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Abstract: The present study aimed to quantify the future sustainability of a water supply system using
dynamically-downscaled regional climate models (RCMs), produced in the South Asia Coordinated
Regional Downscaling Experiment (CORDEX) framework. The case study is the Boukan dam,
located on the Zarrine River (ZR) of Urmia’s drying lake basin, Iran. Different CORDEX- models were
evaluated for model performance in predicting the temperatures and precipitation in the ZR basin
(ZRB). The climate output of the most suitable climate model under the RCP45 and RCP85 scenarios
was then bias-corrected for three 19-year-long future periods (2030, 2050, and 2080), and employed
as input to the Soil and Water Assessment Tool (SWAT) river basin hydrologic model to simulate
future Boukan reservoir inflows. Subsequently, the reservoir operation/water demands in the ZRB
were modeled using the MODSIM water management tool for two water demand scenarios, i.e.,
WDcurrent and WDrecom, which represent the current and the more sustainable water demand scenarios,
respectively. The reliability of the dam’s water supply for different water uses in the study area was
then investigated by computing the supply/demand ratio (SDR). The results showed that, although
the SDRs for the WDrecom were generally higher than that of the WDcurrent, the SDRs were all <1,
i.e., future water deficits still prevailed. Finally, the performance of the water supply system was
evaluated by means of risk, reliability, resiliency, vulnerability, and maximum deficit indices, and the
combination of the indices to estimate the Sustainability Group Index (SGI). The findings indicated
that, compared to the historical period for both the water demand scenarios, WDcurrent and WDrecom,
the average SGI of each RCP would be decreased significantly, particularly, for the more extreme
RCP85 scenario. However, as expected, the SGI decrease for the WDrecom was less than that of the
WDcurrent, indicating the advantage of implementing this more sustainable water demand scenario.

Keywords: water supply system; vulnerability and risk; sustainability assessment; climate change;
CORDEX; SWAT; MODSIM; Zarrine river basin; Boukan Dam; Iran

1. Introduction

The growing population rate and the limitations of available water resources as a vital factor for
human survival will increase the likelihood of water scarcity in future years. This holds in particular,
for countries located in areas with arid and semi-arid climates, such as Iran in southwest Asia. In Iran,
inefficient agriculture together with mismanagement and the ongoing thirst for development have led
to a looming water crisis in recent years [1]. Based on evidence from the GRACE (Gravity Recovery
and Climate Experiment) satellite data [2], NASA has found that large parts of the arid Middle East
region and western Iran have lost freshwater reserves rapidly over the past decade. This situation is
exacerbated by the rising trends in climate variability due to global climate change, with the effect

Water 2018, 10, 1723; doi:10.3390/w10121723 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-0688-6952
http://dx.doi.org/10.3390/w10121723
http://www.mdpi.com/journal/water
http://www.mdpi.com/2073-4441/10/12/1723?type=check_update&version=2


Water 2018, 10, 1723 2 of 21

that the currently available water resources and bodies in Iran will be adversely affected in the near
future [3], which may result in hydro-climatic disasters, with severe losses for the vulnerable natural
systems and communities. Therefore, the first inevitable task to prepare the potentially affected regions
for these adverse events is to identify recent, as well as future, climate variations and to assess the
water scarcity risk, followed by a prediction of the effects of the events on future hydrology to allow
the definition of adaptation plans to mitigate the aforementioned negative impacts on the water
supply systems.

In several previous studies [4–6], the impacts of a changing climate on available water resources
and hydrological conditions have been investigated in three river basins located in Central Italy,
Kenya, and Burkina Faso, respectively, using regionally downscaled climate of GCM projections, i.e.,
RCM-predictors, including the COordinated Regional climate Downscaling EXperiment (CORDEX)
project [7], as climate drivers in hydrologic models; specifically, the globally used Soil and Water
Assessment Tool (SWAT), which is a comprehensive integrated river basin model [8]. As an option
for future water resource management under the impacts of climate change, water management
and planning models, such as the MODSIM-DSS or WEAP (Water Evaluation and Planning system),
which are capable of simulating various characteristics and features of water resources in a river
basin, can be coupled with the SWAT hydrologic model. Such a methodology has been investigated
in some studies [9,10], where it has been found that such an approach is an invaluable tool for
hydro-climatology predictions to support long-term water resource management and planning.

Numerous studies have dealt with the impacts of climate change on streamflow and available
water resources in Iran (e.g., References [11,12]), wherein in some of these studies [3,13], the SWAT
model was applied. Most of the researchers concluded that climate and hydrological variables would
experience significant and adverse changes in the future in the wake of climate change. This particularly
applies to regions of Iran that already have vulnerable situations of water availability. Current studies
show that this situation will become worse, especially in the drier regions, where more prolonged
droughts will occur, but also, in contrast, there will be other regions that will experience more frequent
and more intensive floods [3,13,14].

Loucks [15] suggested that the sustainability of water systems can be assessed using various
statistical measures, i.e., reliability, resiliency, and vulnerability (RRV), all of which are summarized
in a sustainability index (SI). The author defined reliability as the probability of success in a system
when water demands are supplied sufficiently; resilience as the recovery speed of a system from a
failure condition; and vulnerability as the severity degree of a failure condition. Karamouz et al. [16]
also introduced a threefold approach for estimating the sustainability level of supply and demand
for the Aharchay river basin of Iran. In one of these approaches, a simulation model, the WEAP,
was utilized to estimate the reliability, resiliency, vulnerability, and maximum deficit for a river basin
to determine a group sustainability index based on Sandoval-Solis et al. [17]. Veldkamp et al. [18]
suggested a risk-based water scarcity assessment approach, based on probabilistic methods to deal
with variability and extremes, as well as applying a Gamma distribution to estimate water scarcity
conditions at the global scale under historic and future conditions, by incorporating multiple climate
change and population growth scenarios.

The present study used the bias-corrected [19] CORDEX RCM climate predictors as input into
the SWAT model for streamflow and water resource predictions in the vulnerable Boukan watershed,
located upstream of the Boukan Reservoir within the Zarrine River basin in northwest Iran. The ensuing
SWAT hydrological predictions were then evaluated by the water management and planning model
MODSIM. Finally, the water supply reliability of the study area and the sustainability of the reservoir
operation system were assessed using the aforementioned performance indices, including reliability,
resiliency, vulnerability, and maximum deficit measures, together with the impact of the demand
management scenarios. Using this cascade-methodology, the hydrologic impacts of climate change,
namely, streamflow and water resources, as well as the subsequent management strategies for
mitigation were analyzed in detail. An important objective of this study was to improve the efficiency
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of future water use under climate change conditions in the study region and to assess the water scarcity
risk. Moreover, the output obtained from this analysis could be used to support better decision systems
for water resource planning in the watershed.

2. Study Area

2.1. Zarrine River Basin

The Zarrine River basin (ZRB) is located in the southern part of Lake Urmia, between 45◦46′ E
to 47◦23′ W longitude and 35◦41′ S to 37◦44′ N latitude. The river has a length of about 300 km and
its basin covers an area of 12,000 km2, where the larger portion is mountainous, and the remainder
is rather plain. The basin belongs to the Lake Urmia hydrologic basin with the major reach being
the main inflow source of Lake Urmia, as shown in Figure 1a. The Lake Urmia itself, which has
international importance based on the Ramsar convention, has been diminishing steadily since 1995.

The ZRB contains several dams where the biggest and most important operating dam is the
Boukan Dam, and a diversion dam, the Nouroozloo, located in its downstream. The Boukan reservoir
has a gross storage capacity of 760 million m3 (MCM) and a live storage capacity of 654 MCM, with an
annual adjustable water volume of around 624 MCM. Its water is used for agricultural irrigation and the
supply of drinking and industrial water in the region with the amounts of 787, 169, and 5 MCM/year,
respectively [19].

The region’s climate is mostly characterized as semi-wet cold or wet-cold, but it changes to
semi-dry in the vicinity of Lake Urmia. The average annual temperature varies between 8 and 12 ◦C,
whilst the rainfall on the ZRB is in the range of 200–850 mm/year.

The major land cover of the ZRB is 45% dry land, 37% pasture, and 14% forest. The agricultural
areas within the basin cover a total area of 74,318 ha, all irrigated by groundwater and surface water
resources, including from the Boukan reservoir, as the crop growing season of the basin is mostly
during the dry season lasting from mid-spring to mid-autumn. Nevertheless, the basin is rather prone
to flooding and there have been devastating floods there in recent years, especially, in the beginning
of spring.
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Figure 1. Map of the Zarrine River basin (ZRB) in northwestern Iran with the Boukan Dam and
the climate and streamflow stations (a), together with the basin configuration of the Soil and Water
Assessment Tool (SWAT) model (b).
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2.2. Data

The data required for this research in the ZRB is detailed in Table 1, along with its sources.
The Digital Elevation Map (DEM), land-use, and soil classification maps were used to delineate
the SWAT modelled ZRB-watershed, and to identify the stream reaches. Climate input data of the
model consisted of the daily maximum and minimum temperatures, as well as the daily precipitation,
over the period from 1987 to 2015 for six synoptic stations located in or close to the ZRB, whilst monthly
streamflow data for the six gauging stations of the ZRB was available for the period from 1987 to 2012.

For the future climate scenarios, predictors of the CORDEX-regional climate models archive
(see following section for details) were gathered from the Centre for Climate Change Research at the
Indian Institute of Tropical Meteorology website: http://cccr.tropmet.res.in/home/data_cccrdx.jsp.

Table 1. Data and the data sources used in the hydrologic analysis of the ZRB.

Data Type Resolution Source Description

Digital Elevation Model
(DEM) 85 m Iranian surveying

organization
Elevation, overland, channel

slopes and lengths

Land use map 1000 m Iranian Ministry of
Agriculture, MOA Land use classifications

Soil map 10 km Global FAO digital soil map FAO-UNESCO
classifications

Climate data 6 stations
(see Figure 1a)

Iranian meteorological
organization

Daily precipitation,
maximum and minimum

temperatures

Streamflow data 7 stations
(see Figure 1a) Ministry of Energy, Iran

Monthly river discharge of
the stations at outlets the

main sub-basins

3. Materials and Methods

3.1. Generation of Downscaled Climate Projections

Global Climate Models (GCM) climate predictor data is frequently used to explore climate
change impacts for a limited spatial region but given the spatial resolution is usually coarse, varying
from around 1 to 3 degrees, the data needs to be downscaled to a finer scale for regional and local
climate variations estimations. This is mostly done using a statistical downscaling technique, e.g.,
the Statistical DownScaling Model (SDSM) [20,21] which works well for temperatures, but less so for
precipitation [22]. Therefore, for the latter, the Quantile Mapping (QM) bias correction technique [23,24]
has come to the fore, and it has also been used in a previous climate impact study in the ZRB by
Reference [19].

However, in the present study, a dynamical downscaling approach based on the CORDEX
dataset (Coordinated experiments for projections of regional climate change) [25], i.e., output from a
high-resolution regional model (RCM) driven by various driving GCMs was used. Iran is located in
more than one of the CORDEX domains, with the most adequate in Region 6, namely the WAS (South
Asia), and in Region 13, namely the MNA (Middle East North Africa—MENA). Mousavi et al. [26]
investigated the applicability of these two CORDEX domains for climate predictions over Iran and
found that the WAS dataset had better agreement with the observational data. This dataset was also
applied in the drought analysis study across Iran described in Reference [27]. Based on the above
findings, the WAS dataset with rotated poles and at a resolution of 0.44◦ × 0.44◦ (WAS-44) was also
used to generate the climate predictors in the present study.

The available experiments for the WAS-44 dataset consisted of 16 GCM-RCM CORDEX
combinations, i.e., ten CMIP5- archive GCMs as the driving models and two RCMs, regCM4 and RCA4,

http://cccr.tropmet.res.in/home/data_cccrdx.jsp
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all taken from the websites of the Indian Institute of Tropical Meteorology (IITM) and the Swedish
Meteorological and Hydrological Institute (SMHI). The experiments are listed in Table 2.

Table 2. List of WAS-44 COordinated Regional climate Downscaling EXperiment (CORDEX)
GCM-RCMs combinations with the labels used in the present study and the most suitable model
found in bold.

Driving GCM RCM CORDEX RCM
Abbreviation Driving GCM RCM CORDEX RCM

Abbreviation

CCCma-CanESM2
IITM-RegCM4 CanESM2-RegCM4 IPSL-IPSL-

CM5A-LR
IITM-RegCM4 IPSL-RegCM4

SMHI-RCA4 CanESM2-RCA4 SMHI-RCA4 IPSL-RCA4

CNRM-CERFACS-
CNRM-CM5

IITM-RegCM4 CNRM-RegCM4 MOHC-Had
GEM2-ES SMHI-RCA4 HadGEM2-RCA4

SMHI-RCA4 CNRM-RCA4 MPI-M-MPI-
ESM-MR

IITM-RegCM4 MPI-RegCM4

CSIRO-QCCCE-
CSIRO-Mk3-6-0

IITM-RegCM4 CSIRO-RegCM4 SMHI-RCA4 MPI-RCA4

SMHI-RCA4 CSIRO-RCA4 NCC-Nor
ESM1-MR SMHI-RCA4 NorESM1-RCA4

ICHEC-EC-EARTH SMHI-RCA4 ICHEC-RCA4 NOAA-GFDL-
GFDL-ESM2M

IITM-RegCM4 NOAA-RegCM4

MIROC-MIROC5 SMHI-RCA4 MIROC-RCA4 SMHI-RCA4 NOAA-RCA4

The above 16 CORDEX RCM’s were then ranked based on a multi-criteria scoring approach as
in Reference [19], by evaluating the models particular skills to simulate the past observed climate in
the ZRB during the reference period (1987–2005), based on various standard statistical performance
measures (see Section 4). The climate predictors of the best-ranked model were then selected for
further processing, i.e., bias-correction. To that avail, the ISI-MIP trend-preserving method described
in Reference [28] was applied to correct the monthly biases of the simulated temperatures and
precipitation. More specifically, for the minimum and maximum temperatures, an additive correction
constant CTj and for precipitation a multiplicative factor CPj, were employed. For further details,
the readers are referred to studies by Emami and Koch [19,29].

3.2. Hydrologic Simulation Model SWAT

3.2.1. General Description of SWAT Model

The Soil and Water Assessment Tool (SWAT) [30,31] is a physically-based, semi-distributed,
time-continuous rainfall-runoff simulation model that operates on a daily time step. The hydrology
and water quality processes taking place in a watershed can be simulated in a computationally efficient
manner at various spatial scales. The SWAT was originally developed to assess the impacts of land
use and management changes on water supplies, sediment and nutrient transport, and pesticide
fate in large-scale catchments [8]. However, over the last decade, this model has been frequently
used to investigate climate change impacts on agro-hydrological systems. This is usually done by
using meteorological time series from downscaled future predictions of GCMs (e.g., Reference [19])
or RCMs [32,33], including ones from the CORDEX project, as climate drivers of the SWAT model.

The SWAT simulates various components of the hydrological cycle, i.e., the surface runoff,
percolation, lateral subsurface flow, channel transmission losses, evapotranspiration, and groundwater
return flow. Model inputs include the physical characteristics of the watershed and its sub-basins,
such as soil type, land use, land slope, slope lengths, lengths and widths of the surface water bodies,
Manning’s n-values, and precipitation and temperature, as the ultimate climate drivers of the various
runoff processes [31].

The runoff volume was estimated using the modified SCS-curve number method. The watershed’s
concentration time was evaluated using Manning’s formula, considering both the overland and channel
flow. The SWAT uses a storage routing technique to predict the flow through each soil layer in the root
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zone. Downward flow occurs when the field capacity of a soil layer is exceeded and the layer below is
not yet saturated.

In the distributed SWAT model configuration, the major watershed was divided further into
sub-basins, as can be seen for the ZRB in Figure 1b. To represent the large-scale spatial heterogeneity
of the study area, each sub-watershed was parameterized further by a series of HRUs (Hydrologic
Response Units), which are a combination of land cover, soil, and management areal units. The soil
water content, surface runoff, nutrient cycles, sediment yield, crop growth, and the management
practices were simulated for each HRU and then aggregated for the corresponding sub-basin by a
weighted average. Physical characteristics, such as the watershed slope, reach dimensions, and the
meteorological/climatic data were considered for each sub-basin. Estimated streamflow obtained for
each sub-basin was then routed and accumulated accordingly through the river system to provide the
final outlet discharge to be used for the calibration and validation of the model.

3.2.2. SWAT Model Setup and Calibration-Validation

Using the data categories listed in Table 2, the SWAT model was set up with the help of ArcSWAT
2012, an extension of the ARCGIS, and was subsequently calibrated and validated for the available
data period from 1991–2012. This study relied on the originally calibrated SWAT model for the ZRB
by Emami and Koch [19], who calibrated and validated the model using the stochastic Sequential
Uncertainty Fitting version 2 (SUFI-2) algorithm of the SWAT-CUP program [34], which has been
widely used in recent SWAT related studies. In the SUFI, the input parameters of the SWAT model
were expressed as ranges to be treated as random variables, accounting for all possible sources of
uncertainties. As initial parameters, default values and/or determined parameters from the manual
calibration or deduced parameters from the literature were taken. Then the most effective parameters
were defined based on a sub-basin-wise sensitivity analysis, which was done hierarchically from the
last streamflow gauging station in the upstream sections (sub-basin 11, Sonnateh station) down to the
outlet of the total basin (sub-basin 2, Nezamabad station).

To simulate the impacts of climate change on the surface water runoff, the future (2006–2099),
biased-corrected precipitation and temperature predictions of the top-ranked CORDEX GCM-RCM
combination (HADGEM2-RegCM4) under the two widely used emission scenarios, RCP45 and RCP85,
were used as hydrological drivers in the calibrated SWAT model.

3.3. Water Management and Planning Model MODSIM

3.3.1. Theoretical Basis of the MODSIM Modeling Approach

MODSIM-DSS is a general river basin management model that can be used as a decision support
system. Originally developed by Dr. John Labadie of Colorado State University in the mid-1970s,
it has been applied since then in numerous complex river basin systems, such as the Poudre River
Basin in Colorado [35]; lower Nile River basin [36]; Guiem River Basin in South Korea [37]; Karkheh
River Basin [10]; and the Zarrine River Basin [38] in Iran, mainly, for developing basin-wide strategies
for short-term water management, long-term operational planning, drought contingency, and climate
change adaptation planning. Other applications include the analysis of water rights and resolving
conflicts between urban, agricultural, and environmental interests [39].

The main idea behind the MODSIM is that a complex river basin system can be represented
by a network flow system consisting of a range of nodes and links. The nodes symbolize storage
components, such as reservoirs and aquifers, as well as points of inflow, demand, diversion,
and river confluence. The links connecting the nodes represent river reaches, pipelines, canals,
and stream-aquifer interconnections defining stream depletions from pumping and returns flows
from the seepage and surface water applications. These nodes and links in the MODSIM do not only
represent the physical components of a river basin system, but may also be utilized to symbolize
artificial and conceptual elements, like reservoir operating targets, consumptive and in-stream flow
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demands, evaporation and channel losses, reservoir storage rights and exchanges, and stream–aquifer
interaction components [40].

Once the conceptual network was constructed, a highly efficient network flow optimization (NFO)
algorithm was employed in MODSIM, providing solutions that simulate the optimal allocation of
water in a river basin, according to water availability under various water rights and other priority
constraints. Basically, the following constrained optimization is solved in MODSIM for each time step
of the planning period:

Minimize : ∑
k∈A

ckqk (1)

subject to:

∑
k∈Oi

qk − ∑
k∈Oi

qk = bit; f or all nodes i ∈ N (2)

lk ≤ qk ≤ uk ; f or all links k ∈ A (3)

where A is the set of all the arcs or links in the network; N is the set of all the nodes; qk is the integer
valued flow rate in link k; ck are c the cost or weighting factors, or priorities per unit of flow rate in link
k; bit is the (positive) gain or (negative) loss at node i at time t; Ii is the set of all links terminating at
node i (inflow links); Oi is the set of all links originating at node i (outflow links); and lk and uk are
the lower and upper bounds on flow in link k, respectively. Once the terms in Equations (1)–(3) have
been specified for a particular watershed, the constrained optimization problem is solved with the
Lagrangian relaxation algorithm RELAX-IV described in Reference [41].

The cost factor ck for accounting for active storage and demand links priorities is generally
calculated using the following formula:

ck = −(50,000 − 10 × PRk) (4)

where PRk is the integer priority ranking which ranges between 1 and 5000 for the reservoirs or the
demands, as discussed below.

3.3.2. Setup of the MODSIM Network and Demand Scenarios for the ZRB

Sustainable water management has been defined by Mays [42] as a strategy that can meet
the current water demands of all water users, without impairing the future water supply, whilst
maintaining the environmental and hydrologic integrity [43]. This means that, in general, the potable
and environmental demands should be highlighted with the highest priority, with lower- ranking
industrial and water agricultural needs to be limited correspondingly to amounts which will not
compromise the future sustainable water supply.

Based on these ideas, the water demands in the MODSIM network of the ZRB, shown in
Figure 2, are categorized into the present and future development types, where the former describes a
continuation of the demands of the historical period as authorized officially by the Iran Ministry of
Energy, whilst the latter encompasses secondary, additional demands that are expected to arise
in the wake of ongoing future development plans, as discussed in Emami and Koch [19] and
MOE [44]. The irrigation losses and Legzi water transfer nodes were also classified as present
agricultural demands. In summary, the water uses in the basin network system downstream of
the Boukan Dam contain, in order of decreased supply priority for future conditions: (1) present
potable; (2) environmental flow of dam; (3) environmental flow entering Lake Urmia; (4) present
industrial; (5) present agricultural; (6) future development potable; (7) future development industrial;
(8) future development agricultural; and (9) filling of the reservoir [19,38]. Furthermore, one goal of
the present study was to analyze how different future projected water uses in the ZRB can be sustained
by the available water supply in the wake of climate change. The flow components of the MODSIM
model were mainly driven by the inflow of the Boukan Reservoir, captured from the earlier mentioned
simulations of the SWAT model for different climate scenarios.
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Following these statements, two water demand scenarios, hereinafter called WDcurrent and WDrecom

(recommended) will be simulated by the MODSIM, using the projected SWAT simulated inflow to the
Boukan Dam. The WDcurrent—water demand scenario extended the current water policies, such that
it assumed the continuing development of the ZRB water supply projects for potable, industrial,
and agricultural demands. The WDrecom—water demand scenario, on the other hand, was a sustainable
water management scenario, where demand management strategies were implemented based on
the recommended scenario of potable and industrial predicted water demands [44], together with a
decreased agricultural demand, including application of pressurized irrigation and improvement of
the irrigation networks of the ZRB [19,29].

3.4. Assessment of the Water Supply System Performance, Reliability, Resilience, and Vulnerability

Various performance criteria were employed in the present study to assess the water management
policies of a water supply system, and to enable the comparison of alternative policies. The performance
of the system can be evaluated by an analysis of the time series of a particular representative parameter,
Xt (for example, the water demand deficit), with time t = 1,. . . , T with T being the total time horizon
inspected. More specifically, a system performance index to identify a satisfactory condition (S) versus
an unsatisfactory (U) condition of the system can be defined based on some threshold values in the
representative time series, Xt.

In this study, the water demand deficit was used as the system performance variable, Xt, which is
defined as:

De f i
t =

{
Demi

t − Supi
t i f Demi

t > Supi
t

0 i f Demi
t ≤ Supi

t
(5)

where De f i
t , Demi

t and Supi
t were water deficit, total water demand, and the water supply of the i-th

user at time t, respectively. Thus, De f i
t = 0 defines the threshold of the indicator state to change from a

satisfactory (S) to an unsatisfactory (U) condition, or vice versa.
The most widely used indices for system sustainability assessment are Reliability, Resilience,

and Vulnerability, also abbreviated as RRV, firstly introduced by Hashimoto et al. [45]. Based on
these three indices, and the deficit index above, Loucks [15] then proposed a summary index of the
sustainability index (SI) to measure the sustainability of water resource systems, which for the i-th
user was defined as:

SIi =
(

Reli × Resi ×
(

1−Vuli
)
×
(

1−Max.De f i
))0.25

(6)
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where Reli, Resi, Vuli and Max.De f i are reliability, resiliency, vulnerability, and maximum deficit,
respectively. These four performance criteria have also been used in previous studies of this kind [16,17].

Reliability, Reli, is the probability (percentage of time) that the water demand is fully supplied,
specifically, the ratio of the number of times De f i

t = 0 to the total number of time intervals, N:

Reli = Prob(Xt ∈ S) =

(
Number o f times De f i

t = 0
N

)
(7)

From the reliability index, Reli, the opposite, i.e., the risk of the system, which is the probability
of failure during a period, can be directly calculated as:

Riski = Prob(Xt ∈ U) =
(

1− Reli
)

(8)

Resiliency, Resi, describes how the system is likely to recover from a failure status. It can be
interpreted as the probability that a successful period follows a failure period, which means the number
of times that De f i

t = 0 is followed by De f i
t > 0, normalized by N, as above:

Resi = Prob(Xt+1 ∈ S|Xt ∈ U ) =

(
Number o f times De f i

t = 0 f ollows De f i
t > 0

N

)
(9)

Vulnerability, Vuli, is the expected value of deficits, i.e., the sum of the deficits De f i
t , divided by

the deficit period (number of times De f i
t > 0) and then divided again by the annual water demand of

the i-th water user, Demi
t, to make it dimensionless:

Vuli =


∑De f i

t>0
De f i

t

Number o f times De f i
t>0

∑N
t=1 Demi

t

 (10)

The maximum deficit, Max.De f i, if it occurs, is the worst-case annual deficit, max (De f i
Annual),

divided again by the annual water demand, to make it dimensionless:

Max.De f i =

(
Max

(
De f i

Annual
)

∑12
t=1 Demi

t

)
(11)

All these five indices vary between 0 and 1.
Finally, the Sustainability by Group Index (SGI) is defined as the weighted average of sustainability

indices with the relative weights calculated according to the water demand. So, the SGI for the group
of demands is expressed as follows:

SGI =
i=k

∑
i=1

Demi

DemT × SIi (12)

where SIi is the sustainability index (Equation (6)) for the ith water user, with an annual water demand
of Demi, and DemT is the total water demand. In this study, k = 8 eight demand indices for the domestic
(present, future), environmental (dam and lake), industrial (present, future), and agricultural (present,
future) users were considered, with the weights equal to the relative volumes of water demand.
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4. Results and Discussion

4.1. Selection of the Best CORDEX RCM for Climate Prediction in the ZRB

For the selection of the most suitable CORDEX RCM from the set of 16 eligible CORDEX
RCM’s in Table 2, for later future climate predictions in the ZRB, the models’ past-performances,
i.e., the ability to simulate the monthly aggregated climate observations of the reference period
(1987–2005) were evaluated first, using the skill score multi-criteria method [19]. The method is based
on four performance indicators, namely, system bias (B) (=ratio of the GCM- simulated variables
to the observed ones, and ideally close to 1); coefficient of determination (R2), ideally close to 1;
the normalized root mean square error (NRMSE) (ideally close to 0); and the NSE (ideally close to 1),
from which a total skill score for simulating temperatures and precipitation was calculated (=16 and
=1, for the models with the best and worst performances, respectively). These terms are defined as:

B =
∑n

i=1(pi)

∑n
i=1(oi)

(13)

R2 =
∑n

i=1(oi − o)× (pi − p)√
∑n

i=1(oi − o)2 ×
√

∑n
i=1(pi − p)2

(14)

NRMSE =
RMSE

o
=

√
∑n

i=1(pi−oi)
2

n
o

(15)

NSE = 1− ∑n
i=1(pi − oi)

2

∑n
i=1(oi − o)

(16)

where oi and pi are the observed and predicted GCM weather data and o and p are the averages,
respectively, and n is the number of months (=228) in the reference period.

Summarized in Table 3 are the results of the scoring analysis for the 16 GCM-RCM combinations
(see Table 1), regarding the predictions of temperatures and precipitation in the reference period and
averaged over the observing stations. From the table, the GCM-RCM combination of HADGEM2-RCA4
had the best performance, i.e., the highest skill score of 14.5. Therefore, the climate predictions of this
model were considered for further analysis.

Table 3. Statistical performances of the available CORDEX GCM-RCM models of WAS-44, and the
resulting skill score for precipitation and temperature, with the best model highlighted in gray.

CORDEX
GCM-RCM Mode

Precipitation Temperature Overall
ScoreB NRMSE R2 NSE Score B NRMSE R2 NSE Score

CNRM-RCA4 1.32 2.09 0.08 0.28 1 0.61 0.50 0.91 0.51 8 4.5
ICHEC-RCA4 0.95 1.78 0.08 0.48 10 0.61 0.36 0.89 0.74 5 7.5

IPSL-RCA4 0.59 1.15 0.06 0.63 11 0.68 0.33 0.90 0.78 16 13.5
MIROC-RCA4 1.40 2.07 0.16 0.33 3 0.59 0.33 0.90 0.79 12 7.5

MPI-RCA4 1.13 1.80 0.13 0.42 6 0.55 0.39 0.90 0.69 3 4.5
NOAA-RCA4 0.89 1.64 0.08 0.57 13 0.56 0.45 0.88 0.59 1 7

CanESM2-RCA4 0.74 1.59 0.01 0.65 8 0.68 0.56 0.92 0.40 10 9
HADGEM2-RCA4 1.29 1.29 0.15 0.38 15 0.66 0.34 0.90 0.78 14 14.5
NorESM1-RCA4 1.03 1.74 0.02 0.60 9 0.70 0.30 0.89 0.82 15 12

CSIRO-RCA4 1.20 1.87 0.08 0.46 2 1.40 3.34 0.90 0.61 2 2
CanESM2-RegCM4 0.80 1.62 0.12 0.07 7 0.73 0.93 0.93 0.36 13 10

CNRM-RegCM4 1.08 1.64 0.14 0.11 12 0.92 1.04 0.92 0.22 11 11.5
CSIRO-RegCM4 1.16 1.61 0.23 0.13 14 1.06 1.14 0.93 0.13 6 10
IPSL-RegCM4 1.02 1.68 0.17 0.08 16 1.01 1.09 0.91 0.16 4 10
MPI-RegCM4 1.02 1.73 0.12 0.06 5 1.00 1.08 0.92 0.19 9 7

NOAA-RegCM4 1.06 1.72 0.11 0.06 4 0.79 0.88 0.91 0.26 7 5.5
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4.2. Bias Correction of the Best CORDEX RCM-Climate Predictors

In the subsequent step, the temperature and precipitation predictions of the (best)
HADGEM2-RCA4 model were bias-corrected by applying the ISI-MIP trend-preserving method [28].
The results of this exercise are listed in terms of the B and NRMSE indices before and after the bias
correction in Table 4. One can notice that, on average, the monthly biases of the two climate predictors
at the various climate stations were decreased considerably through the application of the ISI-MIP
method, specifically, by 30% and 19% for the biases B and by 54% and 58% for the NRMSE for
temperatures and precipitation, respectively. Furthermore, for the individual stations, both the B and
NRMSE were in an acceptable range, with B > 0.8 and NRMSE < 0.17 for the precipitation and B > 0.99
and NRMSE < 0.11 for the minimum and maximum temperatures.

Table 4. Effects of bias-correction of precipitation and temperatures based on B and NRMSE indices
before and after application of the ISI-MIP method.

Climate Variable Bias Correction Measure St1 St2 St3 St4 St5 St6

Precipitation
Before

B 0.69 0.71 0.70 0.60 0.68 0.71
NRMSE 0.36 0.34 0.44 0.36 0.24 0.23

After
B 0.85 0.92 0.86 0.80 0.84 0.94

NRMSE 0.15 0.13 0.17 0.16 0.14 0.13

Temperatures
Before

B 0.68 0.30 0.91 0.94 0.83 0.50
NRMSE 0.23 0.22 0.29 0.23 0.16 0.15

After
B 1.00 1.00 0.99 0.99 0.99 1.00

NRMSE 0.09 0.07 0.11 0.10 0.08 0.07

4.3. Future Projections of Temperatures and Precipitation

The HADGEM2-RCA4 ISI-MIP trend-preserving bias-corrected mean annual temperature and
precipitation obtained for the three future periods: 2021–2039, 2041–2060, and 2071–2089, abbreviated
in short by 2030, 2050, and 2080, respectively, under the two RCP emission scenarios, RCP45 and
RCP85, are compared with those of the historical period in the corresponding boxplots of Figure 3.

As generally expected, the annual temperature (lower panel) will increase between 2030 and 2080,
and this increase is naturally more intense for the more extreme RCP85 than for the RCP45. However,
the average (median) temperature is likely to experience a slight decrease compared to the historical
period, especially in the 2030 period.

Moreover, as is typical for GCM precipitation predictions (top panel), the ranges become wider,
as one projects more into the future, and this holds particularly for the RCP85, where large extremes of
low and high annual flows are to be expected in the far-future (2080) period. Compared to the median
precipitation for the historical period, there will be an overall slight decrease of that variable for RCP85
for the three future periods considered.

4.4. SWAT Predictions of Historic and Future Inflows of the Dam and Interbasin Flows

4.4.1. SWAT Calibration and Validation of Historical Streamflow

To predict the inflow of the Boukan Dam and the inter-basin flows of the ZRB in the wake of
climate change, the integrated basin-wide hydrologic model, the SWAT, was calibrated and validated
using SWATCUP-SUFI2 for the time periods 1991–1997 and 1998–2012, respectively. The first 4 years
of available data (1987–1990) were used as the warm up period.
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Figure 3. Box (whisker) plots of the predicted mean annual temperature (a) and precipitation (b) for
the historical period (1987–2012) and the three future periods under the two RCPs.

The inflow of the dam which corresponds to the discharge of the Zarrine River at the outlet of
sub-basin 8 (see Figure 1), is compared to the observed records in Figure 4. One may notice from
Figure 4 that the performance of the model in hydrologic simulation was rather satisfactory, although
most of the peak-flow events were underestimated, especially, in the validation period. One reason for
this was possibly the occurrence of some irregular dry years, particularly, for the 1998–2002 period.
Additionally, there was the tendency of the SWAT model to underestimate the flow in the wet season
due to inaccurate estimation of the soil moisture conditions [46].Water 2018, 10, x FOR PEER REVIEW  13 of 22 

 

Figure 4. Simulated and observed Boukan Dam inflow for the calibration and validation periods. 

 

 

 

 

 

 

 

Figure 5. Ranges of goodness of fit measures R2, NSE, bR2, for the outlet stations of the six sub-basins 

for the calibration and validation periods. 

As another measure of the SWATCUP-SUFI2- model’s performance, the two uncertainty indices, 

the P-factor and R-factor, were also estimated for the optimized objective functions (misfits of 

observed and modelled streamflow at the various gauge stations). The measures are listed in Table 

5. The P-factors, which indicate the percentage of observed streamflow enveloped by the 

calibrated/validated ones simulated under the uncertain parameter ranges, were mostly higher than 

70%. The R-factors, measuring the ratio of the width of the 95PPU envelope, relative to the standard 

deviation of the data, were hovering around 1, i.e., values that characterized a satisfactory 

calibration/validation of the model. For further details on the calibration and a discussion of the most 

sensitive parameters, the reader is referred to References [19,29]. 

Table 5. SWATCUP-SUFI2 P- and R- factor uncertainty indices for calibration and validation for the 

different streamflow gauge stations. 

Station 
Calibration Validation 

P-Factor R-Factor P-Factor R-Factor 

Nezamabad 0.85 1.15 0.80 1.23 

Chooblooche 0.78 1.28 0.76 1.33 

Sarighamish 0.69 1.34 0.67 1.34 

Boukan Dam 0.89 1.13 0.84 1.22 

Safakhaneh 0.72 0.98 0.75 1.10 

Sonateh 0.67 1.33 0.65 1.40 

Average 0.77 1.20 0.75 1.30 

  

Time 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R2 NS bR2 R2 NS bR2

CAL VAL

G
o

o
d

n
e

s 
o

f 
fi

t 
m

e
as

u
re

Figure 4. Simulated and observed Boukan Dam inflow for the calibration and validation periods.
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To assess the performance of the SWAT model, the ranges of the quantitative statistical measures
for the streamflow were calculated at the outlet stations of the six sub-basins (see Figure 1b) for both
the calibration and validation periods and presented in terms of the coefficient of determination (R2),
the Nash Sutcliffe (NS), and the weighted bR2 in Figure 5. All efficiency criteria were within the
acceptable ranges, according to the classification proposed by Moriasi et al. [47], where the NS, as the
most prominent measure, ranged between 0.5 and 0.7.
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Figure 5. Ranges of goodness of fit measures R2, NSE, bR2, for the outlet stations of the six sub-basins
for the calibration and validation periods.

As another measure of the SWATCUP-SUFI2- model’s performance, the two uncertainty indices,
the P-factor and R-factor, were also estimated for the optimized objective functions (misfits of observed
and modelled streamflow at the various gauge stations). The measures are listed in Table 5. The P-factors,
which indicate the percentage of observed streamflow enveloped by the calibrated/validated ones
simulated under the uncertain parameter ranges, were mostly higher than 70%. The R-factors,
measuring the ratio of the width of the 95PPU envelope, relative to the standard deviation of the
data, were hovering around 1, i.e., values that characterized a satisfactory calibration/validation of
the model. For further details on the calibration and a discussion of the most sensitive parameters,
the reader is referred to References [19,29].

Table 5. SWATCUP-SUFI2 P- and R- factor uncertainty indices for calibration and validation for the
different streamflow gauge stations.

Station
Calibration Validation

P-Factor R-Factor P-Factor R-Factor

Nezamabad 0.85 1.15 0.80 1.23
Chooblooche 0.78 1.28 0.76 1.33
Sarighamish 0.69 1.34 0.67 1.34
Boukan Dam 0.89 1.13 0.84 1.22
Safakhaneh 0.72 0.98 0.75 1.10

Sonateh 0.67 1.33 0.65 1.40
Average 0.77 1.20 0.75 1.30

4.4.2. SWAT Simulation of Future Streamflow

The statistics of the simulated annual inflow to the Boukan Dam are compared to the historical
and future scenarios in the box plots of Figure 6. As can be seen, between the historical and the 2030
period, the average (median) dam inflow had almost doubled for the RCP45 scenario, whereas for
RCP85 it had slightly decreased over this time.
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In addition, the RCP45-2030 and RCP85-2050 had the biggest ranges of maximum and minimum
dam inflow, whilst the RCP45-2050 and RCP85-2080 had the narrowest ones. Furthermore, the low
(25th percentile) and high (75th percentile) quartiles of the dam inflow will increase in all future periods
for the RCP45, but decrease for the RCP85, except for the high quartile of the 2050 period, when it
will increase.

In summary, the future annual inflow will, on average, be almost constant under the “climate
mitigation” scenario (RCP45 case) but it will fluctuate more under the “no mitigation” scenario
(RCP85 case), such that it increases firstly from the 2030 to the 2050 period, and then halves again to
the 2080 period.
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4.5. Assessment of Supplied Water (SDR) under Different Climate and Demand Management Scenarios

To assess the reliability of the future Boukan Dam water supply, the supply/demand ratio (SDR)
was calculated for the different RCPs/future periods, assuming two water demand scenarios, i.e.,
(1) The WDcurrent scenario which was a continuation of the current water policies, and (2) the WDrecom

scenario which described the recommended water policies as a more sustainable water management
scenario. The SDRs were computed for each of the scenarios into eight demand categories of the ZRB,
for the present and future (development) types, with the priority orders, as explained in Section 3.3.2,
namely, potable, environmental, industrial, and agricultural water uses, with future demands in the
lower order.

The SDR results obtained for the WDcurrent scenario for each of the eight user categories are
presented in Table 6. In this scenario, the total water demand from the Boukan Dam was assumed to
gradually increase from 1408 MCM/year for the historical period to 1826, 1910, and 2038 MCM/year
in the 2030, 2050, and 2080 future periods, respectively, attributed to the eight different categories,
as indicated in the table. The SDRs listed revealed how much of the requested demand was met
in each of the user categories for the different RCPs/future periods. From the table, one can notice
among other things, that the future available water resources will meet the present potable demands
completely, except for RCP85 in the 2030 and 2050 periods, when there will be a 19% to 21% water
shortage. Both the environmental flow for the dam and the Lake Urmia will be supplied in the range
of 77–98%, though somewhat less for the extreme RCP85 scenario.

The supplied water for the other demands, including industrial and agricultural demands, was
acceptable for the RCP45 in the 2030 and 2050 periods, but less so, in the 2080 period, and again, with
a higher degree of water scarcity experienced for the RCP85 than for RCP45. Finally, the last row
of Table 6 shows that the total future water demand will, in general, be satisfied by ratios ranging
between 62–93%.
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Table 6. Annual water demand for historical and future periods (2030, 2050, and 2080) under the eight
categories in decreasing order, and the simulated supply/demand ratio (SDR) for these future periods
under the RCP45 and RCP85 for the WDcurrent water demand scenario.

Demand Category
Demand (MCM)

SDR (%)

RCP45 RCP85

Historic 2030 2050 2080 2030 2050 2080 2030 2050 2080

Pot Present 169 169 169 169 100% 99% 99% 81% 78% 98%
Env Dam 378 378 378 378 96% 97% 84% 82% 77% 84%
Env Lake 262 262 262 262 98% 97% 96% 92% 92% 96%
Ind Present 5 5 5 5 97% 100% 81% 67% 63% 81%
Agr Present 594 787 787 787 92% 87% 57% 48% 42% 57%
Pot Future - 60 130 272 90% 87% 69% 62% 54% 69%
Ind Future - 15 29 15 92% 91% 74% 63% 60% 74%
Agr Future - 150 150 150 86% 76% 40% 35% 30% 40%

Total/Average 1408 1826 1910 2038 94% 92% 75% 66% 62% 75%

Hence, these results clearly demonstrated that the anticipated climate change in the ZRB,
in conjunction with the WDcurrent scenario projected increase of future water demands, will lead
to a significant shortage of water resources.

On the other hand, for the more sustainable water management scenario WDrecom recommended
by MOE [44], the situation looked more positive, as shown in Table 7. Here, the SDR-differences with
those of the WDcurrent scenario were additionally presented. For the WDrecom scenario, the supplied
water from the Boukan Dam was expected to increase to 1697, 1763, and 1891 MCM/year in the 2030,
2050, and 2080 future periods, respectively, i.e., much less than was assumed for the WDcurrent. In the
WDrecom scenario, not only will the future potable and industrial demands, but also the agricultural
demands, be decreased slightly by assuming that the irrigation efficiency in the ZRB will be increased
from 38% to 49%, by implementing pressurized irrigation systems [29].

Table 7. Similar to Table 6, but for the WDrecom water demand scenario. Included are the percentile
difference of the SDRs with those of the WDcurrent.

Demand Category
Demand (MCM)

SDR (%) Difference to SDR (WDcurrent)

RCP45 RCP85

Historic 2030 2050 2080 2030 2050 2080 2030 2050 2080

Pot Present 169 169 169 169
100% 100% 100% 83% 81% 100%
0% 1% 1% 2% 3% 2%

Env Dam 378 378 378 378
99% 100% 97% 91% 89% 93%
3% 3% 13% 9% 12% 9%

Env Lake 262 262 262 262
100% 100% 100% 97% 97% 98%
2% 3% 4% 5% 5% 2%

Ind Present 5 5 5 5
98% 100% 99% 68% 64% 85%
1% 0% 18% 1% 1% 4%

Agr Present 594 695 695 695
94% 92% 90% 51% 47% 64%
2% 5% 33% 3% 5% 7%

Pot Future - 42 108 238
93% 92% 89% 69% 57% 73%
3% 5% 20% 7% 3% 4%

Ind Future - 13 13 11
93% 92% 86% 61% 56% 69%
1% 1% 12% -2% -4% -5%

Agr Future - 133 133 133
91% 86% 83% 41% 34% 50%
5% 10% 43% 6% 4% 10%

Total/Average 1408 1697 1763 1891
96% 95% 93% 70% 66% 79%
2% 4% 18% 4% 4% 4%
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As shown in Table 7, although the SDRs of the future industrial demand category are decreased
slightly for the RCP85, compared with that of the WDcurrent (Table 6), for the other demand types,
the water supply reliability has noticeably improved, particularly for the RCP45 in the 2080 far future
period, where the SDRs reach values of 89%, 97%, 86%, and 83% for the potable, environmental,
industrial, and agricultural demands, respectively. Although improvements were also obtained for
RCP85, they were not enough to fully compensate for the water deficits which still amounted to 57%,
89%, 56%, and 34% in the four demand types, respectively.

In summary, the MODSIM simulated future water supplies obtained under the impacts of
climate change in the ZRB were not enough to satisfy the assumed water demands of either of
the two water demand scenarios, i.e., neither the extreme WDcurrent nor the more benevolent WDrecom

scenario. This meant that the future additional categorical water demands (future potable, future
industrial, and future agricultural) should be further limited, using some demand management
executive strategies to avoid future irrecoverable losses in human life and ecosystems.

4.6. Evaluating Risk and Vulnerability of the Water Supply System Performance

Using Equations (8) and (10), respectively, the weighted average risk of the ZRB water
supply system/reservoir operation and the weighted average vulnerability of the various demand
stakeholders were computed using the individual values listed in Table 8, exemplary of the WDrecom

scenario/RCP45/2030period for the two water demand scenarios WDcurrent and WDrecom.

Table 8. ZRB water supply system performance based on the Reliability, Resilience, and Vulnerability
(RRV) indices and the ensuing Sustainability Indexes (SIs) (Equation (6)), for the various water uses
and the final total Sustainability Group Index (SGI) for the WDrecom scenario/RCP45/2030period. The
last column lists the normalized weights wi = Demi/Demk entering the SGI-Equation (12).

i Demand Name Risk Vul Rel Res Max.Def SI w

1 Pot_Boukan_Present 0.08 0.05 0.92 0.91 0.36 0.84 0.22
2 Pot_Tabriz_Present 0.07 0.01 0.93 0.97 0.29 0.89 0.15
3 Irr_Loss 0 0 1.00 0.98 0.00 0.99 0.02
4 Env_Boukan 0.05 0.08 0.95 0.94 0.10 0.93 0.10
5 Env_LakeUrmia 0 0.04 1.00 0.98 0.02 0.98 0.09
6 Ind_Present 0.07 0.09 0.93 0.92 0.43 0.82 0.02
7 Pump_Legzi 0.05 0.1 0.95 0.97 0.18 0.91 0.01
8 Agr_WR_Present 0.06 0.13 0.94 0.92 0.89 0.29 0.08
9 Agr_Present 0.09 0.13 0.91 0.91 0.78 0.63 0.29

10 Agr_Future 0.07 0.08 0.93 0.91 0.50 0.79 0.01
11 Pot_Future 0.01 0.08 0.99 0.97 0.08 0.95 0.00
12 Ind_Future 0 0 1.00 0.98 0.99 0.97 0.01

Weighted average 0.07 0.08 SGI = Sum (w × SI) = 0.79

The results are depicted in Figure 7 and show clearly that both the risk of the water supply system
and the average vulnerability are remarkably higher for the (more extreme) RCP85 than for RCP45
scenario. Moreover, for the RCP85, both indices exhibited a similar behavior, i.e., a higher degree of
risk goes hand in hand with more vulnerability, whereas for the RCP45 this was not the case, noting
that although the risk of the reservoir system was quite low, the average vulnerability of all water
demand stakeholders was still high. This curious behavior was most likely a consequence of the more
erratic formula for vulnerability (Equation (8)) and that for the risk (Equation (10)).

However, Figure 7 also reveals that, compared to the WDcurrent demand scenario, WDrecom

noticeably reduces both the risk and the vulnerability, particularly for the RCP45. For the RCP85,
the system was still vulnerable and had a high risk, particularly in the 2030 and 2050 periods; whereas
for the RCP45, the system would be relatively vulnerable, though without water supply risk in the
2080 period.
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In the subsequent step, the overall performance of the ZRB water supply system was assessed
using the Sustainability Group Index (SGI), as defined in Equation (12) and the associated variables
defined in the previous Equations (6) to (11). These variables were computed for each water use
category, with the results also listed in Table 8 for the WDrecom scenario/RCP45/2030period. Similar
results would be obtained for the other WD-scenario/RCP/periods combinations.

Using this procedure, the SGI indices for all the RCPs/periods were calculated for both the
WDcurrent and WDrecom water demand scenarios. The individual results, together with the future period
averages of each RCP are listed in Table 9.

Table 9. SGI index of the water supply performance for WDcurrent and WDrecom water demand scenarios
for the historic and the different RCPs/periods. Included are the averages of each RCP.

Water
Demand
Scenario

Historic
Period

RCP45/
2030

RCP45/
2050

RCP45/
2080

RCP45-
Average

RCP85/
2030

RCP85/
2050

RCP85/
2080

RCP85-
Average

WDcurrent 0.89
0.70 0.81 0.62 0.71 0.46 0.31 0.52 0.43

WDrecom 0.79 0.89 0.78 0.82 0.57 0.45 0.59 0.54

As can be seen from the table, compared with the historical period, for both water demand
scenarios, WDcurrent and WDrecom, the average SGI of each RCP will be decreased significantly,
particularly for the more extreme RCP85 scenario. However, as expected, the SGI decrease for WDrecom

was less than that of WDcurrent, indicating the advantage of implementing this more sustainable
water demand scenario. Whereas for the RCP45, the system performance was the best for the 2050
future period, it was at that time the worst for the RCP85, though it improved again for the latter
in the 2080 period, owing to the high SDR found previously for that RCP/period (see Table 7).
Nevertheless, for all the RCP/period combinations, the SGIs are systematically higher for WDrecom than
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for WDcurrent, and unless some adaptation strategies and policy changes to a lower emission scenario
are implemented, the water sustainability in the ZRB will deteriorate tremendously in the future.

5. Summary and Conclusions

In this study, a combination of the SWAT with the MODSIM model was applied to evaluate the
possible impacts of climate change on the water supply system performance in terms of sustainability
for the important multi-purpose reservoir Boukan dam in the ZRB, northwest Iran. To do this, firstly
the available CORDEX RCM models for the South Asia region at a resolution of 0.44◦ × 0.44◦ were
compared using a skill score multi-criteria method based on past performance of the models for
precipitation and temperatures (minimum and maximum). Then, for the most suitable available
experiment, the HadGEM2-RCA4, the monthly biases of the climate predictors were corrected using
a trend-preserving (ISI-MIP) bias correction method which applies a multiplicative correction factor
(CPj) for precipitation and an additive one for temperatures (CTj) in each month j of the year.

The satisfactorily calibrated and validated SWAT model (using the SWATCUP-SUFI2-module)
was then utilized to simulate the impact of climate change on the hydrology in the ZRB using the
bias-corrected climate variables above, as input drivers to the SWAT model. The effects of two
RCP-emission scenarios (RCP45 and RCP85) were investigated for three 19-year-long future periods
(2030, 2050, and 2080).

The projected SWAT modeled inflows to the Boukan dam were then applied to the MODSIM water
resource planning and management model to analyze two possible future water demand scenarios:
(1) WDcurrent which extends the current water policies by assuming the complete development of the
water supply projects of the different water uses; (2) WDrecom as a more sustainable water demand
scenario, recommended by MOE, where the potable and industrial developments are improved and
the agricultural demands are decreased by improving the irrigation network efficiency.

The reliability of the dam’s water supply for different water uses in the study area was then
investigated through the definition of the supply/demand ratio (SDR). Next, the vulnerability and the
risk of the water supply system were evaluated and combining these with other system performance
indices, including reliability, resiliency, and maximum deficit, the sustainability group index (SGI) of
the water supply system was assessed for the different water demand/climate change scenarios.

The results showed that the WDcurrent scenario (continuation of the current water policies with
a projected increase of the demands) will lead to a considerable future decrease of the SDRs for the
different water-demand categories, i.e., more water deficits, especially for the extreme “no mitigation”
scenario RCP85. On the other hand, with the more sustainable water demand scenario WDrecom,
the SDRs were mostly improved, particularly, for the “climate mitigation” scenario RCP45, although
for RCP85 the SDR was just slightly increased and some water deficits still prevailed, specifically,
in the agricultural demand category.

The analysis of the risk and vulnerability of the water supply system showed that these two
parameters were noticeably higher for the more extreme emission scenario RCP85 than for the medium
scenario RCP45. Interestingly, both indices had a similar trend for RCP85, i.e., a high degree of
risk coincides with more vulnerability, whilst this holds less so for RCP45. Moreover, as expected,
for the recommended water demand scenario WDrecom, the water supply system will experience
lower vulnerability and risk than for the current scenario WDcurrent, but even so, the system is still
vulnerable with a high risk of water scarcity for RCP85 in the 2030 and 2050 periods and for RCP45 in
the 2080 period. These results indicated that the negative impact of overuse of the water resources
in ZRB, namely from the Boukan Dam, cannot completely be averted in the future, but may, at least,
be controlled by implementing the more sustainable water management demand scenario WDrecom.

The sustainability assessment revealed that for both the water demand scenarios, WDcurrent and
WDrecom, the best water supply performance in terms of the sustainability group index (SGI) was
expected to be in the 2050 future period for RCP45, and in the 2080 period for RCP85. Expectedly,
the SGIs were about 15–26% higher for WDrecom than for WDcurrent, where the SGI will be quite
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satisfactory for RCP45, with SGI = 0.82, which was close to that of the historical period, with an
SGI = 0.54 for the more extreme RCP85 scenario.

Thus, in conclusion, to adapt to future climate change in the ZRB, the industrial, potable future
water-use sectors, and especially, the agricultural water-use, as the biggest share of the demand, should
be decreased in the future by enhancing the efficiency of water use and by implementing the MOE
recommended strategies, whilst respecting lower emission mitigation scenarios.

It should also be noted that, as shown in the study by Emami and Koch [29], a further decrease in
the agricultural water demand in the ZRB can be achieved, especially for RCP85, by employing some
adaptation strategies through the optimization of the crop pattern in the area.

The results of this study indicate that the add-on or coupling of a water decision making model
(MODSIM) to a hydrological model (SWAT) results in a powerful simulation tool that be used for
integrated watershed management based on sustainable water management principles. The modelling
approach of the research proposed here could be used for assessing and predicting the sustainability
of a water supply system in other similar river basins and further as a base tool for managing available
freshwater resources with a sustainable and optimal river basin management approach. However,
as the analysis here has been done using the present water management criteria and water supply data
as the objective functions, the effects of more recent, possibly different economic and social criteria
should be investigated in upcoming SWAT-MODSIM studies.
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