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Abstract: Assessment of water resources from mountainous catchments is crucial for the development
of upstream rural areas and downstream urban communities. However, lack of data in these
mountainous catchments prevents full understanding of the response of hydrology or water resources
to climate change. Meanwhile, hydrological modeling is challenging due to parameter uncertainty.
In this work, one tributary of the Yarlung Zangbo River Basin (the upper stream of the Brahmaputra
River) was used as a case study for hydrological modeling. Tropical Rainfall Measuring Mission
(TRMM 3B42V7) data were utilized as a substitute for gauge-based rainfall data, and the capability of
simulating precipitation, snow, and groundwater contributions to total runoff by the Soil and Water
Assessment Tool (SWAT) was investigated. The uncertainty in runoff proportions from precipitation,
snowmelt, and groundwater was quantified by a batch-processing module. Hydrological signatures
were finally used to help identify if the hydrological model simulated total runoff and corresponding
proportions properly. The results showed that: (1) TRMM data were very useful for hydrological
simulation in high and cold mountainous catchments; (2) precipitation was the primary contributor
nearly all year round, reaching 56.5% of the total runoff on average; (3) groundwater occupied the
biggest proportion during dry seasons, whereas snowmelt made a substantial contribution only in
late spring and summer; and (4) hydrological signatures were useful for helping to evaluate the
performance of the hydrological model.
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1. Introduction

Water is the origin of life, the necessity of industrial manufacturing, and the foundation of
ecology. Nowadays, human-induced changes such as climate change, population growth, and rapid
urbanization are putting enormous stress on water resources. Besides, the energy crisis has wrapped
around the globe, and it is acknowledged that hydroelectric power generation is a better choice than
other traditional energy means as it produces less pollution [1]. Increasing demands for fresh water for
living and manufacturing also lead to critical water resource shortage, which requires sophisticated
water resource management [2,3]. The southwestern area of China, which is also called the “Chinese
water tower” or “Asian water tower”, provides 49% of the runoff for the Yellow River. The exit
flow of the Yarlung Zangbo River, the Lantsang River, and the Salween River aggregately come to
500 billion cubic meters, which is nearly equal to the total water consumption of China (600 billion
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cubic meters) [4]. Current per capita availability of water in China is only equal to one-fourth of
the world. Water shortage becomes more severe along with climate change and developments in
economics. The southwest source area is the forming region and strategic stockpile for fresh water for
China and will certainly play an important role in future water management.

Precipitation is the most important driving factor for hydrological cycles. It is nearly impossible
for hydrologists to simulate the water cycles over regions with no or sparse precipitation gauge
networks [5]. Without the observed data to force hydrological models, it is hard to conduct
calibrations of model parameters, and the output of models is doubtful. In fact, the availability
of high-quality ground rainfall data is very limited across many parts of the world, especially over
complex terrain and remote areas. Currently there are many satellite precipitation products, such as
the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) [6],
the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC)
MORPHing technique product [7], the Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN) [8], and the PERSIANN Cloud Classification System
estimation [9]. These satellite precipitation products provide alternatives for gauge precipitation,
which have experienced significant success in the past decade. Satellite rainfall data were compared
from PERSIANN, TMPA-3B42V7, and TMPA-3B42RT, as well as with gauged data over Iran,
which showed that TMPA-3B42V7 behaved better than the other two [10]. CMORPH, PERSIANN,
TRMM-3B42V7, and TRMM 3B43 were compared to ground data in the arid region of China,
which showed that TRMM 3B42V7 performed the best in detecting precipitation occurrences and
accessing precipitation amount [11]. PERSIANN-CDR, TRMM-3B42V7, and (National Centers for
Environment Prediction-Climate Forecast System Reanalysis) NCEP-CFSR were evaluated against
gauge observations in two humid basins of China, which showed that TRMM-3B42V7 outperformed
the other two products, with the smallest errors and bias and the highest correlation on a monthly scale:
Besides, simulations forced with 3B42V7 achieved the best match with daily gauged streamflow [12].
Therefore, in this study, TRMM-3B42V7 data were used. The Tropical Rainfall Measuring Mission is a
mission that delivers a unique 17-year dataset of global tropical rainfall to improve understanding
of climate and weather modeling, human impacts on rainfall, snow and snowmelt modeling, among
other endeavors [13–20]. The TRMM 3B42V7 is a product from the TRMM Multisatellite Precipitation
Analysis, which is based on the calibration by the TRMM Combined Instrument and TRMM Microwave
Imager precipitation products. The 3B42V7 incorporates the new Global Precipitation Climatology
Centre monthly precipitation for bias adjustment [12].

Runoff component analyses are important in hydrological studies. However, very limited
attention has been paid to proper simulations of runoff components when using hydrological
models [21]. Most studies have only investigated whether the hydrological models used in the
applications simulate the total runoff reasonably in the calibration or validation [22–25]. However, only
considering the total runoff in the calibration or validation may cause errors in prediction or forecasting,
particularly in areas where snow or glaciers contribute significantly to the total runoff. The results
seem to be satisfactory based on the first sight of objective function values like the Nash efficiency
coefficient (NS) and relative bias (PBIAS) obtained in the calibration [22]. However, precipitation,
snowmelt, and groundwater components of runoff may deviate from reality, which probably results in
wrong predictions or projections. This can be due to the fact that only limited observation data are
often available for hydrological modeling. Recently, a few studies did pay attention to this problem.
For example, a degree-day-based distributed hydrological model was used to investigate the spatial
distribution of runoff components in the Koxkar Glacier, which could reveal characteristics of climatic
gradients, local topography and morphology, and catchment meteorology [26]: Path analysis was
utilized along with isotopic measurements to investigate runoff components in a glacier-covered alpine
catchment (the upper Hailuogou Valley) in southwest China and revealed that snowmelt took up
nearly three quarters of total discharge [27]. The study here will provide good insight into hydrological
modeling by investigating runoff proportions in-depth over a cold mountainous river basin with very
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limited data. There will be more confidence in hydrological modeling based on deeper investigation
into runoff components.

Besides runoff component analysis, hydrological signatures could be alternatives in identifying if
the hydrological model simulates runoff components properly. Hydrological signatures have been
widely used in evaluating hydrological model and streamflow characteristics such as overall water
balance, vertical soil moisture redistribution, behavior of long-term baseflow, and timing. Therefore,
hydrological signature analysis can be the supplement to residual-based goodness-of-fit measures,
(e.g., the Nash–Sutcliffe efficiency measure) [28–31]. In this study, hydrological signatures were used
to support the analysis of total runoff and corresponding components.

A tributary of the Yarlung Zangbo River, namely the Niyang River, where the in situ observation
was rather limited, was selected as the case study. The objective of this work was two-fold: (1) To testify
as to whether TRMM-3B42V7 was suitable for hydrological modeling in complex terrain in the
southwest of China, and (2) to analyze the proportions of different runoff components from
precipitation, groundwater, and snow in the selected basin. The paper is organized as follows: Section 2
introduces the study area and data. Section 3 describes the main methodology, including precipitation
evaluation indices, hydrological model, and hydrological signatures. Results are presented in Section 4.
Finally, discussion and conclusions are described in Sections 5 and 6.

2. Study Area and Data

2.1. Study Area

Due to enormous differences in height and latitude, there are various climatic zones in
Tibet, including humid tropical or subtropical zones, semi-humid (or semi-arid) temperate zones,
and semi-arid (or arid) cold zones. The study area, the Niyang River Basin, is located in a humid
temperate climate zone. Figure 1 shows the location of the study area. The Niyang River originates
from the west of Mila Mountain and joins with the Yarlung Zangbo River in Linzhi County. The average
temperature is about 8 degrees centigrade, with an annual precipitation of 600–900 mm and annual
sunshine duration of 2022 h. The river is 307.5 km in length, and the basin area is 16,048.7 km2.
The average slope of the river is 7.39%. The elevation of the basin ranges from 3055 m to 6760 m in
height. The main rainy season is from June to September, and more than 90% of discharge comes
from this season. The river is abundant in water resources, 22 billion cubic meters per year, and ranks
as the fourth-largest among all tributaries of the Yarlung Zangbo River. However, annual change of
runoff in Niyang River is not substantial. Also, historical data and literature show that temperature is
increasing and will probably continue to increase in the future: Precipitation in the Niyang River Basin
will probably increase to some degree [3,4].
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from the China Meteorological Administration. There were no meteorological observations in higher 
areas of the basin. The available daily discharge record at Gengzhang Station was from 1978 to 2011, 
with missing data in 2009. Besides observed meteorological data at Linzhi, the Tropical Rainfall 
Measuring Mission was used for precipitation alternatives. The resolution of TRMM 3B42V7 was 0.25 
× 0.25°. 

Digital elevation model (DEM) data at 90 m were downloaded from the Geospatial Data Cloud 
(http://www.gscloud.cn). Soil data with a 1 km resolution were obtained from the Environment and 
Ecological Science Data Center for West China, National Natural Science Foundation of China 
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3. Methodology 

The framework of this study is shown in Figure 2. First, the TRMM 3B42V7 precipitation was 
evaluated against the observation to check its performance in the study area. Second, TRMM 3B42V7 
was utilized to drive the Soil and Water Assessment Tool (SWAT) hydrological model. A batch-
processing module was proposed in this study to automatically perform multiple simulations from 
SWAT. Behavior hydrological model parameters were used to analyze the runoff components by 
selecting those with NS > 0.5 and within ±20% PBIAS. Finally, hydrological signatures concerning 
mean, low, and high flows were computed to verify the runoff components calculated based on 
hydrological simulations driven by TRMM 3B42V7. 

Figure 1. Location of the study area and spatial distribution of data used in the Soil and Water
Assessment Tool (SWAT) model.

2.2. Data

The spatial distribution of precipitation grid points and gauge stations used in this study are
illustrated in Figure 1. Meteorological observations in the study area were very limited. Daily
meteorological observations (maximum and minimum temperature, relative humidity, wind speed,
and solar radiation) from 1978 to 2013 at one nearby station, namely Linzhi Station, were obtained
from the China Meteorological Administration. There were no meteorological observations in higher
areas of the basin. The available daily discharge record at Gengzhang Station was from 1978 to 2011,
with missing data in 2009. Besides observed meteorological data at Linzhi, the Tropical Rainfall
Measuring Mission was used for precipitation alternatives. The resolution of TRMM 3B42V7 was
0.25 × 0.25◦.

Digital elevation model (DEM) data at 90 m were downloaded from the Geospatial Data Cloud
(http://www.gscloud.cn). Soil data with a 1 km resolution were obtained from the Environment
and Ecological Science Data Center for West China, National Natural Science Foundation of China
(http://westdc.westgis.ac.cn). Land use data with a resolution of 1 km were downloaded from Global
Land Cover 2000 (http://bioval.jrc.ec.europa.euproducts/glc2000/products).

3. Methodology

The framework of this study is shown in Figure 2. First, the TRMM 3B42V7 precipitation was
evaluated against the observation to check its performance in the study area. Second, TRMM
3B42V7 was utilized to drive the Soil and Water Assessment Tool (SWAT) hydrological model.
A batch-processing module was proposed in this study to automatically perform multiple simulations
from SWAT. Behavior hydrological model parameters were used to analyze the runoff components by
selecting those with NS > 0.5 and within ±20% PBIAS. Finally, hydrological signatures concerning
mean, low, and high flows were computed to verify the runoff components calculated based on
hydrological simulations driven by TRMM 3B42V7.

http://www.gscloud.cn
http://westdc.westgis.ac.cn
http://bioval.jrc.ec.europa.euproducts/glc2000/products
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3.1. Precipitation Evaluation Indices

Although observed precipitation data were available for only one nearby station, such data were
still used here to help evaluate the appropriateness of TRMM data in hydrological modeling. Two
statistical indices were used for the evaluation, namely correlation coefficient (CC) and root mean
squared error (RMSE) [32]. CC reflects the degree of linear correlation between precipitation products
and gauge observations. RMSE measures the average error between the precipitation estimates and
observations, with greater weight on the larger errors.

3.2. Hydrological Model

SWAT is a river basin or watershed scale model developed by Dr. Jeff Arnold for the United
States Department of Agriculture (USDA) Agricultural Research Service [23,33]. SWAT was developed
to predict the impact of land management practices on water, sediment, and agricultural chemical
yields in large complex watersheds with varying soils, land use, and management conditions over long
periods of time. The SWAT model has the following characteristics: It is physically based, uses readily
available inputs, and is computationally efficient. Also, SWAT allows a number of different physical
processes to be simulated in a watershed. For modeling purposes, a watershed may be partitioned into
a number of subwatersheds or sub-basins. Hydrologic response units are lumped land areas within the
sub-basin that are comprised of unique land cover, soil, and management combinations. In this study,
the basin was delineated into 15 sub-basins and further into 172 hydrologic response units (HRUs),
and the size of the HRUs ranged from 0.84 km2 to 913.26 km2.

In the SWAT model, water balance is the driving force behind everything that happens in the
watershed. The hydrologic cycle simulated by SWAT is based on the following water balance equation:

SWt = SW0 +
t

∑
i=1

(Rday − Qsur f − Ea − wseep − Qgw), (1)

where SWt is the final soil water content (in mm H2O), SW0 is the initial soil water content on day i
(in mm H2O), t is the time (in days), Rday is the amount of precipitation on day i (in mm H2O), Qsur f is
the amount of surface runoff on day i (in mm H2O), Ea is the amount of evapotranspiration on day
i (in mm H2O), wseep is the amount of water entering the vadose zone from the soil profile on day i
(in mm H2O), and Qgw is the amount of return flow on day i (in mm H2O).

The main sources of uncertainty in hydrological modeling are: (1) Simplifications in the conceptual
model, (2) processes occurring in the watershed but not included in the model, (3) processes that
are included in the model, but their occurrences in the watershed are unknown to the modeler or
unaccountable, (4) processes that are not known to the modeler and not included in the model,
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and (5) errors in the input variables such as rainfall and temperature [34]. Besides errors in input
variables, uncertainty in parameters for modeling hydrological processes is important. Therefore,
before calibration, parameter sensitivity analysis is essential to provide insights on which parameters
contribute most to the output variance because of input variability [35]. Here, 21 hydrological
parameters were used for sensitivity analysis for the simulation of streamflow in the study area.
The details of all hydrological parameters can be found in Reference [36].

The calibration and uncertainty analysis was done via sequential uncertainty fitting method
(SUFI-2). SUFI-2 is the calibration algorithm developed for the calibration of the SWAT model [37].
In SUFI-2, the degree to which all uncertainties are accounted for is quantified by the p-factor and
r-factor. The p-factor is the percentage of measured data enveloped by the 95% probability distribution
(95PPU). The r-factor is the average thickness of the 95PPU. The 95PPU is calculated at the 2.5% and
97.5% levels of the cumulative distribution of an output variable generated by the propagation of the
parameter uncertainties using Latin hypercube sampling [28].

NS and PBIAS were used to evaluate the performance of the hydrological model [22]. NS is a
normalized statistic that determines the relative magnitude of the residual variance compared to the
measured data variance, and it indicates how well the plot of observed versus simulated data fits
the 1:1 line. PBIAS measures the average tendency of the simulated data to be larger or smaller than
their observed counterparts. The optimal value of PBIAS is 0, with low-magnitude values indicating
accurate model simulation. Positive values indicate model underestimation bias, and negative values
indicate model overestimation bias [38].

After calibration, parameter sets with an NS value larger than 0.5 and a PBIAS value within
±20% are regarded as the behavior parameters for the SWAT model [39]. Since the original SWAT
model only delivered output files for single simulation, a batch-processing module was developed
in this study to conduct SWAT simulations automatically as well as to store the output files of each
simulation for further component analysis. Based on this, multisimulations were again conducted
by the batch-processing module to obtain detailed information on the runoff components (runoff
proportions) for all behavior parameter sets. Such a procedure was implemented for TRMM-driven
hydrological simulation.

3.3. Runoff Components and Hydrological Signatures

Basin conditions, especially climatic factors, have much influence on the river discharge.
Precipitation, temperature, and evapotranspiration vary greatly in space. All these factors deeply
influence the formation as well as the evolution of runoff. In the Niyang River Basin, precipitation,
snow, and groundwater are equally important in generating total runoff in the river outlet. However,
their detailed contributions are not clearly quantified. This is particularly important when climate
change is affecting the mountainous river, and snow may melt due to temperature increase.

In this study, the SWAT model was used for analysis of the runoff component. Compared
to traditional methods of runoff component analysis such as isotope and pathway analysis [27],
hydrological modeling requires much less field experimentation, which costs time and resources.
Based on the structure of the SWAT model, runoff components can only be calculated at the HRU
level and then summed at the sub-basin/watershed level. In this study, irrigation water and ponds
and reservoirs were not taken into consideration. Streamflow was composed of three components:
Rain-generated, snowmelt, and groundwater flow. Groundwater contributed to streamflow from
both aquifers and could be directly obtained from model outputs. TRMM 3B42V7 provided original
precipitation, which was further divided into rain and snow via the SWAT model based on a snowfall
temperature parameter (SFTMP). Thus, initial volumes of rain and snowmelt were available in the
model to help determine their respective proportions in remaining streamflow. The equations are
listed below:

fQ,G =
G
Q

, (2)
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fQ,R =
R

R + S
(
1 − fQ,G

)
, (3)

fQ,S =
S

R + S
(
1 − fQ,G

)
, (4)

where fQ,G represents the fraction of total runoff that originated from groundwater, G is groundwater
contribution to total runoff, Q is the total runoff, fQ,R represents the fraction of total runoff that
originated from rainfall, R is the amount of precipitation falling as rainfall, S is the amount of snowmelt
obtained from the SWAT model, and fQ,S represents the fraction of total runoff that originated
from snowmelt.

Hydrological signatures are a number of important streamflow characteristics that constitute
the natural flow regimes, including seasonal pattern of flows; timing of extreme flows; frequency,
predictability, and duration of floods, droughts, and intermittent flows; daily, seasonal, and annual
flow variability; and rates of change. They can be used as alternatives to investigate whether runoff
components are properly simulated in hydrological modeling. In this study, five hydrological
signatures (see Table 1) concerning annual mean, minimum, and maximum monthly flows were
selected to help evaluate whether the total runoff and corresponding components were simulated well
by the hydrological model with TRMM 3B42V7.

Table 1. Hydrological signatures utilized in the study.

Hydrological Signature Code Unit Conditions Definition

Mean annual runoff A1 m3 s−1 km−2 Average flow
conditions

Mean annual divided by
catchment area

Mean minimum
monthly flows ML1-12 m3 s−1 Low flow

conditions
Mean minimum monthly

flow for all months

Variability across
minimum monthly flows ML13 % Low flow

conditions
Coefficient of variation in
minimum monthly flows

Mean maximum
monthly flows MH1-12 m3 s−1 High flow

conditions

Mean of the maximum
monthly flows for

all months

Variability across
maximum

monthly flows
MH13 % High flow

conditions
Coefficient of variation in
maximum monthly flows

4. Results

4.1. Precipitation Evaluation Results

Since the in situ observation of precipitation was very limited, only two evaluation indices were
calculated based on areal mean precipitation of the basin. For the observation, gauge data were used
to approximate the areal mean precipitation. A Thiessen polygon was used to generate the areal mean
precipitation of TRMM 3B42V7. The results showed that on a daily scale, TRMM 3B42V7 had poor
correlations (0.4) with observation. However, there were much better correlations (0.9) on a monthly
scale. Besides, the value of the RMSE on a daily scale (53 mm) was almost 2 times the monthly value
(35 mm). If observation and the nearest grid point of TRMM were compared, on a daily scale TRMM
3B42V7 also had poor correlations (0.4), whereas there were much better correlations (0.9) on a monthly
scale. The value of the RMSE on a daily scale (5 mm) was more than 3 times that of the monthly value
(1.4 mm). The results based on the neatest grid were better than those based on the areal mean values.
Since the observation data obtained were too limited, the evaluation results of TRMM data may not
mean a lot, only indicating to some extent the quality of the TRMM data. Based on both evaluation
results, the simulation of the hydrological model was made on a monthly scale.
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4.2. Hydrological Model Calibration and Validation

TRMM 3B42V7 was used to drive SWAT to obtain monthly discharge. The investigation period
was divided into three parts, namely the warm-up period from 1998 to 1999, the calibration period
from 2000 to 2008, and the validation period from 2010 to 2011.

In this study, sensitivity analysis was accomplished with the Latin hypercube and the one factor
at a time sampling method [40]. The most sensitive parameters are listed in Table 2. Since there
were no good references for parameter ranges for SWAT hydrological simulations in the study area,
default initial parameter ranges from the model were used. A multiple regression analysis was used in
SWAT to get the statistics of parameter sensitivity, and p-values for corresponding parameters were
calculated. A p-value tests the null hypothesis that the coefficient is equal to zero (no effect), and it
ranges from 0 to 1. A large p-value suggests that changes in the predictor are not associated with
changes in the response, which means that parameter is not very sensitive [41]. After two iterations,
rational parameter ranges were obtained with reasonable values of objective functions. It is worth
paying attention to lapse rates of temperature and precipitation [42]. The p-values of both lapse rates
were almost equal to 0, which means the change of precipitation and temperature with elevation had
enormous influence on runoff.

Table 2. Parameters used in SWAT model, and their ranges used in calibration.

Code a Parameter Description Unit Initial Range

1 TLAPS v Temperature lapse rate ◦C km [−10, 0]
2 PLAPS v Precipitation lapse rate mm/km [−3, 3]
3 CN2 a SCS runoff curve number for moisture condition 2 - [−57, 73]
4 SMTMP v Snow melt base temperature ◦C [−5, 5]
5 SOL_Z r Depth from soil surface to bottom of layer mm [−0.9, 150]

a Parameters with smaller codes indicate greater sensitivity. Three types of change were applied to the parameters:
v means the existing parameter value was replaced by the given value, a means the given value was added to the
existing parameter value, and r means the existing parameter value was multiplied by (1 + a given value). SCS (Soil
Conservation Service).

Two iterations were conducted to derive reasonable r-factor and p-factor values, which were
1.35 and 97%, respectively. Considering the shortage of gauged precipitation and temperature data
(only one nearby meteorological station had access to temperature data), the values of two indices
were regarded as reasonable. The corresponding distributions of NS and PBIAS of the second iteration
are shown in Figure 3, and all values of behavior parameter sets met the standards of reasonable
simulation [39]. The red bold cross represents the “best” calibration parameter set, whose value of
NS was 0.89 and whose value of PBIAS was 2.8%. Figure 4 shows the observed and simulated total
runoff as well as the precipitation time series during calibration and validation. It can be observed
that the observation data was well-enveloped by the 95PPU range except for during the first year.
However, there were some deviations for extreme flows, especially peak flows, which were somehow
the inherent disadvantage of the SWAT model [22].
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4.3. Runoff Component Analysis

Due to parameter equifinality in hydrological modeling, here the batch-processing module was
developed to obtain runoff components of all behavior parameter sets (for which the number was 231).
One parameter set was regarded as the “reference” (traditionally the best one), with the highest NS
value, 0.89, and a reasonable PBIAS value of 2.8%.

Figure 5 shows the proportion of runoff components from 2000 to 2011 derived from the behavior
simulations based on TRMM 3B42V7. It shows that precipitation was the dominating contributor
to the total runoff, reaching 56.5% on average. Groundwater contribution ranked second (28.3%),
and snowmelt contributed the least (15.2%).

During the calibration period, proportions of precipitation showed less volatility, ranging from
52% to 59%, of which the fluctuations were within 7% and the average was 55%. Proportions
of snowmelt ranged from 13% to 17%, with fluctuations of about 5%, and the average was 15%.
As for groundwater, proportions ranged from 27% to 32%, and the fluctuations were rather small.
Three components distributed evenly through the calibration period. As for the validation period,
proportions of precipitation ranged from 60% to 68%, and the average was 64%. Proportions of
snowmelt ranged from 17% to 20%, and the average was 18%. Proportions of groundwater ranged
from 13% to 23%, and the average was 18%.
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Figure 6 shows monthly distributions of runoff components from 2000 to 2011, derived from
simulations based on TRMM 3B42V7 for all behavior simulations. Seasonal patterns can be witnessed
for three components: Rain-induced runoff took the dominant place during wet seasons (from June
to September) and occupied more than half of total runoff, and groundwater runoff came in first
place during dry seasons (from December to March). For snowmelt, there was seasonal tendency, too.
Snowmelt runoff arose from March to May, and then decreased to zero from May to October. The peak
rate occurred in early summer.
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4.4. Hydrological Signatures

In this section, hydrological signatures were used to help verify if the total runoff and
corresponding components were properly simulated by the hydrological model. Signatures shown
in Table 1 were computed based on monthly runoff driven by TRMM 3B42V7. Figure 7 shows the
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hydrological signatures derived from the observed and simulated runoff based on TRMM 3B42V7.
Table 3 presents the hydrological signatures derived from the observed discharge as well as the upper
and lower boundary of 95PPU of all behavior simulations based on TRMM 3B42V7.
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Table 3. Hydrological signatures derived from observation and behavior simulations.

Item A1 (m3 s−1 km−2) ML1-12 (m3 s−1) ML13 (%) MH1-12 (m3 s−1) MH13 (%)

Observation 0.032 62.4 9 1557.4 16
Upper 0.021 3.1 30 752.9 10

Median 0.029 46.3 52 1305.1 17
Lower 0.040 166.8 87 1908.1 34
“Best” 0.027 67.3 62 1204.8 20

Figure 7a shows that the mean annual runoff under all behavior parameter sets distributed evenly.
Compared to Table 3, it can be concluded that about 60% of all values were smaller than the value
calculated based on observation. The mean annual runoff (A1) observation was within the 95PPU
range of behavior simulations. Besides, the range was small, which indicates the simulations were
quite logical.

Figure 7b shows the distribution of mean minimum monthly flows. Combined with Table 3, more
than three-quarters (80%) of all values were in the range from 0 m3/s to 100 m3/s, and the values of
mean maximum monthly flows (ML1-12) based on observation were well-wrapped by the simulations.
Figure 7c shows the distribution of variability across minimum monthly flows. Combined with Table 3,
the values of minimum monthly flows (ML13) calculated based on the observation were 9%, which
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was smaller than all the values calculated based on behavior simulations. This indicates the variability
of simulated low flows was higher than the observed runoff.

Figure 7d shows the distribution of mean maximum monthly flows. Almost all values of MH1-12
were concentrated in the range from 500 m3/s to 2000 m3/s, and the value calculated based on
observation fell in the second range, which means the simulations were reasonable. Figure 7e shows
the distribution of variability of maximum monthly flows. For this index, nearly all values were within
the range from 10% to 40%, and the dominant range was from 10% to 20%. Combined with Table 3, it is
easy to know that the value of MH1-12 based on observation was right within the range of simulations.

From Table 3, almost all hydrological signatures of observation were similar to those of the “Best”
parameter set, as well as median ones, which reveals that the observation was well-wrapped by the
behavior simulations and the “Best” one fit well with the observation.

5. Discussion

In this study, the capability of reproducing proper proportions of runoff components using the
hydrological model SWAT driven by TRMM precipitation data was investigated.

As mentioned in Section 2, the meteorological station was located outside the study area,
which leads to the question of whether the observed precipitation was reliable or not in driving the
hydrological model. Therefore, TRMM 3B42V7 was used as a precipitation alternative for hydrological
simulation. In view of total runoff, TRMM 3B42V7 performed reasonably both in evaluating seasonal
patterns of river flows as well as estimating total water yield on a monthly scale. TRMM 3B42V7
is regarded as qualified to reproduce observed runoff and therefore can be used to predict runoff
in the future for climate change impact analysis. However, from Figure 4, deviations could still be
found for some high flows, although the PBIAS of total runoff was relatively small. It is known
that the SWAT model has inherent disadvantages that cause underestimation of flows [43,44]. One
possible reason for underestimation of flow lies in its model assumption that water entering the deep
aquifer is not considered in the water budget and is considered lost from the system [45]. Besides,
although the percentage of glaciers in the study basin was small (less than 5%), the model had no
proper consideration for glaciers. Insufficient consideration of glaciers affects the simulation of runoff,
especially in summer and autumn. Last but not least, it is well known that TRMM often underestimates
precipitation in high-altitude regions [46–48]. This results in the underestimation of runoff in the study
area. With increases in field observation as well as development of more accurate remote sensing data,
better simulation can be derived.

As far as the authors know, there are no studies about runoff component analysis for the Niyang
River Basin. However, studies within the Himalayan region, which contains the Niyang River Basin,
have shown that snowmelt occupies less than 20% of total runoff [49,50]. From Figure 5, it can be
found that results from the behavior simulations agreed well with the conclusions derived from the
studies above.

The newly developed batch-processing method helped to find all behavior parameters set,
and the corresponding outputs were summarized automatically. The uncertainty from parameters
was successfully propagated into runoff component simulation. However, without observed runoff
component proportions, the simulations could only be indirectly testified to through total runoff and
hydrological signatures comparison. More sound methods such as the use of isotope data [51] can be
adopted to ensure proper modeling of different runoff components.

From Figure 5, together with the parameter values in Table 2, it can be found that temperature
lapse rate (TLAPS) and snowmelt base temperature (SMTMP) were two crucial parameters that could
affect the partition of snowmelt from total runoff in the study area. In the SWAT model, TLAPS
was the temperature lapse rate across the watershed, and SMTMP was snowmelt base temperature,
which affects the rate of snow melting. The simulations based on larger TLAPS and smaller SMTMP
values resulted in larger proportions of snow. Besides, precipitation lapse rate (PLAPS), which makes
corrections of precipitation before putting them into SWAT, was also crucial. The compensation effects
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of PLAPS in various sub-basins helped to offset the underestimation of TRMM data and enhance the
accuracy of precipitation to improve the model performance.

Results from hydrological signatures analysis were consistent with total runoff estimation and
runoff components analysis to a great extent. However, it is worth noticing that variability across
minimum monthly flows calculated based on behavior simulations were higher than those based
on observation, which means compared with low flow, more confidences were gained for high or
normal flows.

6. Conclusions

This study aimed to investigate if the runoff proportions from precipitation, snowmelt,
and groundwater were properly simulated using the hydrological model SWAT, driven by TRMM
data from a cold, mountainous river, the Niyang River Basin, in the southwest of China.

The main conclusions of this study include: On a monthly scale, TRMM 3B42V7 had good
correlations with the observed precipitation. The major sources of river flows of the Niyang River
Basin were precipitation and groundwater. Snowmelt made a substantial contribution only in late
spring and summer. The hydrological model driven by TRMM 3B42V7 performed well in estimating
total runoff. Runoff originating from precipitation mostly concentrated in rainy seasons (May to
October) and contributed more than half of total runoff through the year: Snowmelt mostly occurred in
spring and summer (May to September) and contributed about 15% of total year runoff. Groundwater
occupied the biggest proportion during dry seasons, and the contribution of groundwater to total
runoff was about twice that of snowmelt. Based on hydrological signature analysis, though the
variability of low flows was overestimated, total runoff, low, and high flows were well simulated.

The investigation of runoff proportions from precipitation, snowmelt, and groundwater in this
study provided advanced understanding for hydrological modeling in cold mountainous areas. Such
a study can also provide more clear and precise descriptions of runoff components to the modeling
community and decision-makers.
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