
water

Article

An Insight into the Projection Characteristics of the
Soil-Water Retention Surface

Yun-xue Ye 1, Wei-lie Zou 1,2,* and Zhong Han 1

1 School of Civil Engineering, Wuhan University, Wuhan 430072, China; yeyunxue@whu.edu.cn (Y.-x.Y.);
zhong.han@whu.edu.cn (Z.H.)

2 School of Civil Engineering, Xijing University, Xi’an 710123, China
* Correspondence: zwilliam@whu.edu.cn; Tel.: +86-27-6877-2624

Received: 25 September 2018; Accepted: 17 November 2018; Published: 23 November 2018 ����������
�������

Abstract: The soil-water retention surface (SWRS), which describes the variation of the degree of
saturation (Sr) with suction (s) and void ratio (e), is of crucial importance for understanding and
modeling the hydro-mechanical behavior of unsaturated soils. As a 3D surface in the Sr –e–s space,
the SWRS can be projected onto the constant Sr, constant s, and constant e planes to form three
different 2D projections, which is essential for establishing the SWRS and understanding its various
characteristics. This paper presents a series of investigations on the various characteristics of the
three SWRS projections. For the Sr –s and Sr –e relationships, (i) a tangential approximation approach
is proposed to quantitatively capture their asymptotes, and (ii) a new criterion is presented to
distinguish the low and high suction ranges within which these two relationships exhibit different
features. On the other hand, a modified expression is introduced to better capture the characteristics
of the s–e relationships. The various projection characteristics and the proposed approaches are
validated using a wide set of experimental data from the literature. Studies presented in this paper
are useful for the rational interpretation of the SWRS and the hydro-mechanical coupling behavior of
unsaturated soils.
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1. Introduction

The hydro-mechanical behavior of unsaturated soils has been a significant research topic in
geotechnical engineering over the past three decades [1–11]. Traditionally, soil’s hydraulic behavior is
described by the soil-water retention curve (SWRC), which is the relationship between the degree of
saturation Sr and the suction s. The mechanical behavior refers to the volumetric strains caused
by various external stresses. Mechanical constitutive models through the use of net stress and
suction cannot describe the dependence of mechanical behavior on the degree of saturation [12,13].
Similarly, hydraulic constitutive models (such as SWRC models) cannot accurately reflect the effect
of stress–strain behavior on the degree of saturation [14–17]. In other words, the hydraulic behavior
and mechanical behavior of unsaturated soils are inherently coupled because the volumetric change
caused by external stress modifies the SWRC simultaneously [3,5] and the change in the Sr due to s
also influences soil’s skeleton stress and therefore the stress–strain behavior [18–24].

Recent advances in the understanding studies on the hydro-mechanical coupling behavior of
unsaturated soils typically require one to incorporate the influence of volumetric strain (i.e., void
ratio e) into the description of the SWRC, considering that the degree of saturation is modified by two
factors: (i) the variation in the soil water (hydraulic path), and (ii) the volume change in the soil pores
(mechanical path) [25–31]. Gallipoli et al. [26] extended the van Genuchten [16] SWRC equation to
incorporate e by expressing the air-entry suction as a power function of e. Gallipoli et al. [26] plotted
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the e–s–Sr relationship as a 3D surface (i.e., soil-water retention surface, SWRS). This SWRS model can
describe the irreversible changes of degree of saturation caused by the hydraulic (i.e., wetting and
drying) and mechanical (i.e., confining pressure and shearing stress) behaviors and can be effectively
used in the numerical modelling of coupled flow-deformation problems. More recently, Tarantino [32]
developed a SWRC model that is similar but simpler than Gallipoli et al.’s [26] model. Gallipoli [33]
improved the Gallipoli et al. [26] model to predict the hysteretic response of soils during both drying
and wetting cycles at constant e and compression and swelling cycles at constant s, which is virtually
the projection characteristics of the SWRS. Ghasemzadeh et al. [11] established a hysteretic SWRC
model based on the power function proposed by Gallipoli et al. [26].

The advantages of using the SWRS and its projections in the rational interpretation of unsaturated
soils’ behavior have been discussed in several studies [30,34,35]. However, detailed discussions
on the projection characteristics of the SWRS on three planes (e, s, and Sr) remain outstanding in
the current literature, irrespective of their significant importance. The SWRS has three different
projection scenarios: projection at constant void ratio, e, and projection at constant suction, s and
projection at constant degree of saturation, Sr. On the constant e plane, projections are a series of
s–Sr relationships (i.e., SWRC). On the constant s plane, projections are a series of e–Sr relationships
which reflect the changes in Sr due to the mechanical stress induced variation in e. In other words,
the e–Sr relationships can reflect the influence of mechanical behavior on hydraulic behavior. On the
constant Sr plane, projections are a series of s–e relationships indicating the dependence of mechanical
behavior on hydraulic behavior. The s–Sr and e–Sr relationships are measurable using pressure plate
and unsaturated triaxial tests, while the s–e relationship cannot be directly obtained.

In this study, to investigate the projection characteristics of the SWRS on the constant e, constant s,
and constant Sr planes, three independent 2-D equations are formulated based on the SWRS model
proposed by Gallipoli et al. [26]. The specific characteristics of the projections are discussed in detail.
Modifications and improvements are also introduced with respect to (i) capturing the asymptotes
and distinguishing the different behaviors in the high and low suction ranges for the s–Sr and e–Sr

relationships and (ii) describing the s–e relationships.

2. Projections of the SWRS

Based on the van Genuchten [16] model, Gallipoli et al. [26] suggested Equation (1) for the SWRS:

Sr =

(
1+
(

eψs
ω

)n)−m

(1)

where ψ, ω, m, and n are model parameters.
An example of the SWRS is shown in Figure 1 in the form of a surface mesh (its ψ, ω, n,

and m values are 34.87, 0.002, 2.56, and 0.19) along with three specific projection curves obtained
at s = 200 kPa, e = 0.78, and Sr = 0.80, respectively.

Three projection planes of the SWRS are succinctly described for providing background of how
they can be used to describe the hydro-mechanical behavior of unsaturated soils:

(i) The SWRCs: the Sr versus s plot at constant e (referred to as plane e).
(ii) The Sr versus e plot where s is constant (referred as plane s). It is denoted as the hydro-mechanical

coupling curves (HMCCs) in this paper.
(iii) The s versus e plot at constant Sr (referred to as plane Sr). It is commonly referred to as the

retention consolidation curves (RCCs).

The three projection planes were investigated using experimental data from the literature.
Gallipoli [33] rewrote Equation (1) to Equation (2) in a logarithmic format.

log Sr = mn log ω−mnψ log e−mn log s + m log
(

1− Sr
1
m

)
(2)
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Figure 1. Schematic diagram of the three projection planes during drying.

Based on Equation (2), some interesting observations are derived from Gallipoli [33]:
(i) For the main drying path, Equation (2) on the plane e (i.e., Sr versus s plot; SWRC) has an

increasing negative tangent with decreasing Sr (defined in Equation (3) and shown in Figure 2a using
data from Salager et al. [36]), and the tangent is equal to −mn (note that mn > 0) as Sr tends to zero.
Similarly, Equation (2) on the plane s (i.e., Sr versus e plot; HMCC) has an increasing positive tangent
with decreasing Sr and the tangent is equal to −mnψ (note that mnψ > 0) as Sr tends to zero (defined in
Equation (4) and Figure 2b);

∂ log Sr

∂ log s
= −mn

(
1− Sr

1
m

)
(3)

∂ log Sr

∂ log e
= −mnψ

(
1− Sr

1
m

)
(4)
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Figure 2. Main drying curves with respective asymptotes (data from Salager et al. [36]): (a) on the
plane e (log-log scale), (b) on the plane s (log-log scale).

(ii) Equations (3) and (4) indicate that Equation (2) tends towards a planar asymptote in the
logs–loge–logSr space when s and e tend to infinity and Sr tends to zero. Asymptotes expression of
Equation (2) was defined as Equation (5);

log
⇀
Sr = mn log ω−mnψ log e−mn log s (5)
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(iii) when Equation (1) is rewritten in Equation (6) (where water ratio ew = eSr) and the product
mnψ = 1, the log-planar asymptote (i.e., Equation (7)) is independent of void ratio.

log ew = mn log ω− (mnψ− 1) log e−mn log s + m log
(

1− S
1
m

)
(6)

log
⇀
ew = mn log ω− (mnψ− 1) log e−mn log s (7)

Experimental data from eight soils from the published literature are used to examine the
characteristics of the projections of SWRS on a logarithmic scale. Basic physical mechanical indices of
these soils are summarized in Table 1.

Table 1. Summary of the index and other properties of the investigated soils.

Soil Name wL (%) wp (%) Sand
(%)

Silt
(%)

Clay
(%) USCS Reference

Silty sand 25 14.5 72 18 10 CL Salager et al. [36]
Compacted till 35.5 16.8 28 42 30 CL Vanapalli et al. [37]
Ca-Bentonite 99 41 n/a n/a n/a CH Sun et al. [38]
Tailing sand n/a n/a 30.1 55.7 14.2 ML Aubertin et al. [39]
Sandy loam n/a n/a 54 35 11 SM Laliberte et al. [40]

Sand-Bentonite 473.9 26.6 n/a n/a n/a n/a Sun & Sun [41]
Expansive Silty-Clay 50 31 3 48 39 CL Zhan [42]
Nonexpansive-Clay 49 22 0 50 50 CL Sun et al. [20]

Notation: n/a = not applicable.

3. Characteristics of the Projections of the SWRS

3.1. Soil-Water Retention Curves (SWRCs)

Equation (1) can be rewritten representing the plane e as below:

Sr =

(
1+

(
eψe

0 · s
ωe

)ne)−me

(8)

where e0 = initial void ratio at saturation; ψe, ωe, me, and ne are model parameters for plane e.
Equation (8) converges to the van Genuchten [16] expression:

Sr =
(

1+
( s

α

)ne)−me
(9)

where α = ωe/(e0)ψe, indicating the air-entry suction; ne is a parameter related to pore-size distribution;
me is a parameter related to the overall symmetry of the SWRC.

Equation (5) can be rewritten as:

log
⇀
Sr = mene log α−mene log s (10)

From Equation (10), it can be observed that (i) when logs is approaching zero; logSr tends to
mene logα, and (ii) when logSr tends to zero; logs tends to logα.

SWRCs of four soils summarized in Table 1 (i.e., the silty sand, compacted till, Ca-Bentonite,
and Barcelona silt) are fitted using Equation (9). Figure 3 shows an example of the SWRCs of the
compacted till measured by Vanapalli et al. [37] that move towards the left-hand side along the s axis
with an increasing e0.
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In Table 2, the values of parameters logα, me, ne in Equation (9) and λe (slope of asymptotes,
see Figure 2a) and κe (horizontal intercept of asymptotes, see Figure 2a) for the four soils at different
initial void ratios are summarized. The product mene is close to the absolute value of λe and the
value of κe is close to logα. These two observations are consistent with the assumptions proposed by
Gallipoli [33]. Therefore, relationships mene ∼= −λe and κe = logα are applied in the later sections to
determine the position of asymptotes.

Table 2. Values of the parameters on the plane e.

Soil Type e0 me ne logα κe mene λe

Silty sand
(Salager et al. [36])

0.680 0.542 0.671 1.835 1.803 0.364 −0.362
0.860 0.792 0.446 1.547 1.585 0.353 −0.364
1.010 0.710 0.488 1.217 1.326 0.347 −0.357

Compacted till
(Vanapalli et al. [37])

0.444 0.135 1.358 2.438 2.376 0.184 −0.176
0.474 0.185 1.061 2.359 2.253 0.196 −0.184
0.514 0.222 0.878 2.157 2.009 0.195 −0.179
0.517 0.137 1.161 1.824 1.824 0.159 −0.158

Ca-Bentonite
(Sun et al. [38])

0.940 0.253 1.162 3.135 3.138 0.293 −0.291
1.126 0.207 1.261 2.673 2.803 0.261 −0.264
1.765 0.213 1.271 1.969 2.040 0.271 −0.276

Tailing sand
(Aubertin et al. [39])

0.695 0.809 1.116 2.025 1.905 0.904 −0.831
0.746 0.605 1.279 1.847 1.761 0.774 −0.727
0.802 0.479 1.272 1.655 1.598 0.609 −0.588

Sandy loam
(Laliberte [40])

0.845 0.115 11.417 0.754 0.749 1.317 −1.284
0.984 0.064 14.239 0.596 0.596 0.913 −0.913
1.075 0.042 20.014 0.492 0.492 0.840 −0.840
1.193 0.031 30.311 0.437 0.437 0.930 −0.930

By taking log on both sides of the equation, α = ωe/(e0)ψe yields logα = logωe − ψe loge0. The ψe

is the slope of the logα–loge0 relationship and logωe is the vertical intercept of the logα–loge0 line at
loge0 = 0. Figure 4 shows the logα–loge0 relationships for the four soils. The results in Figure 4 are
consistent with the conclusion of Stange and Horn [43], who found linear relationships between loge0

and logα.
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Figure 4. Linear relationship between loge0 and logSr for five investigated soils.

Gallipoli [33] suggested that SWRCs at different initial void ratios can be obtained through a
rigid translation from a reference SWRC along the s axis in the logs–logSr plane. Similarly, HMCC at
different suction can be obtained by a rigid translation from a reference HMCC along the e axis in the
loge–logSr plane. A rigid translation implies that all asymptotes of the SWRCs at different initial void
ratios are parallel to each other and their mene values are identical. In other words, the horizon distance
between two asymptotes at different initial void ratios is constant and equals to the horizon distance
between the intercepts of the two asymptotes at logs = 0. This is consistent with the postulation
proposed by Nuth and Laloui [28] that the SWRC has an intrinsic shape at constant e0 and this intrinsic
curve were parallel to the SWRCs at all constant values of e0.

In order to quantitatively capture the asymptotes, an approximate approach shown in Figure 5
is proposed. For two SWRCs with different initial void ratio e1 and e2 (e2 < e1), α1, m1, n1 and α2,
m2, n2 are their parameter values of Equation (9), and λ1, κ1 and λ2, κ2 are the respective slope and
horizontal intercept of asymptotes. Two coordinate points are required for determining the asymptotes:
one point is A1 (logα1, 0) or A2 (logα2, 0) which are easily obtained; the other point can be indirectly
obtained from the SWRC, referred to as matching point. According to m1n1 ∼= −λ1 and m2n2 ∼= −λ2,
the matching point must satisfy the condition that the absolute value of the slope calculated by the
two points (i.e., point A and the matching point) is close to the value of the product m1n1 (or m2n2).
In order to obtain the matching point, an iteration-based tangential approximation method can be
used, which is detailed below.
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Point B1 is the vertical projection of point A1 on the corresponding SWRC (see Figure 5).
Substituting the abscissa value of point A1 into Equation (2), point B1 can be obtained, namely (logα1,
m1log(1/2)). A tangent line of the SWRC at point B1 can be conveniently defined using the slope of
the SWRC defined in Equation (3) and point B1 (i.e., logSr = −1/2·m1n1·(logs − logα1) + m1log(1/2)).
With this tangent line and the asymptote of the SWRC passing point A1 (defined by Equation (10)),
point C1 can be obtained at the intersection (see Fig 5) and its coordination is (logα1 − 1/n1·log(1/4),
m1log(1/4)). The first iteration (A1→B1→C1) ends here. Taking point C1 as the starting point (similar
to A1), one can continue with the next iteration using the same approach detailed for first iteration.
This procedure is repeated until a matching point is found. The matching point is the point where the
starting point overlaps with its projection on the SWRC, and typically can be determined within seven
iterations. The matching point obtained after seven iterations is denoted as point H1 (logα1 + 1.5382/n1,
−1.5506m1). The slope calculated by both points A1 and H1 is about equal to −1.008m1n1, meeting
the necessary condition of m1n1 ∼= −λ1. Therefore, the asymptotes can be well captured by points A1

and H1. The proposed procedure is an objective and simple procedure to determine the asymptote.
It is assumed that any points on the SWRC after point H1 belong to the asymptote.

A simplified calibration process proposed by Gallipoli [33] was used to further validate whether
the asymptote determined by points A1 and H1 is reasonable. The purpose of the proposed calibration
is to ensure that the value of the product m1n1 estimated from linear best-fitting of experimental data
(Equation (10)) is consistent with a logarithmic planar behavior over the experimental data range.
Gallipoli [33] suggested that the values of m1 and n1 are considered acceptable if logSr < −m1 over
the experimental asymptotic range (m1 and n1 are obtained from the product m1n1 value using the
relationship m1 = 1 − 1/n1 proposed by van Genuchten [16]); otherwise, they have to be recalibrated
by imposing logSr,max = −m1, where Sr,max is the maximum experimental value of the degree of
saturation. Considering that logSr = −1.5506m1 < −m1 for the matching point H1(logα1 + 1.5382/n1,
−1.5506m1), the asymptote computed by points A1 and H1 using the proposed method satisfies the
criterion logSr < −m1 suggested by Gallipoli [33] and captures the logarithmic planar behavior over
the experimental range.

In order to investigate the relationship between asymptotes of two main drying curves at different
values of e1 and e2, the horizontal projection of point H1 on the SWRC at e2 can be obtained and is
denoted as R1 (logα2 + 1.5506m1/m2n2, −1.5506m1). The horizontal distance between point H1 and
point R1 in log-log scale is (see Figure 5):

∆ log s = log
α2

α1
− 1.5382m1

m1n1
+

1.5506m1

m2n2
(11)

∆logs ∼= log (α2/α1) when m1n1 is close to m2n2. In this case, asymptotes of two main drying
curves at different values of e1 and e2 are parallel. It can be seen from Table 2 that the product mene of
the same soil are almost the same at different values of the initial void ratio for some soils (such as
silt sand, compacted till and Ca-bentonite). Therefore, their main drying curves are parallel.

The SWRCs however may not be parallel but controlled by both mene and αe, if mene values are
not close. An example is shown to highlight this scenario using data of a silty sand (soil properties
are summarized in Table 1 and mene and αe values are summarized in Table 2). Assume its two
SWRCs at e0 = 0.68 and 1.01 are available and used as reference curves, while the SWRC at e0 = 0.86
is used to provide comparisons between the predictions and measurements. Considering the linear
relationships between loge0 and logα, the α value of the SWRC at e0 = 0.86 can be obtained from the
linear relationship defined by loge0 and logα of the reference SWRCs at e0 = 0.68 and 1.01. As shown
in Figure 6a, for SWRCs at e0 = 0.86, the predicted curve (solid line) obtained by a rigid translation
of the reference SWRC at e0 = 1.01 shows better agreements with measurements than the predicted
curve translated from the reference SWRC at e0 = 0.68 (dash line). It can be seen from the summarized
information in Table 2 that the deviation from logα values of the SWRCs at e0 = 0.86 to the logα values
of the reference SWRCs at e0 = 1.01 and e0 = 0.68 are 0.251 and 0.367, respectively. This means that the
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smaller deviation of logα is, the higher the accuracy of the prediction is. In addition, mene values of
reference SWRC at e0 = 1.01 are also closer to the mene values of SWRC at e0 = 0.86, which contributes
to a better prediction.
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In addition, Figure 6b shows three hypothetic SWRCs at e1, e2, and e3, respectively, for further
explanation. mn values of SWRCs at e1 and e2 are close but different from that of SWRCs at e3. When mn
values of two SWRCs (e.g., SWRCs at e1 and at e2) are close, their horizon distance d is mainly controlled
by their logα values. On the contrary, when mn values of two SWRCs (e.g., SWRCs at e2 and at e3)
are different, their horizon distance D is controlled by both mn and logα. This is also reflected in
Equation (11). The equal-length arrows in Figure 6b indicates the horizontal distance between two
SWRCs can be determined by their logα only (arrows with solid lines indicate shifting from SWRC at
e1 to SWRC at e2 and arrows with dash lines indicate shifting from SWRC at e2 to SWRC at e3). As can
be seen from Figure 6b, the horizontal shifting works well for SWRCs at e1 and at e2 as the arrows
reach the SWRC at e2. On the contrary, such horizontal shifting introduces errors for SWRCs at e2 and
at e3 as the arrows do not always stop at the SWRC at e3.

The products mene in Table 2 are not always identical for different values of initial void ratios for
some soils (such as tailing sand and sandy loam). To further validate the curve shifting method, Figure 7
shows predicted SWRCs obtained by a rigid translation of the same reference SWRC (e0 = 0.802) for
a tailing sand. Some differences in predictions and the measurements can be observed from the
summarized information in Figure 7. These differences may be attributed to the two factors; (1) the
difference in mn values, and (2) the difference in logα or e0 values. For the former, deviations in the mn
values of the predicted SWRCs (at e0 = 0.746 and e0 = 0.695) and the reference SWRC (at e0 = 0.802) are
about 0.13 and 0.30 (see Table 2). Similarly, for the latter, deviations in the e values of the predicted
SWRCs (at e0 = 0.746 and e0 = 0.695) and the reference SWRC (at e0 = 0.802) are 0.056 and 0.107.
Predictions using SWRC at e0 = 0.746 as reference curve is slightly better than that using SWRC at
e0 = 0.695 as a reference curve due to the smaller deviation in the mn and e0 values.

Another example for the sandy loam in Table 2 is shown in Figure 8. When the deviations in
mn and e0 are small, predicted SWRCs (e0 = 0.984 and 1.175) obtained by a rigid translation of the
same reference SWRC (eref = 1.193) show a good agreement with the experimental data. Therefore,
three aspects deserve attention when predicting SWRCs at constant e0 using the curve shifting method:
(1) at least two sets of SWRCs with different initial void ratios experimental data must be known to
estimate the parameter α values of Equation (9) and the linear relationships between loge0 and logα;
(2) the reference curve has to be fitted by Equation (9) prior to translation because of typical limitations
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of the experimental data; (3) the difference between the e0 values of the predicted SWRCs and reference
SWRCs should be as small as possible.Water 2018, 10, x  9 of 16 

 

 

Figure 7. Measured and predicted SWRC for a tailing sand at (a) e0 = 0.746; (b) e0 = 0.695. 

 

Figure 8. Measured and predicted SWRC for a sandy loam at (a) e0 = 0.984; (b) e0 = 1.175. 

3.2. Hydro-Mechanical Coupling Curves (HMCCs) 

Equation (1) is rewritten for interpreting HMCCs in the following way: 

s
s

s

con
r

s

= 1+

m
n

e s
S





−

  
  
   

 (12) 

where scon = constant suction; ψs, ωs, ms, and ns are model parameters for the constant suction 

condition. 

Equation (5) can be rewritten as: 

r s s s s s slog log logS m n m n e  = −  (13) 

where logβ = log(ωs/scon)/ψs. Equation (13) is the asymptote of Equation (2) on the plane s. When loge 

tends to zero, logSr tends to msnsψs·logβ. Meanwhile, loge tends to logβ when logSr tends to zero. 

Figure 9 shows the evolution of experimental HMCCs in loge–logSr plane at different constant s using 

data obtained from Salager et al. [36] and Sun and Sun [42]. The results indicate that HMCCs move 

to the left-hand side along the e axis with increasing suction. 

The HMCCs parameters β, ms, ns and λs, κs for four soils used in this study at different constant 

suctions are summarized in Table 3. The λs is the slope of asymptotes and κs is horizontal intercept 

of asymptotes (see Figure 2b). It can be observed from Table 3 that: (i) the product msnsψs is close to 

the absolute value of λs, namely msnsψs ≅ −λs and (ii) κs is approximately equal to logβ, namely logβ ≅ 

κs. Note that CDG and CDE in Table 3 denote different stress paths for the constant suction, 

Figure 7. Measured and predicted SWRC for a tailing sand at (a) e0 = 0.746; (b) e0 = 0.695.

Water 2018, 10, x  9 of 16 

 

 

Figure 7. Measured and predicted SWRC for a tailing sand at (a) e0 = 0.746; (b) e0 = 0.695. 

 

Figure 8. Measured and predicted SWRC for a sandy loam at (a) e0 = 0.984; (b) e0 = 1.175. 

3.2. Hydro-Mechanical Coupling Curves (HMCCs) 

Equation (1) is rewritten for interpreting HMCCs in the following way: 

s
s

s

con
r

s

= 1+

m
n

e s
S





−

  
  
   

 (12) 

where scon = constant suction; ψs, ωs, ms, and ns are model parameters for the constant suction 

condition. 

Equation (5) can be rewritten as: 

r s s s s s slog log logS m n m n e  = −  (13) 

where logβ = log(ωs/scon)/ψs. Equation (13) is the asymptote of Equation (2) on the plane s. When loge 

tends to zero, logSr tends to msnsψs·logβ. Meanwhile, loge tends to logβ when logSr tends to zero. 

Figure 9 shows the evolution of experimental HMCCs in loge–logSr plane at different constant s using 

data obtained from Salager et al. [36] and Sun and Sun [42]. The results indicate that HMCCs move 

to the left-hand side along the e axis with increasing suction. 

The HMCCs parameters β, ms, ns and λs, κs for four soils used in this study at different constant 

suctions are summarized in Table 3. The λs is the slope of asymptotes and κs is horizontal intercept 

of asymptotes (see Figure 2b). It can be observed from Table 3 that: (i) the product msnsψs is close to 

the absolute value of λs, namely msnsψs ≅ −λs and (ii) κs is approximately equal to logβ, namely logβ ≅ 

κs. Note that CDG and CDE in Table 3 denote different stress paths for the constant suction, 

Figure 8. Measured and predicted SWRC for a sandy loam at (a) e0 = 0.984; (b) e0 = 1.175.

3.2. Hydro-Mechanical Coupling Curves (HMCCs)

Equation (1) is rewritten for interpreting HMCCs in the following way:

Sr =

(
1+
(

eψs · scon

ωs

)ns
)−ms

(12)

where scon = constant suction; ψs, ωs, ms, and ns are model parameters for the constant
suction condition.

Equation (5) can be rewritten as:

log
⇀
Sr = msnsψs log β−msnsψs log e (13)

where logβ = log(ωs/scon)/ψs. Equation (13) is the asymptote of Equation (2) on the plane s. When loge
tends to zero, logSr tends to msnsψs·logβ. Meanwhile, loge tends to logβ when logSr tends to zero.
Figure 9 shows the evolution of experimental HMCCs in loge–logSr plane at different constant s using
data obtained from Salager et al. [36] and Sun and Sun [42]. The results indicate that HMCCs move to
the left-hand side along the e axis with increasing suction.
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Figure 9. Hydro-mechanical coupling curves in the loge–logSr plane: (a) resulting from hydraulic
stress (data from Salager et al. [36]); (b) resulting from mechanical stress (data from Sun and Sun [41]).

The HMCCs parameters β, ms, ns and λs, κs for four soils used in this study at different constant
suctions are summarized in Table 3. The λs is the slope of asymptotes and κs is horizontal intercept of
asymptotes (see Figure 2b). It can be observed from Table 3 that: (i) the product msnsψs is close to the
absolute value of λs, namely msnsψs ∼=−λs and (ii) κs is approximately equal to logβ, namely logβ∼= κs.
Note that CDG and CDE in Table 3 denote different stress paths for the constant suction, respectively.
Unlike the logs–logα relationships shown in Figure 4 which are linear, the logscon–logβ relationships
are bi-linear.

Table 3. Values of the parameters at different values of constant suction.

Soil Type scon (kPa) ms (10−2) ns logβ msnsψs λs κs

Silty-Sand
(Salager et al. [36])

1 0.358 7.456 −0.224 0.173 −0.173 −0.224
10 6.65 2.383 −0.266 0.680 −0.675 −0.268

100 11.7 2.729 −0.394 1.028 −1.027 −0.395
1000 7.06 3.654 −0.621 1.001 −1.001 −0.621

10,000 16.4e 4.234 −0.895 1.002 −1.002 −0.895
100,000 33.2 1.674 −1.260 1.005 −1.005 −1.261

Sand-Bentonite
(Sun & Sun [41])

300 2.68 4.446 −0.595 0.620 −0.620 −0.595
600 6.65 2.383 −0.669 0.700 −0.669 −0.700
1200 4.77 3.373 −0.905 0.533 −0.905 −0.533
1500 5.66 2.643 −1.076 0.451 −0.452 −1.076

Silty-Clay
(Zhan [42])

25 1.22 5.491 −0.240 0.749 −0.749 −0.240
50 5.79 3.461 −0.284 0.786 −0.781 −0.285

100 6.62 3.491 −0.339 0.676 −0.668 −0.341
200 7.45 1.882 −0.390 0.625 −0.621 −0.393

Nonexpansive-Clay
(Sun et al. [7])

98 1.17 3.609 −0.203 0.804 −0.804 −0.203
147(CDG) 2.88 4.737 −0.314 0.606 −0.606 −0.314
147(CDE) 3.42 4.716 −0.223 0.848 −0.848 −0.223

196 2.31 2.926 −0.247 0.924 −0.924 −0.247
245 8.49 3.017 −0.333 0.785 −0.784 −0.333

Figure 10 highlights such a relationship for silty-sand, expansive silty-clay, and a sand–bentonite
mixture. These results suggest the relationship logβ = log(ωs/scon)/ψs is less effective in fitting the
data over the entire suction range. Due to this reason, Equation (14) is proposed to separately describe
the logscon-ogβ relationships in the low and high suction ranges.

log βL = 1/ψL · (log ωL − log sL) (14)

log βH = 1/ψH · (log ωH − log sH) (15)
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Subscripts L and H denote low suction and high suction; ψL, ψH, ωL, ωH, βL, βH are parameters.
In addition, ψL and ωL (or ψH and ωH) have a clear physical meaning as they are associated with the
slope and intercept of the straight line interpolating experimental data in the logscon–logβ plane at low
or high suctions.

To use Equation (14), it is important to distinguish low and high suction ranges. Interestingly, the
asymptote (i.e., Equation (7)) is independent of the e when the product mnψ = 1 in the loge-logs-logew

space [33]. Tarantino [32] presented a model similar to the Gallipoli [26] expression. This model
satisfies the condition of mnψ = 1, and the precondition for this model is that the suction has to
be located in the high suction range. Therefore, constant suctions imposed on the HMCC can be
considered as high suctions when the product msnsψs = 1. It is important to note that the product
msnsψs is not always equal to 1 (see Table 3, for instance the case for the sand-bentonite and expansive
silty-clay). For this reason, the imposed constant suctions will be regarded as low suctions when 0 <
mnψ < 1. Combining with this conclusion and several sets of data related to silty sand (i.e., scon and
logβ) in Table 3, a bilinear relationship exists in the logscon–logβ plane over the full suction range (see
Figure 10a). It is evident for the tested silty sand that 100 kPa can be considered as the critical suction
value for distinguishing low suctions from high suctions. This conclusion is consistent with the results
of Salager et al. [34,36] obtained from a graphical approach that above 100 kPa suction, SWRCs with
different initial void ratios can be regarded as an overlapping curve on the constant e plane. Figure 10b
shows that there is a well-defined linear relationship between logscon and logβ at low suctions for
sand-bentonite and expansive silty clay.
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(a) at full suction range; (b) at low suctions.

For some soils, it is likely that the value of msnsψs departs significantly from the absolute value
of λs. A novel method is suggested in the present study to assure msnsψs ∼= −λs:

(i) When msnsψs > 1 and not equal to −λs, msnsψs is assumed equal to 1 and relationship
ms = 1/(nsψs) is substituted into Equation (12) to fit the experimental data. This results in a new set
of ms, ns, and ψs values. If the new product msnsψs is close to −λs, then the ms, ns, and ψs values
are deemed suitable. If still msnsψs significantly departs from −λs, additional calibration is needed.
In this case, the new ms, ns, and ψs values are used to plot the HMCC and the λs of the plotted
HMCC is determined (this updated λs is denoted as λs

*). Substitute relationship ms = λs
*/(nsψs) into

Equation (12) again to update ms, ns, and ψs values until msnsψs ∼= −λs is achieved. The final ms, ns,
and ψs values satisfying msnsψs ∼= −λs are deemed acceptable.

(ii) When 0 < msnsψs < 1 and msnsψs 6= −λs, as a first step it is assumed equal to −λs and then
substituted into Equation (12). The subsequent processing is the same as for the msnsψs > 1 case,
which was detailed in the earlier step (i).

The advantage of this method is that both low suctions and high suctions can be clearly
distinguished by the values of the product msnsψs. The product msnsψs is approximately equal
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to −λs after three iterations for the data of Table 3 (bold fonts). In addition, Equation (12) with new
parameter values provides a good match with experimental data. Hence, the calibration method
proposed in this paper is reasonable.

Figure 11 shows a schematic diagram of the HMCCs with different constant suction values at low
suctions and high suctions. Among them, miniψi and logβi are the parameter values of Equation (13)
corresponding to different constant suctions si (i = 1, 2, 3, 4). Dash lines stand for asymptotes of HMCCs
(solid lines) on a logarithmic scale. All HMCCs at high suctions (i.e., msnsψs = 1) can be obtained
by a rigid translation of the same graph in the loge–logSr plane [33]. On the contrary, the values
of the product msnsψs at low suctions (0 < msnsψs < 1) are different. Due to this reason, HMCCs at
high suctions may not be obtained by extending this rigid translation technique from a reference
HMCC at low suctions. In other words, rigid translation is only feasible in high suction range or in
low suction range, separately. Rigid translation from high suction range to low suction range or vice
versa is not reliable. Figure 12 shows predicted HMCCs (at s = 104 kPa and 105 kPa) obtained by a
rigid translation of two reference HMCCs (sref = 103 kPa and 10 kPa) for a silty sand. The translation
between the prediction HMCC and the reference HMCC is evaluated by term: |logβref − logβpre|
= |log(spre/sref)/ψ|. The values of ψ can be obtained by Equation (14) and (15), where logβi and
si are given in Table 3 (ψL = 0.085 and ψH = 0.320). It is evident that using the reference HMCC at
low suctions to predict HMCCs at high suctions can lead to deviations that are significant from the
experimental data.
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The method of tangential approximation described in the SWRCs section was followed to
investigate the relationship between asymptotes of two main drying curves at different values of s1

and s2. For a given pair of low suction values of s1
′

and s2
′

(s2
′

< s1
′
), the constant horizontal distance

between the two asymptotes is presented in Equation (16):

∆ log e = log
β2
′

β1
′ −

1.5382m1
′

m1
′n1
′ψ1
′ +

1.5506m1
′

m2′n2′ψ2′
(16)

where ω1
′
, ψ1

′
, m1

′
, n1

′
and ω2

′
, ψ2

′
, m2

′
, n2

′
are two sets of parameter values of Equation (12)

corresponding to HMCCs at s1 and s2, respectively. β1
′
= (ω1

′
/s1)1/ψ1’ and β2

′
= (ω2

′
/s2)1/ψ2’.

∆loge can be considered approximately equal to log(β2
′
/β1

′
) when m1

′
n1
′
ψ1
′

is close to m2
′
n2
′
ψ2
′
.

To simplify and facilitate the application, it is convenient to assume that ω1
′

= ω2
′

= ωL and
ψ1
′

= ψ2
′

= ψL for low suction ranges, the horizontal distance between the predicted HMCC and
the reference HMCC is ∆loge = log(s1/s2)/ψL. A trial calculation method is introduced to improve
prediction accuracy of the parameter ψs, in addition to Equation (14) which can be directly used to
determine ψs.

The trial calculation method is explained using two sets of HMCC data for a sand bentonite that
are summarized in Table 3. The data of HMCCs at s = 300 kPa and 600 kPa are taken as reference
curves. The horizontal distance between these two reference HMCCs is ∆loge = log(600/300)/ψL.
Different ψL values can be tried to obtain the ∆loge and therefore translate the HMCC at s = 300 kPa to
HMCC at s = 600 kPa. A suitable ψL value is obtained when the translated HMCC at s = 600 kPa fits
the measurements of the HMCC at s = 600 kPa. The HMCCs with different constant suctions obtained
by a rigid translation of the reference HMCC (s = 300 kPa) and compared with experimental data
(see Figure 13) to check validity of the proposed method. The results show predicted HMCCs obtained
from the proposed method match well with experimental data. Therefore, the curve shifting method
proposed by Gallipoli [33] is also feasible at low suctions.

Similarly, three aspects also need to be considered when predicting HMCCs at constant s using
the curve shifting method: (1) at least two sets of HMCCs with different constant suctions test data
must be known to estimate the ψ, and the trail calculation method proposed in this section to refine
the ψ can be considered; (2) The reference curve needs to be fitted by Equation (12) prior to translation;
(3) HMCCs in high suction range may be obtained from a rigid translation of a reference HMCC
high suction range and rigid translation can also be used in the same way in the low suction range.
However, HMCCs at high suctions cannot be obtained from a rigid translation of a reference HMCC at
low suctions.
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3.3. Retention Consolidation Curves (RCCs)

Equation (1) is rewritten into Equation (17) for interpreting the RCC.

e =
(ωsa

s

) 1
ψsa
(

S
− 1

msa
rcon − 1

) 1
nsaψsa

(17)

where Srcon = constant degree of saturation; ψsa, ωsa, msa, and nsa are model parameters. The derivation
of RCCs in the logs–loge plane at Srcon is obtained as

∂ log e
∂ log s

= − 1
ψsa

(18)

It is difficult to measure s–e curves at constant Sr (i.e., RCC) from experimental studies. In order
to represent the RCC, the SWRS (i.e., Equation (1)) shall be determined from measurements of the
SWRCs at different void ratios or HMCCs at different suctions first and then set Sr to constant to obtain
the RCC. Salager et al. [36] measured SWRCs of a clayey silt sand. The five sets of experimental data
are fitted by Equation (1) with best-fit parameter values ψ = 4.180, ω = 11.335, n = 0.686, and m = 0.565.
RCCs at different constant Sr are obtained by substituting these parameter values into Equation (17).
As shown in Figure 14, RCCs are linear in the logs–loge plane, and their slope equals to −1/ψsa.
The RCCs move towards the left-hand direction along the s axis with the increase in constant Sr.

It should be noted that void ratio calculated from Equation (17) may exceed 1 at low suction levels,
which is erroneous (see Figure 14a). On the other hand, specimens after compaction are typically
unsaturated and have different initial suction levels. RCCs in Figure 14a should start from the initial
suction and degree of saturation after compaction rather than from saturated condition (which is Sr = 1
and s = 0.1 kPa in Figure 14a).

Salager et al. [34] presented a relationship (Equation (19)) between the void ratio and suction
using five sets of experimental data.

e
e0

= (1− χ) +

{
1− ln[1 + (s/a1)]

ln[1 + (106/a1)]

}
× χ{

ln
[
2.718 + (s/b1)

c1
]}d1

(19)

where a1, b1, c1, d1, and χ are empirical parameters. The values of a1, b1, c1, d1, and χ are 1000, 400,
0.466, 2.896, and 0.21, respectively, which was suggested by Salager et al. [34].

For a saturated specimen with e0, its initial suctions and corresponding void ratios at different
constant Sr can be obtained from the simultaneous solution of Equation (17) and Equation (19). As a
result, these initial suctions and corresponding void ratios would form a curve, which is called the
modified curve in this study. As shown in Figure 14b, the short-dashed line is a modified curve that
shows initial states of unsaturated soil specimens at different constant Sr. The modified curve shows
that the initial suction is increasing with the reducing constant Sr. For different e0 (i.e., 0.44, 0.68,
and 1.01) in Figure 14b, the initial suction is decreasing as e0 increases at equal Sr. Such a behavior
is expected because at equal Sr, the water content is increasing as initial void ratio increases based
on Sr = Gsw/e0, resulting in the decrease of suction. Hence, modified curves proposed in this study
are reasonable.
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4. Conclusions

Based on the SWRS model of Gallipoli et al. [26], three independent 2-D equations were presented
in this paper and used to investigate the projection characteristics of the SWRS on the constant e, s,
and Sr planes in order to have an insight into the hydromechanical behavior of unsaturated soils. The
details are summarized below:

(1) The SWRCs tend to move towards the left-hand direction along the s axis on a log-log scale
with the increase in initial e. When the gap of initial e values between the predicted SWRCs and
reference SWRCs is as small as possible, SWRCs at different initial e can be obtained by a rigid
translation of a reference SWRC alone the s axis in the logs-logSr plane.

(2) Similarly, the HMCCs and the RCCs move towards the left-hand direction along the e axis on
a log-log scale with the increase in s and Sr, respectively. HMCCs at high suctions cannot be
obtained from a rigid translation of a reference HMCC at low suctions. The constant suctions
imposed on the HMCCs are suggested to be high suctions when the mnψ = 1 and low suctions
when 0 < mnψ < 1 (i.e., m, n, and ψ are the Gallipoli et al. [26] model parameters).

(3) The RCC equation proposed is capable of describing the relationship between e and s on the
constant Sr plane. The modified RCCs show that the initial suction increases with the reducing
constant Sr. Moreover, the initial suction is reducing as initial e increases at equal values of Sr.
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