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Abstract: Sediment and deposition are among the main problems in dam engineering and other
related fields. Because of the numerous advantages of numerical modeling, effects of different
geometries of reservoirs on the flow pattern and deposition of sediments are investigated using
the finite volume based Flow-3D software package. In this study, three rectangular reservoirs with
different dimensional ratios are simulated using the large eddy simulation (LES) turbulence model.
To validate the numerical modeling, existing experimental data is used. Results indicate that Flow-3D
can accurately simulate flow and sediment deposition in the reservoirs, and the numerical data are in
reasonable agreement with the experimental results. Numerical efforts showed that the amount of
deposition in reservoirs is significantly dependent on the geometry. Among the modeled reservoirs,
the 6 × 4 m one has the best performance. Moreover, it can be said that changing the position of the
flow’s inlet and outlet of the reservoir does not have a considerable effect on increasing its efficiency.

Keywords: shallow reservoirs; LES turbulence model; sediment; Flow-3D

1. Introduction

One of the critical issues in the multi-purpose reservoir is sedimentation and deposition
management. Shallow reservoirs [1,2] are an illustration of these, which are used to manage stormwater.
Scientists have always been struggling with the challenge of predicting the amount of deposition and
the sludge layers in reservoirs. Because storm flow contains a large volume of particles, e.g., sand,
gravel, and mud, along with fine and coarse stones, as well as driftwood [3,4]. Shallow reservoirs
have been widely used as ponds with the capability of restoring particles [5,6]. They can also be used
as storage [7–10], sedimentation tanks [11,12], and service reservoirs in water supply systems [13].
To legitimately predict the amount of deposition and sedimentation pattern, the hydrodynamics of
the reservoir should be identified correctly. The flow pattern, velocity of the main jet, eddies, and the
recirculation zones need to be studied to achieve this [14–16]. One of the fundamental parameters
in this regard is geometry, which includes the general shape of the reservoir and the position of
the inlet and outlet. Several scientists have investigated this parameter so far. In 2001, Wu used
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CCHE2D (The University of Mississippi, Oxford, MS, USA) to numerically model flow and sediment
deposition in an open channel [17,18]. Researchers like Kantoush (2007) and Dewals (2008) worked on
the effect of the width of a shallow rectangular reservoir to observe the sedimentation behavior [19,20].
They concluded symmetric geometry does not obligate the flow pattern to be symmetric. Depositions
can become asymmetric by reducing the width of the reservoir. In 2009, Johnson et al. also investigated
the effects of sediment particle size and the geometry of a basin [21]. Dufresne, in 2011, defined a
shape parameter for the shallow rectangular reservoir and experimentally indicated that reservoirs
with a shape parameter greater than 6.8 are prone to sediment deposition [15].

The other parameter that researchers investigated was the non-symmetric configuration of the inlet
and outlet. Horacio, in 2009 [22], worked on the position of the inlet and outlet. He indicated that the
location of the hydraulic jump plays the primary role in the final bed deposition. Camnasio et al. [23],
in 2010, and other researchers [24,25] studied the locations of the inlet and outlet. Camnasio concluded
that deposits could modify the direction of the main jet and flow pattern. Moreover, a theoretical
approach based on thermodynamic optimality was presented recently by Westhoff et al. (2018) that
proves this fact [26].

Predicting deposition and erosion as a function of the geometry for different structures,
like reservoirs and breakwaters [27], as well as of the hydraulic conditions and sediment characteristics,
is still a great challenge. The purpose of the current study is to investigate the effects of the dimensions
and geometry of shallow reservoirs on flow hydraulics and sediment distribution within them. To do
this, the commercial software computational fluid dynamic (CFD) package (Flow-3D, Flow Science,
Santa Fe, NM, USA) is used [28].

2. Governing Equations

Numerical modeling in recent years has obtained much attention. The computational fluid
dynamic (CFD) package used in this study is based on solving the Navier-Stokes equation.
The governing equations on incompressible, Newtonian, turbulent flow consist of equations for
continuity, momentum, and convection written in 3-D. In order to model the turbulence, the large
eddy simulation (LES) method with the Smagorinsky subgrid-scale (SGS) is implemented. The LES
method is based on solving large eddies and modeling small eddies, which are done by imposing
filters on the governing equations. The Smagorinsky method assumes that the energy and dissipation
of the small scale eddies are in equilibrium [29–31]. The filtered forms of the governing equations for
an incompressible fluid are given in Equations (1)–(5) [32]:
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The other essential equation implemented in this simulation is the sediment scour model.
Sediment transport calculations include three parts: entrainment and deposition, suspended load
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transport, and bedload transport. In the entrainment process, turbulent eddies take the grains from the
packed bed and transport them into suspension. Afterward, the suspended sediments are transported
by the flow at a particular height above bed, with deposition being the final step after the sediments
have settled out of suspension. Equation (5) indicates suspended load transport:

5. Suspended load transport

∂Cs,n

∂t
+∇.(Cs,nus,n) = ∇.∇(DCs,n) (5)

where Cs,n is the suspended sediment mass concentration, D is diffusivity, and us,n is the
sediment velocity.

3. Numerical Modeling

In this research, the RANS-VOF model has been used to simulate the effects of the dimensions
and geometry of shallow reservoirs on flow hydraulics and sediment distribution. Three different
geometries and sizes, as can be seen in Table 1, were tested. The Meyer-Peter and Müller method were
used for sediment transport [33]. The initial sediment concentration was considered to be 3 kg/m3 in
the inlet. The height of the reservoir walls and sediment loading of the flow at the inlet were considered
identical at 0.3 m [34], with an initial water level of 0.2 m. The six boundary conditions were defined as
follows: sidewalls y- symmetry, specified top pressure with a fluid fraction of zero, Xmin inlet boundary
condition considered as specified pressure with stagnation, constant fluid elevation of 0.2 m, and Xmax

considered as an outflow. The sand considered as sediment in this simulation has the characteristics
shown in Table 2.

Table 1. The geometry of the reservoirs.

Geometry Width (B) (m) Length (L) (m) Ratio

G1 2 6 1/3
G2 4 3 4/3
G3 4 6 2/3

Table 2. Properties of the sediment.

Property Density (kg/m3) Diameter (µm)

Value 1500 50

Grid convergence was done for each configuration by comparing velocity along the X-axis.
Four different mesh sizes were considered, with total cells numbering 2.0 × 104, 1.0 × 105, 1.5 × 105,
and 2.0 × 105. Figure 1 shows the resultant convergences for each mesh size. Cases 2 to 4 have very
similar results (less than 3% difference), and in order to make the simulations time-efficient, case 2 was
selected as the objective mesh size.
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Figure 1. Grid convergence for different cell sizes.

Figure 2 provides an overview of the reservoir and the positions of the inlet and outlet. The inflow
has two phases of fluid and sediment.
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Figure 2. The positions of the inlet and outlet in the reservoir.

In order to verify the model, the G1 reservoir, with the dimensions of 6 × 2 m, was selected to
compare the amount of deposited sediment in the numerically and experimentally modeled reservoir.
Figure 3 shows the profile of the accumulated sediment on the reservoir’s bed after 4.5 h at the
cross-section of y = 1 m.
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Figure 3. Profile of deposition in the reservoir for (a) numerical and (b) experimental data [35].

In Figure 3, the horizontal axis shows the length of the reservoir, and the vertical axis shows the
amount of deposited sediment in the lateral cross-section at 1 m. It can be claimed that the numerical
modeling has a reasonable accuracy (less than 5% difference with experimental data, on average) and
is slightly overestimated, which is reliable in view of the safety factor [36].

4. Results and Discussion

In this section, the effects of changing three parameters, including the eccentricity (G/D),
dimensional ratio, and the flow rate, were studied. The method considered for designing the tests in
this research was a full-factor method. Based on this method, for each geometry and each flow rate,
different G/D were tried, and 42 simulations were performed in all to see their effects on deposition
(Table 3).

Table 3. Test setups.

Geometry G/D Q (L/s)

G1 0, 2, 4, 8 7, 35, 63
G2 0, 2, 4, 8, 16 7, 35, 63
G3 0, 2, 4, 8, 16 7, 35, 63

4.1. Dimensional Ratio

One of the important parameters in capturing sediment is the geometry of the reservoir. In this
section, the effects of length and width in different rectangular geometries (G1, G2, G3), along with
a flow rate of 7 L per second and G/D = 2, were investigated. For brevity, the reservoirs are named
symbolically. For instance, G172 indicates the first reservoir G1 with the dimensions of 6 × 2 m, a flow
rate of 7 (L/s), and the ratio of G/D = 2.

Figure 4 shows the amount of sediment deposition with regards to time for the three reservoirs.
It can be seen that in all the reservoirs, the amount of deposition increases with time. Reservoir G372
has a higher efficiency than the other two by trapping 72.51% of the inflow sediment loading in
comparison to 71.1% for the G172 and 62% for the G272 reservoir. Comparing reservoirs G2 and G3,
and also G1 and G3, shows the effects of length and width in the amount of entrapment, respectively.
Results indicate that increasing the length by 100% enhances the efficiency by 10%, but increasing the
width by 100% can only enhance the efficiency by 1.4%. It shows that stretched reservoirs have a better
capability for trapping sediment.
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Since reservoir G3 has more potential to capture the sediment, the effects of eccentricity (G/D) in
this specific geometry (G3) are investigated in the following section.Water 2018, 10, x FOR PEER REVIEW  6 of 12 
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Figure 4. Amount of deposition in the three reservoirs over 2000 s.

4.2. Effect of the G/D Ratio

The G3 reservoir has better capabilities than the others, regarding controlling the sediment load.
In this section, the effect of changing the G/D ratio on sediment deposition capacity of the G3 reservoir
is investigated. The modeling in this section has been done for five G/D ratios with the same flow
rate (7.0 L/s). In Figures 5–8, the amount and pattern of sediment deposition, and also streamlines
in the G374 and G3716 reservoirs, are indicated. The formation of flow vortices and deposition in
the reservoirs are apparent in the illustrations. It can be observed that the volume fraction of the
sediment loading in the fluid is small at the inlet, and it increases as it gets further from it, which can
be attributed to the higher flow velocity at the inlet.
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Figure 8. Stream Lines 15.5 cm from the bed, G3716 reservoir.

The amounts of sediment deposition in reservoirs with different G/D ratios are presented
in Table 4. These data indicate the capabilities of the considered reservoirs with different G/D in
controlling sediment loading. It can be mentioned that the reservoir with the ratio of G/D = 16 has
73.94% efficiency in trapping the sediment load, while the reservoir with the ratio of G/D = 0 has
72.34%.
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Table 4. The amount of sediment entrapped for different G/D.

Reservoir G370 G372 G374 G378 G3716

Amount of Sediment 72.34% 72.51% 73.31% 73.54% 73.94%

4.3. Changing the Flow Rate of the Inflow

In this section, the effects of changing the flow rate of the inflow on sediment deposition patterns
is investigated. For this purpose, the effects of three flow rates (7, 35, and 63 L/s) are studied in the
G3 reservoir. Since the amount of the inflow sediment load is the constant value of 3 g per liter, it is
evident that by increasing the flow rate of the inflow, more sediment enters the reservoir. Figure 9 is
derived from the simulation and represents the flow’s kinetic energy and drag coefficient for a specific
point in the reservoir (G36316).
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Figure 9. Variations in point M’s (a) kinetic energy and (b) drag coefficient in the G36316 reservoir.

The horizontal axis in Figure 9 indicates time, and the vertical axis is the kinetic energy and drag
coefficient for (a) and (b), respectively. In Figure 9a, because of the accumulation of the sediment as the
time passes, the kinetic energy at point M decreases, but in Figure 9b, the drag coefficient gradually
increases. The reason for this decrease in kinetic energy as time passes while the drag coefficient is
increasing is attributed to the sediment volume fraction in the flow. As the volume fraction of the
sediment load increases with time, the viscosity of the fluid increases. This will result in a reduction in
the kinetic energy and an increase in the drag coefficient. Moreover, the reason for the fluctuations in
the kinetic energy and drag coefficient is the change in the amount of sediment in this small period of
time. However, since the sediment will accumulate, the kinetic energy will gradually decrease and
the drag coefficient will rapidly increase at the point of M’. These results are similar for the other
two reservoirs. In Figure 10, the final result of the three reservoirs with three different flow rates
is illustrated.
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Figure 10. The amount of sediment deposition in the G3 reservoir for different flow rates.

According to these percentages, it can be concluded that by increasing the flow rate, or in other
words, by increasing the inflow Froude number, the efficiency of sediment-entrapment reservoirs will
be reduced substantially.

4.4. Sensitivity of Variables

The sensitivity of the parameters is another important issue which can indirectly increase the
efficiency in industry. It indicates how the system can become more efficient by minimizing the effort
and which variables are more sensitive to change. Figure 11 indicates the sensitivities of the parameters
factoring into sedimentation. By calculating the margins of error in relation to confidence interval,
Equation (6), it can be predicted which parameter has more effect on efficiency. The second part of
Equation (6) shows the margins of error, these results being indicated in Table 5.

x± 1.96
σ√
n

(6)

Table 5. Margins of error of parameters.

Variables Margin of Error

Flow rate 0.381
Dimensional ratio 0.064
Eccentricity (G/D) 0.005

According to the Table 5 and Figure 11, the flow rate has more sensitivity to changes than the
other parameters, dimensional ratio and eccentricity (G/D). This means changing the flow rate can be
the most efficient and easiest way to entrap the sediment. The reason for all these behaviors relates to
the amount of time that takes for fluid to go from inlet to outlet. The longer the fluid can be kept in the
reservoir, the more sediment will be trapped.
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5. Conclusions

Utilizing CFD commercial package Flow-3D, in this study, the effects of geometry, the eccentricity
of inlet and outlet (G/D), and the flow rate of the reservoirs on sediment distribution and entrapment
were investigated. For this purpose, three reservoirs with different dimensional ratios were simulated.
The effects of changing the positions of the inlet and outlet in reservoirs (G/D ratio) on the efficiency
of sediment entrapment was investigated. Results showed that by increasing the G/D ratio in the
reservoir, the percentage of sediment entrapment slightly increased, and by increasing the flowrate,
the amount of sediment entrapment remarkably decreased. Numerical modeling showed that among
the simulated reservoirs, the reservoir with dimensions of 6 × 4 m and with the ratio of G/D = 16 had
the best performance. According to the simulation outcomes, it can be concluded that increasing the
reservoir length contributes more to sediment entrapment than increasing the width of the reservoir.
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Nomenclature

v Kinematic viscosity (m2/s)
u Velocity (m/s)
B Width (m)
L Length (m)
u Filtered velocity (m/s)
p Filtered pressure (Pa)
D Diffusion coefficient (m2/s)
S Filtered rate-of-strain tensor
Cs Smagorinsky coefficient
∆g Grid size (m3)
Cs,n Suspended sediment mass concentration (kg/m3)
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us,n Sediment velocity (m/s)
σ Standard deviation
n Number of data
x Average of data
G/D Eccentricity
Q Flow rate (L/s)
ρ Density (kg/m3)
t Time (s)
φ Scalar
i Unit in x direction
j Unit in y direction
x Direction
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