology adopted in this study for updating IDF curves under climate change scenarios
is represented by the flow chart shown in Figure 2.


http://www.ipccdata.org/sim/gcm_monthly/AR5/ReferenceArchive.html
http://www.ipccdata.org/sim/gcm_monthly/AR5/ReferenceArchive.html

Water 2018, 10, 1750 5o0f 25

10.

Start

1

CMIPS GCMs

 —

CEREET . HESET e
| 4.5 and RCP 8.5 (2006-2099)

Development of
Downscaling Model

v

Disaggregation of Daily
Rainfall

Projection of Rainfall

]

Development of GCMs IDF Curves
|

Model Correction Factors

Development of IDF Curves in the Context
of Climate Change

Figure 2. Flow Chart of the Methodology.

The procedure is outlined below:

The GCM simulations for historical (1971-2010) and future (2006-2099) periods are interpolated
to observed locations.

MOS downscaling model is developed where quantile mapping (QM) is used to derive the bias
correction factors by comparing GCM simulated rainfall with observed rainfall for the period
(1971-2005).

The bias correction factors derived from the historical period (1971-2005) are then applied on
simulated GCM rainfall for different RCPs for the period 2006-2099.

An artificial neural network (ANN) model is developed to disaggregate daily rainfall data to
hourly rainfall data. The model is calibrated and validated with observe hourly rainfall data for
the period 1971-2005.

The ANN disaggregation model is used to generate hourly rainfall data from daily rainfall
projected for the period 2006—2099.

IDF curves are generated by fitting observed annual maximum of hourly rainfall data (1971-2005)
with most suitable probability density function (PDF) and parameter estimation method.

The disaggregated rainfall data are used to generate time series of annual maximum of hourly
rainfall to develop IDF curves for climate change scenarios.

The model correction factors (MCFs) are estimated for all the durations of rainfall by fitting the average
of the ratios of the projected return periods to observed return periods in a polynomial equation.
The MCFs are applied on the return periods of rainfall durations for future period to generate the IDF
curves. The IDF curves are generated for all the 8 GCMs for both the RCP 4.5 and RCP 8.5, separately.
Finally, the IDF curves are developed with uncertainty level, by estimating the 1st quartile,
median and 3rd quartile of the return periods of different rainfall durations obtained from IDF
curves generated for eight GCMs.
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The methods used in this study are discussed below.

3.2. Selection of Appropriate Probability Density Function and Paramter Estmation Method

The PDF used for fitting annual maximum of hourly rainfall significantly influences the shape
of IDF curves. Furthermore, estimated values of PDF parameters vary significantly with parameter
estimation methods, and thereby, influence the nature of IDF curves. Therefore, the choice of an
appropriate PDF and parameter estimation method is very important. Various PDFs are used for
fitting annual maximum of hourly rainfall data, but there is no general criterion for the selection of
PDF for frequency analysis of extreme rainfall events. A PDF selected for a location may not exhibit
good results at another location. Therefore, comparing various PDFs for the selection of the most
appropriate one is considered good practice [40]. In this study, four of the most commonly used
PDFs namely, Generalized Pareto (GP), Gumbel, Generalized Extreme Value (GEV), and Exponential,
and four commonly used parameter estimation methods, namely Generalized Maximum likelihood
(GMLE), L-moments, Maximum likelihood (MLE), and Bayesian, are compared based on negative
log likelihood goodness of fit tests. The negative likelihood ratio provides in-built strength for a test
which will rule in or out probabilities; therefore, it is widely used for assessing the performance of a
diagnostic test [40]. The major purpose of comparison is to find the best PDF and parameter estimation
method over the selected stations. Finally, the most suitable PDF with the best parameter estimation
method is used for developing the IDF curves from hourly time series for both projected and historical
rainfall. These PDF are briefly explained in Table 2.

Table 2. The PDFs compared for selection of the best PDF.

Functions Equations Parameters
1 —1/k —-1-1/k
~exp(—(1+kz 1+kz k#0
GEV fx)=<9 P ) )( ) a where,
sexp(—z—exp(-z)) k=0 = XM
o
. Aexp(—Ax) x>0 and
Exponential flx) = 0 x <0 k = shape parameter
1 —1-1/k i = location parameter
GP flx) = ‘17(1 k) k#0 o = scale parameter
sexp(—z) k=0
Gumbel f(x) = Lexp(~z — exp(-2))

3.3. Rainfall Downscaling and Projections

The following procedure is used for downscaling and projection of daily rainfall at observed
locations under RCP scenarios:

1.  The GCM simulated rainfall is interpolated at each station using inverse an weighting distance
method to generate GCM simulations at the observed location.

2. The QM is used to compute the biases in GCMs by comparing 70% of the randomly-selected
observed and GCM simulated daily rainfall for the period 1971-2005. The QM bias correction
parameters are validated with the remaining 30% of observed and GCM simulated daily rainfall
for the period 1971-2005.

3. The derived QM parameters are used to correct the biases in the simulated daily rainfall of GCMs
for both the RCP 4.5 and RCP 8.5 for the period 2006-2099.

The performance of downscaling model is evaluated using mean absolute error (MAE),
normalized root-mean-square error (NRMSE), Percent Bias (PBIAS), coefficient of determination
(R?), and Nash-Sutcliffe Coefficient of Efficiency (NSE),

1 n
MAE = — Y [Xobsi — Xsim,i 1)
i=1
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NI—=

2
NRMSE [% Z?:l (xsim,i - xabs,i) } )
B yobs,i ( )
PBIAS = 100 % Z?:l (Jisim,i - xobs,i) (3)

i=1 Xobs,i
R2 _ Z{l (xobs,i - johs)(jcsim,i - jsim) (4)
= 2 — 2
\/Z?:l (xsim,i - xsim) Z?:l (xobs,i - xobs)

2

NSE =1 — Z?:l (xsim,i - xobs,i) )

— 2
Z?:1 (xobs,i - xobs,i)

where, X;;,, ; and x,ps,; are the ith simulated and observed data, and 7 is the number of the observations.

3.4. Disaggregation of Daily Rainfall and Generation of Projected IDF Curves

Different statistical and data-driven models have been used for temporal disaggregation of rainfall.
A number of recent studies reported promising performance of ANN in temporal disaggregation of
rainfall [41-47]. Zhang et al. [43] used ANN for disaggregation of rainfall for West-Central Florida,
and reported that the disaggregation of rainfall using ANN is promising. Mirhosseini et al. [44]
used ANN for the disaggregation of precipitation data simulated by five combinations of global and
regional climate models. They compared the results with disaggregated rainfall derived using a
stochastic method, and showed that the ANN model provides superior performance in estimating
maximum rainfall depths. They showed that the IDF curves developed for future rainfall intensities
was independent of the temporal disaggregation method used. Mirhosseini et al. [46] compared
the performance of ANN and stochastic rainfall disaggregation methods for the development of
IDF curves, and reported that the results of the both methods were in agreement with the observed
precipitation pattern.

The ANN-based disaggregation technique is used in this study for the disaggregation of the
daily precipitation data to hourly rainfall. The ANN-based rainfall disaggregation method proposed
by [41] is used in this study. Burian et al. [41] used a three-input and four-output ANN model where
three hourly rainfall amounts (rainfall of preceding, current and successive hours) were used as
input to generate four consecutive 15-min rainfall amounts. This concept was used by others for the
disaggregation of daily rainfall [42,48]. In recent years, Kim et al. [45] used a single input and 11
outputs ANN model for the spatial aggregation of areal rainfall. Kim et al. [48] used a single input and
12 outputs ANN model for the disaggregation of areal rainfall. In the present study, ANN models are
developed to disaggregate hourly rainfall data in two stages. In the first step, a three- and four-output
ANN model is developed to disaggregate daily rainfall to six-hour rainfall pattern. Rainfall of three
consecutive days (preceding, current and successive) is used as input to generate the four six-hour
rainfall amount of the current day as in [42]. In the next stage, a three- and six-output ANN model is
employed to disaggregate the six-hour rainfall amount to the 1-hr rainfall pattern. Consecutive three
six-hour rainfall amounts (preceding, current and successive) are used as inputs to generate the hourly
rainfall of the current six hours. Hourly observed rainfall data is aggregated to generate six-hour and
one-day rainfall amounts for the training and validation of the disaggregation models.

A resilient backpropagation with a weight backtracking method is used to train the neural
networks. In this study, the disaggregation model is trained with the observed daily rainfall data as
input and hourly rainfall as output. The observed hourly rainfall is repeatedly compared with the
predicted output, and then the corresponding error is measured. The error is applied to adjust the
weights and biases to efficiently disaggregate the daily rainfall to hourly rainfall. There is no rule
to decide the number of hidden layers and neurons in ANN. In this study, an optimization method
is used where optimum structure of ANN is selected based on a trial and error method. Different
ANN models are developed with optimum structures for the disaggregation of daily rainfall data at
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different stations. The ANN models were calibrated and validated with observed hourly rainfall data
for the period 1971-2005. About 70% of the observed data (January 1971-June 1995) is used for model
calibration, while the remaining 30% (July 1995-December 2005) is used for model validation.

The calibrated and validated disaggregation models are then used to disaggregate the daily
rainfall data projected by the GCMs for scenarios, RCP 4.5 and RCP 8.5. The disaggregated hourly
rainfall data are then used for the development of IDF curves for the projected climate. The IDF curves
are prepared for all the GCMs under two scenarios, RCP 4.5 and RCP 8.5. Finally, the IDF curves
prepared for future climate change scenarios are compared with the observed IDF curves. The changes
in rainfall intensity and duration for various return periods of rainfall events projected by different
GCMs is analyzed to assess the effects of climate change on rainfall IDF in peninsular Malaysia.

3.5. Model Correction Factors

The observed IDF curve needs to be updated with respect to the expected changes in rainfall due
to climate change. IDF estimates based on rainfall intensity are biased by the assumptions that the
annual maximum of rainfall for a particular duration occurs in one of the non-overlapping intervals
(such as maximum 1 h rainfall occurs in a non-overlapping one-hour interval). It also considers that the
rainfall amounts in different durations are independent. Therefore, disaggregated data shows significant
underestimation or overestimation as compared to the observed data for various rainfall durations.
The classical way to eliminate this bias is to use a correction factor [49-51]. The correction factors correct
the bias in disaggregated rainfall intensities using the differences and ratios between observed and
disaggregated intensities for different rainfall durations which has been described details in [51].

To develop the MCFs, first of all, the ratios of modeled-(GCM simulated) to-observed (gauged)
rainfall intensity of all the return periods (2, 5, 10, 25, 50 and 100 years) are computed separately
for a specific duration (e.g., 1 h). Then, the average of the ratios of return periods is computed for
that specific duration (e.g., 1 h). In the same way, the average of the ratios of the return periods is
computed separately for all others durations. Finally, to estimate the MCFs, the average of the ratios
of the return periods obtained for the all the durations of rainfall are fitted into their polynomial
equation. Due to non-linear relationship between average ratio of the return period and the rainfall
duration, a polynomial equation is used for the fitting of data and estimation of MCF [51]. The MCFs
are developed for all the durations of rainfall projected by a GCM. The general equation for developing
MCFs would be:

y:ax2+bx+c 6)

where y is the MCF and x is the average of the ratios of all the return periods for a specific duration of
rainfall projected by a GCM. The MCF developed for a specific duration of GCM is then multiplied
with the all the observed returns periods 2, 5, 10, 25, 50, and 100 years (obtained from gauged rainfall
data) for the same duration of rainfall (i.e., the MCFs developed for 1 h duration of rainfall is multiplied
with observed return periods for 1 h duration). The return periods thus produced are representative of
the IDF curve within the context of climate change.

For a better understanding of the procedure used for estimating MCFs, an example is provided
here. Suppose, for BCC-CSM 1.1 projected 1 h rainfall duration, the ratios of rainfall intensity of
modelled (GCM simulated) to observed rainfall of 2, 5, 10, 25, 50, and 100 years return periods are
r1, 12, 13, 14, 5, and g respectively (see Table 6 in Section 4.5). The average of the ratios of all these
six return periods (2, 5, 10, 25, 50 and 100 years) for 1 h duration rainfall will be, x; = (r; + 2 + 13
+ 14 + 15 + 14)/6. In the same way, xp, X3, X4, X5, X4, and x7 are computed for the durations 3, 6, 12,
24, 48, and 72 h respectively (see Table 6 (last line) and Table 7 in Section 4.5 the ratios for model
BCC-CSM1.1). To calculate the MCFs (y1, Y2, y3, Y4, Y5, Y, y7) for all these durations of rainfall projected
by BCC.CSM1.1, the average of the ratios of the return periods obtained for all the durations are put
into their polynomial equation (see Figure 8 and Equation (7) in Section 4.5). In this way MCFs
are obtained separately for all durations (Table 9 in Section 4.5). Finally, the MCF developed for a
GCM (BCC-CSM1.1) is multiplied with the observed (gauged) return periods (i.e., 2, 5, 10, 25, 50, and
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100 years) for the same duration of rainfall. For example, the MCF of 1 h duration is multiplied with
the observed 1 h duration rainfall for return periods, 2, 5, 10, 25, 50, and 100 years.

Following the procedure discussed above, the IDF curves are developed for all the GCMs under
two climate change scenarios, i.e., RCP 4.5 and RCP 8.5. To assess the uncertainty, the projected IDF
curves are estimated separately for each return period at the 1st quartile, median, and 3rd quartile,
as well and the maximum and the minimum values of all the eight GCMs.

4. Results and Discussion

4.1. Determination of Probability Density Function & Parameter Estimation Method

Log-likelihood estimations at a station located in Kedah (station ID 5806066) for the PDFs and
parameter estimation methods used are shown in Table 3 as an example. The lowest log-likelihood
estimates at this station are found for GEV with the MLE parameter estimation method. The PDFs
and parameter estimation methods are compared for all the rainfall maxima (1 to 72 h of rainfall) at all
the 19 rainfall stations. The results for the best PDF with parameter estimation methods compared
for the stations used are represented by alphabets in Table 4. The GEV is found to be the most
suitable PDF and MLE as the best parameter estimation method at most of the stations of peninsular
Malaysia used in this study. Other distributions are found to be suitable only in a few locations.
Therefore, GEV parameters estimated using MLE is used for the development of IDF curves using
observed rainfall at different locations of peninsular Malaysia.

Table 3. The results of goodness-of-fit test at a station located in Kedah.

Durations (Hour)

Estimators Functions (PDFs)

1h 3h 6h 12h 24h 48h 72h
GEV 20488 30274 30246 3079 31975 33306  341.18
Gumbel 20505  302.81 30277 30817 31979 33312 3412
MLE Exp 33119 34882 35279 35599 36227 3723  379.05
GP 32423 33572 34873  350.64 3484 3808 37885
GEV 29632 30397 302.84 30829  320.88 33553 34274
Gumbel 29505  302.81 30277 30817 31979 33312 3412
GMLE Exp 33119 34882 35279 35599 36227 3723  379.05
GP 44527 49366 50588 50424 49867 50461  504.26
GEV 29632 30397 302.84 30829 320.88 33553 34274
Gumbel 00 0 ) 0 00 00 00
L-moments Exp 0 %) oo oo %) 0 %)
GP 44527 49366 50588 50424 49867 50461  504.26
GEV 53953 61831 60278 67438  9059.1 12867 14697
. Gumbel 00 0 ) ) 00 00 o
Bayesian
Exp %) 1%} oo oo 0 0 0
GP %) 1%} oo oo %) 0 %)

Exp = Exponential;, MLE = Maximum Likelihood Estimation; GMLE = Generalized Extreme Estimation;
GP = Generalized Pareto.

Table 4. Best PDF and parameter estimation methods over selected stations.

Station ID State 1h 3h 6h 12h 24 h 72 h
1437116 Johor Bahru A A A B B B
5806066 Kedah A A A A A A
6103047 Kedah A A A A A A
2224038 Melaka A A A A B B
2725083 Niger Sembilan A A A A A A
3516022 Selangor A A A A A A
3411017 Selangor B B B B A A
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Table 4. Cont.

Station ID State 1h 3h 6h 12h 24 h 72 h
3710006 Selangor A A A A A A
3519125 Pahang A A A A A A
3930012 Pahang A A A A A A
5302001 Pinang B C B C C B
4012143 Perak A A A A A A
4207048 Perak A A A A A A
5710061 Perak A A A A E E
4409091 Perak D D D D D F
6019004 Kelantan D D F F F D
4234109 Terengganu A A A A A A
5331048 Terengganu A A A A A A
3117070 W. Persekutuan A A D D D A

A = (GEV MLE) B = (GEV GMLE) C = (GEV LM) D = (GP MLE) E = (GUMBLE MLE) and F = (EXPONETIAL MLE).

4.2. The IDF Curves based on Historical Rainfall

The hourly rainfall data for the period 1971-2005 are used to generate the IDF curves for base
years. These IDF curves are generated for the rainfall durations of 1 to 72 h and the return periods of 2,
5, 10, 25, 50, and 100 years for all the stations. The IDF curves from observed data at a station located
Kedah are shown in Figure 3 as an example. It is observed that the intensity of rainfall is low for
shorter return periods, and it increases gradually for higher return periods, while the rainfall intensity
decreases in descending order for higher duration.

Return Period (Years)
—&—2 ——5——10

—¥—25—4—50—+—100

100

10 |

Rainfall (mm/hr)

1 ; M S . PN |
1 10 100

Duration (h)

Figure 3. Historical IDF curves developed using GEV-MLE for observed (gauged) rainfall data
(1971-2005) at a station located in Kedah.

4.3. Climate Downscaling and Projections

QM-based MOS downscaling models are constructed through the calibration and validation
processes [52]. Downscaling models are developed for each GCM and rain gauge stations separately.
The downscaling models are developed at each station for each calendar month. Therefore, total 1824
models [12 (month) x 19 (station) x 8 (CMIP5 GCMs) = 1824] are calibrated and validated for the
downscaling and projection of rainfall in the study area. The QM parameters are derived using 70%
of daily rainfall data selected randomly for the period 1971-2005. The performance of QM in bias
correction is then validated with 30% of daily rainfall data. It should be noted that GCMs are used
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for simulations of climate, and therefore, day to day exact simulation of daily rainfall is not expected
using GCMs. Therefore, the matching of daily observed and GCM simulated data is not practical.
However, GCMs are expected to simulate the seasonal variability and overall climate of a region.
Therefore, daily bias corrected data are usually converted to monthly data to show the performance of
downscaling model. Observed and downscaled rainfall for the period 1971-2005 is compared to assess
the performance of the downscaling model. A comparison of monthly downscaled and observed
rainfall for all GCMs at station Kedah is presented in Figure 4. As the data for estimation and validation
of QM bias correction parameters were randomly selected over the period 1971-2005, the observed
and downscaled rainfall data for both periods are presented together in the figure. The performance of
MOS downscaling model is evaluated using the statistical indices MAE, NRMSE, PBIAS, R?, and NSE.
The calibration and validation values of these indices for this station are presented in Table 5. It is
found that all the GCMs performed well in term of all statistical indices used. The MAE values are
in the range of 0.15-0.56 and the NRMSE value are in the range of 6.1-21.3. The PBIAS values are
between 0.1 and 4.1. The values very near to zero indicate good performance of the models. The R?
values are always found very near to 1, and NSE is above 0.9 in most of the cases. Similar types of
results are also found in other stations for all models. The statistical indices values are very close
to each other for different GCMs. Hence, it can be concluded that the QM-based MOS downscaling
model has the capability of downscaling daily rainfall in the study area. The calibrated and validated
MOS models are used for the projection of rainfall under RCP scenarios. Using the MOS downscaling
model, rainfall is projected for the period of 2006-2099 for RCP 4.5 and RCP 8.5.

800

800

BCC-CSM1.1

CCSM4

=)
8

=)

8
T

1

Downscaled Rainfall (mm)
-
8
1

Downscaled Rainfall (mm)
+*>
8
T

PO A, -
A aur &t
a : ‘f‘ AR .
A
. a A . N
TS %%
200 200 1 f AR
| L £ 3 P - -
ad Mg s
ha 4a s g
1y “ A
A
0 0 AL Aa 1 1 1
600 800 0 200 400 600 800
Observed Rainfall (mm) Observed Rainfall (mm)
800 ; T 800 T T T T T
CSIRO-MK3.6.0 ¢ HadGEM2-ES
of :
- -
E 600 | . 4 E 600 |- i
< <
= - e = . - p
E o [ae® E - "
£ £ " alem
= . = . |
& 400 .~ - & 400 - e <= .
= . = [ u iy |+
3 3 e Y2
= » ] - al =
2 . 2 - e e .
£ . £ R L R
Ezoo . Ezoo ... re
a a N LY -
= 8 ‘I ‘-
1 & l.f.:: -
- _‘ ra
0 1 0 " 2t - 1 1 1 1
600 800 0 200 400 600 800

Observed Rainfall (mm)

Observed Rainfall (mm)

Figure 4. Cont.



Water 2018, 10, 1750

800

IPSL-CMSA-N

o
8

N
8

IR

Downscaled Rainfall (mm)
N~
8

800
Observed Rainfall (mm)
800 . :
MRI-CGCM3
E 600
&
c
G
& 400
=
@D
=
<9
g
E 200
a
0
600 800

Observed Rainfall (mm)

12 of 25
800 . :
MIROC-ESM
-
E 600 |- . .
E . N
=] . .
& 4 P RS
£ doa* .
& 400 o T
= .o L - s
S TR b i34
— ’.’ * * '0
8 ¢ o GZE¢ o0 *
2 sy 878" ‘
£ 200 23 :
) . 0‘: 4 :. ?
* NSRS
| < . 0«‘ L4 M
* ‘): e 3
0 > e {
0 200 400 600 800
Observed Rainfall (mm)
800 T :
NorESM1-M
-
E 600
5 4
N’ . . -
E . .o . .
-g .
2 400
= .
2
[5] o
E .
E 200
(=]
0
600 800

Observed Rainfall (mm)

Figure 4. Downscaled and observed rainfalls for various GCMs at station Kedah.

Table 5. Calibration and validation of downscaling model for various GCMs at station Kedah.

Station ID Indices Model MAE NRMSE% PBIAS% NSE  R?
BCC-CSM1.1  0.31 12.1 1.1 095 091

CCSM4 0.27 12 0.6 097 093

CSIRO-MK3.6.0  0.34 13.1 2.1 094 095

librati HadGEM2-ES 036 14.6 0.3 094 093

Calibration 15y ~\i5A MR 0.33 12.1 3.1 092 092

MIROC-ESM  0.21 8.8 0.2 091 096

MRI-CGCM3 034 12.9 13 094 095

Kedah 5806066 NorESM1-M 0.5 6.1 0.5 091 093
BCC-CSM1.1 045 20.6 2.1 093 092

CCSM4 0.54 21.3 1.9 095  0.90

CSIRO-MK3.6.0  0.56 21 0.1 096 091

tidati HadGEM2-ES 04 17.2 41 094 094

Validation  poy ~\isA MR 0.42 19 13 093 093

MIROC-ESM  0.42 17.9 1.1 093 095

MRI-CGCM3  0.42 19.2 1 092 093

NorESM1-M 045 17.8 1.9 094 093
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4.4. Disaggregation of Rainfall

To assess the performance of the disaggregation model, annual observed rainfall maxima and the
disaggregated annual observed rainfall maxima are compared for the period of 1971-2005. The results
obtained at station Kedah are shown in Figure 5 as an example. It shows a good match between
observed and disaggregated rainfall maxima for different hours. Even the high rainfall values are
reliably replicated by the disaggregation model. Due to space limitations, the results of only one
duration for four GCMs are shown. The results of the GCMs (a) BCC-CSM 1.1 for 1 h duration of
rainfall (b) HadGEM2-ES for 3 h duration of rainfall (c) Nor-ESM-M for 12 h duration of rainfall
and (d) CCSM4 for 72 h duration of rainfall are presented. A similar type of results is obtained for
other durations at all the stations for all the GCMs used. This indicates the efficacy of ANN-based
disaggregation method in generating hourly rainfall maxima from daily rainfall data. The ANN-based
disaggregation model is then used to disaggregate the daily rainfall simulations of the GCMs to
generate hourly time series. This hourly time series obtained from GCMs daily rainfall is then used for
development IDF curves for both historical and future simulations of GCMs. The IDF curves developed
from the GCMs future simulations are the projected IDF curves under changing climate scenarios.

200  —Observed Hourly (a) BCC-CSM1-1
—Observed Daily disaggregated to hourly

2

Rainfall (mm)
ot
=

50 |
| S T T N T SO T SO ST SR SN N SN SO TR SO T SR SO SN SR TR TR SN ST S SN Y S SR S N S
1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004

150 r (b) HadGEM 2-ES

E

£ 100 |

g

E

3 50+

0
1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004

Figure 5. Cont.
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Figure 5. Comparison of observed hourly maximum rainfall and observed daily rainfall disaggregated

to hourly maximum rainfall using ANN approach at station Kedah for (a) BCC-CSM 1.1 for 1 h (b)
HadGEM2-ES for 3 h (c) Nor-ESM-M for 12 h and (d) CCSM4 for 72 h.

4.5. Development of IDF Curves under Climate Change Scenarios

The disaggregated hourly rainfall obtained from historical simulated and projected daily rainfall
by different GCMs is used for the generation of IDF curves. The projected IDF curves are generated
for all the GCMs for RCP 4.5 and RCP 8.5. Using GEV distribution, the GCM simulated historical
and projected IDF curves are generated for 2, 5 10, 25, 50, and 100 years return periods. The GCMs
simulated historical IDF curves and projected IDF curves for RCP 4.5 for station Kedah are shown in
Figures 6 and 7 respectively. By comparing the GCM simulated historical IDF curves (Figure 6) with
the IDF curves developed from observed rainfall (Figure 3), it is found that the GCMs simulations
over- or under-estimates the rainfall predictions in some cases. Therefore, to overcome the problem of
over or under estimation, the projected IDF curves are corrected using model correction factor.
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Figure 6. The IDF curves developed for station Kedah using GCMs simulated historical rainfall data
(1971-2005).
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Figure 7. The IDF curves developed for station Kedah using GCMs projected rainfall data (2006-2099).
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Model Correction Factor

The model correction factors [51] are developed for all the GCMs for various rainfall durations.
For this purpose, initially, the ratios of intensities of modelled (GCM simulated) to observed (gauged)
rainfall for return periods of 2, 5, 10, 25, 50, and 100 years are calculated separately for each GCM for
all durations of rainfall. The ratios of the modeled and observed rainfall intensity for various durations
at station Kedah for BCC-CSM1.1 under RCP 4.5 are presented in Table 6. Then, the average of these
ratios is estimated for each rainfall duration. For theBCC-CSM1.1 model, the average of these ratios
estimated at station Kedah for RCP 4.5 is presented in the last line of Table 6. The average of the ratios
estimated for other GCMs for RCP 4.5 at this station are given in Table 7.

Table 6. Ratios of modelled to observed rainfall for BCC-CSM1.1 for RCP 4.5 at Kedah.

Duration (Hours)

1h 3h 6h 12h 24h 48 h 72h

Return Period (Years)

2 091 090 1.09 148 1.61 1.63 1.55
5 1.01 105 129 1.62 1.65 1.56 1.46
10 119 145 148 1.70 1.68 1.55 1.42
25 162 159 178 1.78 1.72 1.54 1.39
50 215 197 207 1.83 1.75 1.55 1.37
100 295 256 241 1.88 1.78 1.56 1.37

Average of ratios of Return Period 1.64 159 169 172 1.70 1.57 1.43

Table 7. Average of the ratios of modelled to observed rainfall intensities of return periods 2, 5, 10, 25,
50, and 100 years for various GCMs at Kedah for RCP 4.5.

Duration (Hours)
1h 3h 6h 12h 24 h 48 h 72 h

BCC-CSM1.1 164 159 169 172 1.70 1.57 1.43
CCSM4 152 15 177 1.68 1.61 1.41 1.25
CSIRO-MK3.6 217 198 209 196 1.85 1.61 1.44
HadGEM2-ES 141 149 175 191 1.9 1.76 1.6
IPSL-CM5A-MR 167 1.66 191 1.81 1.71 1.52 1.35
MIROC-ESM 218 149 158 1.68 1.66 1.51 1.37
MRI-CGCM3 281 268 286 28 2.75 2.51 227
NorESM1-M 192 17 213 224 217 1.93 1.73

Model

These ratios are then fitted in their polynomial equations for each GCM to get the values of the
model correction factors (MCFs) for all durations of rainfall. Figure 8 shows the MCFs values for
various durations of rainfall developed for model BCC-CSM1.1 under RCP 4.5 for station Kedah by
putting the average of modelled to observed ratios (taken from Table 7) in its polynomial equation
(Equation (7)). The polynomial equations of the GCMs used in current study under RCP 4.5 at station
Kedah are given in Table 8. The polynomial equation for BCC-CSM1.1 under RCP 4.5 at Kedah is:

y=—002x%+0.14x+147 (7)

where y is the Model Correction Factor (MCF) and x is the average of the ratios of the return periods.
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Table 8. Polynomials Equations for the GCMs used under RCP 4.5 at Kedah.

Models Polynomial Equations
BCC-CSM1.1 y=—002x%+0.14 x + 1.47
CCSM4 y=—004x%+025x+1.27
CSIRO-MK3.6 y=—0.02x%+0.04 x +2.09
HadGEM2-ES y=—0.04 x2 +0.38x+1.00 where, x is the average of the ratios of return periods
IPSL-CM5A-MR y=—0.04x%+023 x + 1.44 and y is the Model correction factor (MCF)
MIROC-ESM y=0.02x% — 021 x+2.16
MRI-CGCM3 y=—0.03x%+0.18 x + 2.59
NorESM1-M y=—0.04x%+034x+ 147
1.3 P .
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Figure 8. Model Correction Factors (MCFs) for modelled rainfall intensities fitted into a polynomial
equation for BCC-CSM1.1 for RCP 4.5 at Kedah.

The MCEF of a specific duration of rainfall is then multiplied with the return periods of observed
rainfall for the same duration of rainfall to generate the return periods for particular rainfall duration
in the context of climate change. The MCFs generated for various durations of rainfall at station Kedah
under RCP 4.5 for the GCMs used in this study are presented in Table 9. These MCFs are multiplied with
the observed return periods for specific duration of observed rainfall intensities separately for each GCM.
The rainfall intensities corrected using the MCFs of eight GCMs for various durations, return periods,
and RCPs are used for the estimation of the uncertainty of the projected IDF curves of a station.

Table 9. Model Correction Factors (MCFs) estimated for different GCMs for RCP 4.5 at Kedah.

Duration (Hours)
1h 3h 6h 12h 24 h 48 h 72 h

BCC-CSM1.1 1.65 164 165 1.65 1.65 1.64 1.63
CCSM4 156 156 159 1.58 1.57 1.54 1.52
CSIRO-MKk3.6 208 209 209 209 2.10 2.10 2.11
HadGEM2-ES 146 148 154 158 1.58 1.54 1.51
IPSL-CM5A-MR 171 171 173 1.73 1.72 1.70 1.68
MIROC-ESM 1.80 1.89 1.88 1.86 1.87 1.89 1.91
MRI-CGCM3 286 286 286 2.86 2.86 2.85 2.84
NorESM1-M 198 193 201 203 2.02 1.98 1.94

Model
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4.6. Development IDF Curves with Uncertainty

The projected rainfall IDF curves under climate change scenarios developed by applying the
MCFs of eight GCMs are used to compute the uncertainty level of IDF curves. For this purpose,
the intensities of these IDF curves are compared with the intensities of the IDF curves prepared using
GCM hindcasts for various rainfall durations to assess the changes in intensities due to climate change.
The uncertainty level is the expected upper limit and lower limit of variations in IDF curves due to the
changing climate. Using a box and whisker plot, the rainfall intensity values of projected IDF curves
for 1st quartile, median, and 3rd quartiles of all eight GCMs are estimated to assess the uncertainty
level in rainfall intensity for different durations and return periods. The IDF curves generated with an
uncertainty level at station Kedah under RCP 4.5 and RCP 8.5 are shown in Figure 9. First quartile is the
lower, while third quartile is the upper uncertainty limit for the projected IDF curves. The maximum
and minimum outliers for the GCMs projections are also shown in the figure. These IDF curves show
the range of rainfall intensities for various return periods and durations for the period of 2006-2099
with uncertainties under climate scenarios.

140

° RCP 4.5 2 Years Return Period RCP 8.5 2 Years Return Period
—~ i Projected — Historical [ Projected — Historical
150 : E - E 120 é i
g Outlier o ~ 100 + Outlier o
= 2
%100 | g 80r
=) Q
2 5 S
= = 60 I e Q
E 50~ = € 40
g . - ° é - Q
& - = 20 + o =
- == o -—— - s i ==
0 o 1 1 1 1 A— A_ $| 0 C L L 1 1 1 I_ K
1 3 6 12 24 48 72 1 3 6 12 24 48 72
Time (h) Time (h)
200 ° RCP 4.5 5 Years Return Period RCP 8.5 5 Years Return Period
Projected EHistorical— — 150 - Projected BHis!oﬁcal@
g 150 F Outlier o 5 Outlier o
z £100 -
@ o -
g 100 | 3 5 _
CR = g
= F 50
& 50 ig & L‘g = Q
g - . 2 -
0t . . . . e i 0L . . . . . =
1 3 6 12 24 48 72 1 3 6 12 24 48 72
Time (h) Time (h)
250 o RCP 4.5 10 Years Retumn Period 200 F RCP 8.5 10 Years Retum Period
—~ 200 - Projected aﬂiston’call E Projected BHiston’cali
\a Outlier (; E 150 ¢ Outlier o
2150 | S g
§ £ 100 i
|5} =] L
£ : A
= 100 1 O ) = . Q
& = .g —
.8 - o S 50+
s S50 = ~ = =
B - 5 L= N
0t . .— i\fé\— - 0L . . .— _r\e—o_.- -
1 3 6 12 24 48 72 1 3 6 12 24 48 72
Time (h) Time (h)

Figure 9. Cont.



Water 2018, 10, 1750

& RCP 4.5 25 Years Return Period
o= 250 | Projected BHistoricalI
\%200 - Outlier o
2
7]
§ 150 + A
k| °
E 100 + ? é
.g
C.fz 50 ¢ ? ég .

0 t , —=‘J_&.A'é.‘°"°"
1 3 6 12 24 48 72
Time (h)

300 | @ RCP 4.5 50 Years Return Period
’5250 i Projected EHistor‘icali
~ Outlier o
2200
17}

5
2150 ? 2
—
F100
k: {.S =
& 50+ =
!é _
ot . : . —
1 3 6 12 24 48 72
Time (h)

350 F - RCP 4.5 100 Years Retur Period
EIBOO [ Projected Bﬂistoﬁcal!
5250 r Outlier o
gzoo — )
= 150 | é
=
E 100 = s
& =

50 - — o
-— =2
0t . . . . . e
1 3 6 12 24 48 72
Time (h)

RCP 8.5 25 Years Return Period
AZOO r Projected BHistoﬁcali
E Outlier o
r, =
2150 .
g (i
E 100 | - Q
= =
f‘g 50 | - =
~ i_ 5

= 5 S
0 - | L % .
1 3 6 12 24 48 72

Time (h)

250 RCP 8.5 50 Years Return Period
= Projected Bﬂistoﬁcaly
\E, 200 Outlier o
Z150 g
= {

(W

g |1

Z 100 |

<

E =

S 50f [
-

0k R
1 3 6 12 24 48 72

Time (h)

RCP 8.5 100 Years Retumn Period
~ 250 Projected éHistorical!
5200 - Outlier o
z
2150 |
o4
=]
= 100 * Q
g =
=]
gs0 L -

-
0k . . . , \ i
1 3 6 12 24 48 72
Time (h)

20 of 25

Figure 9. Box plot showing the uncertainty in rainfall intensities for different rainfall durations and
return periods (2, 5 and 10 years) at station Kedah under RCP 4.5 and RCP 8.5.

5. Discussion

The changing climate due to global warming has been found to alter rainfall patterns, making the
current urban storm water management infrastructure vulnerable. To minimize losses due to plausible

extreme events, the designs for urban infrastructures need to be revised and updated, taking into
account the effects of changing climate. It is, therefore, necessary to update the current IDF curves
in practice with uncertainty levels in accordance with the climate change projections. This study has
been performed to assess the effects of changing climate on rainfall IDF curves over some stations of

peninsular Malaysia. The rainfall IDF curves have been developed and updated with the uncertainty

under climate scenarios.

Four PDFs and four parameter estimation methods are compared to select the most suitable

methods for developing the IDF curves. Based on results of goodness of fit test, GEV is found
as the most suitable PDF, while MLE is found to estimate the distribution parameters with least
log-likelihood values. It is also observed that log-likelihood estimates do not vary significantly
when MLE, GMLE, and L-moments methods are used for estimations of distribution parameters.
However, in most cases, MLE is found to estimate the PDF parameters with least log-likelihood values.
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Therefore, GEV with the parameter estimation method MLE can be efficiently used for developing IDF
curves in Peninsular Malaysia.

GCMs are one of the most important tools for assessing the impact of climate change on rainfall
patterns. In this study, non-parametric, distribution-based MOS models are developed for the
downscaling of the GCMSs projections. The downscaling models often cannot capture extreme rainfall
events [53]. However, it is found that the MOS models are capable of accurately capturing rainfall in
most of the cases. The higher rainfall is either slightly overestimated or underestimated in some cases.
However, the over- or under-estimation is very small, which indicates the capability of QM-based
MOS models to downscale daily rainfall.

The variation in rainfall patterns due to the changing climate forces us to update the current IDF
curves with expected uncertainty. Therefore, the rainfall IDF curves with uncertainty levels under
climate change scenarios are developed by using the projections of eight CMIP5 GCMs under RCP
4.5 and RCP 8.5. Estimation of the effect of climate change on IDF curves reveals greater increases
in rainfall intensity for shorter rainfall duration, and the lower increases for longer rainfall duration.
The uncertainty level is also found to be higher for lower rainfall durations. For all the GCMs and at
all the stations, the uncertainty level is found to be widest for 1 h and lowest for 72 h rainfall duration.
This is expected, as the uncertainty in predictions of hourly rainfall is much higher compared to those
for daily rainfall. Furthermore, the uncertainty band of higher values is usually higher compared to
that of lower values. Therefore, the uncertainty in short-term high intensity rainfall amounts is always
much higher compared to that for longer periods of rainfall amounts. This is also evident from the IDF
curves prepared using GCM hindcasts (Figure 9). The intensity of shorter duration rainfall is found to
increase 2 to 3 times for some GCMs. If the uncertainty level is considered, it is found to increase by
6 times in some cases. This indicates that the higher increase in rainfall intensity of shorter rainfall
duration projected by GCMs is highly uncertain.

This study focuses on the development of rainfall IDF curves with uncertainty levels for peninsular
Malaysia. The rainfall gauged stations used in the study are mostly covering the urban areas
of peninsular Malaysia. However, some stations cover the hilly and forest areas. It is therefore
suggested that a greater number of stations be used for better reflection of rainfall patterns in peninsula
Malaysia. In this study, eight CIMP5 GCMs under two RCPs are used for projections of future rainfall.
More GCMs with all the four RCPs can be used to make efficient assessments of the effects of a
changing climate on rainfall IDF curves.

IDF curves are essential for the safe design of hydraulic structures like drainage systems,
flood controlling dams, reservoirs, etc. Malaysia often experiences flash floods driven by extreme
rainfall which has been projected to increase under climate change scenarios [54]. The IDF curves
generated in this study can be used in the design or retrofitting of hydraulic structures in order to
adapt to climate change. Increased rates of soil erosion and river sedimentation have been noticed
in Malaysia in recent years [55]. Soil erosion is directly linked to rainfall characteristics like intensity
and duration [56,57]. The rainfall IDF relationships developed in this study can be used to model soil
erosion under climate change scenarios, and for planning soil-erosion prevention practices to mitigate
the impacts of climate change. The IDF relationships can be used for the design and calibration
of rainfall simulators to make estimations of runoff and soil erosion [58]. The rainfall simulators
developed based on the IDF curves generated in this study can be used for the determination of soil
erosion susceptibility, and for the planning of soil conservation measures for Malaysia.

6. Conclusions

The main objective of the study was to develop IDF curves under climate change scenarios with
related uncertainties. A framework was developed to assess the uncertainties in IDF curves under
projected climate change scenarios. It can be expected that the IDF curves constructed in this study
with best-fit PDF parameters for the return periods of 2, 5, 10, 25, 50, and 100 years can be used for
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the planning, design, and operation of hydraulic projects and the efficient management of urban
water resources.

The downscaled and observed rainfalls for the historical period are compared to assess the
performance of downscaling models. The statistical indices used to measure the performance of
downscaling models reveal that non-parametric distribution-based MOS models can efficiently
downscale daily rainfall in the peninsular Malaysia. The calibrated MOS models are used for the
downscaling of GCM simulated rainfall under RCP 4.5 and RCP 8.5. It is found that the changing
climate can cause variation in the rainfall patterns.

The IDF curves are developed using disaggregated daily projected rainfall for the period of
2006-2099. IDF curves are developed for the return periods of 2, 5, 10, 25, 50, and 100-year for the
durations of 1, 3, 6, 12, 24, 48, and 72 h. MCFs are used to correct the generated IDF curves for
different GCMs. The IDF curves generated for different GCMs are used to develop the IDF curves with
uncertainty levels. The results reveal a higher increase in rainfall intensity for shorter durations for the
same return periods of rainfall, which gradually decreases for higher durations. The uncertainty in
rainfall intensity for different return periods for shorter durations is found to be greater compared to
that of higher duration rainfall. It can be concluded that shorter duration rainfall more is uncertain
compared to that of higher duration.

Eight GCM simulations under two RCP scenarios are used in this study for the projection of IDF
curves with related uncertainties. In future, different ensembles of GCMs can be used to verify the
results obtained in the present study. Projections of IDF curves for other RCPs can be generated to
show any variation in the uncertainty range.
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