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Abstract: Little research has been done on the application of machine learning approaches to
evaluating the damage level of river training structures on the Yangtze River. In this paper,
two machine learning approaches to evaluating the damage level of spur dikes with tooth-shaped
structures are proposed: a supervised support vector machine (SVM) model and an unsupervised
model combining a Kohonen neural network with an SVM model (KNN-SVM). It was found that
the supervised SVM model predicted the damage level of the validation samples with high accuracy,
and the unsupervised data-mining KNN-SVM model agreed well with the empirical evaluation
result. It is shown that both machine learning approaches could become effective tools to evaluate
the damage level of spur dikes and other river training structures.
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1. Introduction

The Yangtze River is the largest river, and the most important navigation channel, in China.
In recent decades, systematic river training works have been carried out on this waterway.
Various channel training structures, such as spur dikes and revetments, have been built, which play
important roles in protecting key shorelines, controlling unfavorable riverbed evolution, and increasing
the navigability of the channel. However, as time has passed, water and sand scour have caused the
channel training structures to sustain various levels of damage, impairing their ability to regulate
the channel.

At present, research on channel training structures is mostly focused on the damage mechanism,
such as local scour in the vicinity of the structures [1–3] and turbulent flow around the structures [4–6],
and how changes in structure design parameters affect the water flow and sediment transport
characteristics [7,8]. Little research about evaluating the damage level of the channel training structures
has been carried out so far. It is very important to evaluate the damage level of these structures in
order to maintain them over time. There are many factors that could affect the running condition of
the training structures. These factors are difficult to describe quantitatively. Some researchers use
a number to describe the stability of hydraulic engineering structures; for example, Ns in Equation (1).
This equation was proposed by Hudson (1959) [9] to calculate the mass of stones in a rubble mound
breakwater. Ns describes the stability of the structures, and is a function of the slope angle α and the
stability coefficient KD as shown in Equation (2). KD is related to the damage ratio (D) of the rubble
mound breakwater.
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W =
ργH3

N3
s × (Sr− 1)3 (1)

N3
s = KD × cot α (2)

where Sγ =
ργ

ρ , ργ is the mass density of the unit, ρ is the mass density of the water. H is the
wave height.

Since some factors, such as the size of the structures and the duration of a wave attack, are not
considered in the Hudson’s formula, researchers have further developed this formula and given various
definitions for the damage parameter (damage level), such as N∆, N0, and S shown in Table 1 [10–14].

Table 1. Various definitions for the damage parameter (damage level).

Definition Formula Researcher

Damage parameter N∆ =
Aρb9D50

ραD3
50

π

6
Thompson and Shuttler (1975) [10]

Damage parameter N0 =

(
H1/3/∆Dn− 1.33

2.32

)2
N0.5 Hanzawa et al. (1996) [11]

Damage level S =
A

D3
50

Vander Meer (1988) [12]

Damage level S = Se
(
1− e−KN) Kaku (1991) [13]

Damage level S = 0.6D′ Kajima (1994) [14]

Notes: A is the erosion area in a cross-section, ρb is bulk density of material as laid on the slope, ρa is mass density
of stone, D50 is the diameter of stone which exceeds the 50% value of the sieve curve, ∆ is Sr − 1, Dn is the nominal
diameter of the unit.

With regard to the channel training structures in the Yangtze River, Han proposed Equation (3)
to calculate the volume damage ratio of a spur dike and Equation (4) to calculate the area damage
ratio of a flexible mattress for beach protection [15,16]. The damage levels are evaluated based on the
damage ratios. Besides this, the strength reduction method can also be used to evaluate the damage
level. Niu [17] used this method to obtain the stability number of the slope.
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(4)

where Vd is the damage volume of the spur dike, Vt is the total volume of the spur dike, Ld is the length
of the spur dike, Vm is the maximum velocity, Vc is the incipient velocity, θ is the angle of the spur
dike. Sd is the damage area of beach protection flexible mattress, St is the total area of beach protection
flexible mattress, bmax is the maximum of beach width, lmax is the maximum of beach length, B is the
width of the river, d is average water depth, v is the water velocity.

As can be seen in Figures 1 and 2, the stability numbers and the damage levels that are calculated
by the empirical formulae do not agree well with those observed in the experiments, so a neural
network was proposed to analyze the stability number and the damage level of the structures. Mase [18]
proposed a back-propagation neural network model to analyze the stability of the rubble-mound
breakwater based on the data from Van der Meer’s 1988 experiment. The stability numbers and
damage levels predicted by the trained model are more accurate than those given by the formulae.
Dong et al. [19] established five different neural network models to predict the stability numbers and
damage levels, and compared the structure and accuracy of the five neural network models. Besides
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the neural network, a fuzzy logic approach [20,21] and a support vector machine [22,23] can also be
effective tools to predict the stability number and the damage level.Water 2018, 10, x FOR PEER REVIEW  3 of 17 
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Little research has been done on the methods for evaluating the damage level of river training
structures on the Yangtze River. It is hard to evaluate the damage level of river training structures
quantitatively, since there are so many interrelated factors that affect the operating condition of the
river training structures. Currently, the most common method to evaluate the damage level of the river
training structures on the Yangtze River channel is to classify the damage level empirically according to
measured data and the damage condition as observed on site. Damage to the river training structures
can be classified into four levels, as shown in Table 2.

Table 2. The empirical criteria for a damage level evaluation of the river training structures on the
Yangtze River.

Damage Level Evaluation Criterion

Level 1 In good condition; operating normally
Level 2 Slight deformation; normal operation not affected
Level 3 Large deformation; operation can be sustained but reparation is needed immediately
Level 4 Severe damage; function lost or severely impaired

Previous studies have shown that supervised machine learning approaches could be effective tools
to predict the damage level of hydraulic structures. During the early stages of study and application
of a new river training structure, the empirical classification results of the damage level will not be
reliable enough, but would form the training labels of the supervised machine learning algorithm.
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Then, the use of a data-mining algorithm would be required. The primary purpose of this paper is to
present a data-driven model without involving the hydrodynamic factors to evaluate the damage level
of the river training structures. In the following sections, a machine learning approach is proposed to
evaluate the damage level of a spur dike with tooth-shaped structures, which is a new type of river
training structure that has been built near the estuary of the Yangtze River. Two machine learning
models were built based on the experimental data in Fei (2017) [24]. First, we used the support vector
machine (SVM) algorithm to build a supervised training model to predict the damage level of the
validation samples. Then, we combined a Kohonen neural network with the support vector machine
to build an unsupervised evaluation model (KNN-SVM), which could be seen as a novel approach to
predict the water damage level of spur dikes.

2. Materials and Methods

2.1. The 12.5 m Deep-Water Channel Training Project on the Yangtze River below Nanjing

The Yangtze River is a major navigation channel in China, and is known as the “Golden Channel”.
The length of the main stem of the Yangtze River is 6300 km. The stream above Yichang is the upper
reach of the Yangtze River, which is 4505 km long. The stream between Yichang and Hukou is the
middle reach, which is 955 km long. The stream below Hukou is the lower reach, which is 938 km
long, as shown in Figure 3. Since 2012, Phase 1 of the 12.5 m Deep-Water Channel Training Project
has been carried out downstream of Nanjing to regulate the 56-km-long channel between Taicang and
Nantong in order to increase the depth of the channel to 12.5 m.
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Figure 3. The main channel of the Yangtze River (from Shuifu to the estuary of the Yangtze River).

The regulated channel is near the estuary; therefore, it is influenced by both the river flow and
the tidal flow. During the flood season, the tide could reach the Jiangyin–Jiulong reach; during the
drought season, the tide could reach the Yizheng–Zhenjiang reach. When an extraordinary flood occurs
(82,300 m3/s), the tide can only affect the estuary reach. Sediment transport is complicated in a tidal
estuary. The medium size of the bed load is 0.15~0.25 mm, and the medium size of the suspended
load is 0.005~0.02 mm. The sediment concentration is influenced by sediment from upstream that
is provided by the river and sediment from downstream that is provided by the tide. Since the
Three Gorges Reservoir started operating, the sediment concentration in this section has decreased to
0.1~0.3 kg/m3.

The project aims at protecting the beach, stabilizing the channel, guiding the flow, and increasing
the channel’s depth. A 34.95-km-long submerged dike, 11 spur dikes, and four revetments have been
built in the Tongzhousha–Baimaosha reach.
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2.2. The New Type of River Training Structure on the Yangtze River

A spur dike with tooth-shaped structures is a new type of river training structure that was first
used near the estuary of the Yangtze River in the Tongshazhou reach (shown in Figure 4). Spur dikes
with tooth-shape structures were built perpendicular to the revetments. They were expected to control
unfavorable riverbed evolution under the wave action and the river current and provide a habitat for
the aquatic organisms. Their research and application are still at an early stage. The characteristics
of the flow field have recently been researched using a numerical simulation [25,26]. Tong et al. [27]
carried out a series of experiments to study the stability of spur dikes with tooth-shaped structures.
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Figure 4. A location map of the channel training project in the estuary of the Yangtze River.

Figure 5 shows the profile of a spur dike with tooth-shaped structures. The spur dike consists
of two parts: the upper part is made of precast concrete, and the lower part of the dike is core stone
covered by armor stones. The size of each part is marked in Figure 5. It is a submerged dike. Each spur
dike block is 6.2 m long, 7 m wide, and 4 m high. A three-dimensional (3D) view of the spur dike array
can be seen in Figure 6. The weight of each block is 155.16 t, and the volume of each block is 64.65 m3.
The weight of the core stone ranges from 1 kg to 100 kg, and the thickness of the core stone layer is 3 m.
The weight of the armor stone ranges from 200 kg to 300 kg, and the armor stone layer is 4 m high.

Water 2018, 10, x FOR PEER REVIEW  6 of 16 

 

dike array can be seen in Figure 6. The weight of each block is 155.16 t, and the volume of each block 
is 64.65 m3. The weight of the core stone ranges from 1 kg to 100 kg, and the thickness of the core 
stone layer is 3 m. The weight of the armor stone ranges from 200 kg to 300 kg, and the armor stone 
layer is 4 m high. 

 
Figure 5. The cross section of a spur dike with tooth-shaped structures (cm) [27]. 

 
Figure 6. A row of a spur dike with tooth-shaped structures. 

2.3. Data Sets 

All data used to train the model in this paper were from flume experiments that were conducted 
by Fei [24].And the data sets were obtained from the doctoral thesis of Fei (2017). In this paper, we 
might not have the right to share all the experiment data, but the data was public and available. This 
section provides a brief introduction of the experiment in order to clarify the source and meaning of 
the data. 

The experiment was set up in a flume that was 40 m long and 2 m wide. A 15-meter-long 
movable bed section in the middle part of the flume was the main experimental area. A 15-cm-deep 
layer of uniform sediment (D50 = 0.075 mm) covered the movable bed reach. Eight dike blocks (shown 
in Figure 7) stood in a line in the flume, and the central axis of the spur dike was perpendicular to the 
flow direction. The block models were made of concrete. The core stones were placed under the spur 
dike. The armor stones were divided equally into four parts in the transverse direction and dyed with 
four different colors in order to trace them (Figure 8). Both the horizontal scale and the vertical scale 
of the model were 1:25. 

Figure 5. The cross section of a spur dike with tooth-shaped structures (cm) [27].



Water 2018, 10, 1680 6 of 16

Water 2018, 10, x FOR PEER REVIEW  6 of 16 

 

dike array can be seen in Figure 6. The weight of each block is 155.16 t, and the volume of each block 
is 64.65 m3. The weight of the core stone ranges from 1 kg to 100 kg, and the thickness of the core 
stone layer is 3 m. The weight of the armor stone ranges from 200 kg to 300 kg, and the armor stone 
layer is 4 m high. 

 
Figure 5. The cross section of a spur dike with tooth-shaped structures (cm) [27]. 

 
Figure 6. A row of a spur dike with tooth-shaped structures. 

2.3. Data Sets 

All data used to train the model in this paper were from flume experiments that were conducted 
by Fei [24].And the data sets were obtained from the doctoral thesis of Fei (2017). In this paper, we 
might not have the right to share all the experiment data, but the data was public and available. This 
section provides a brief introduction of the experiment in order to clarify the source and meaning of 
the data. 

The experiment was set up in a flume that was 40 m long and 2 m wide. A 15-meter-long 
movable bed section in the middle part of the flume was the main experimental area. A 15-cm-deep 
layer of uniform sediment (D50 = 0.075 mm) covered the movable bed reach. Eight dike blocks (shown 
in Figure 7) stood in a line in the flume, and the central axis of the spur dike was perpendicular to the 
flow direction. The block models were made of concrete. The core stones were placed under the spur 
dike. The armor stones were divided equally into four parts in the transverse direction and dyed with 
four different colors in order to trace them (Figure 8). Both the horizontal scale and the vertical scale 
of the model were 1:25. 

Figure 6. A row of a spur dike with tooth-shaped structures.

2.3. Data Sets

All data used to train the model in this paper were from flume experiments that were conducted
by Fei [24]. And the data sets were obtained from the doctoral thesis of Fei (2017). In this paper,
we might not have the right to share all the experiment data, but the data was public and available.
This section provides a brief introduction of the experiment in order to clarify the source and meaning
of the data.

The experiment was set up in a flume that was 40 m long and 2 m wide. A 15-meter-long movable
bed section in the middle part of the flume was the main experimental area. A 15-cm-deep layer of
uniform sediment (D50 = 0.075 mm) covered the movable bed reach. Eight dike blocks (shown in
Figure 7) stood in a line in the flume, and the central axis of the spur dike was perpendicular to the
flow direction. The block models were made of concrete. The core stones were placed under the spur
dike. The armor stones were divided equally into four parts in the transverse direction and dyed with
four different colors in order to trace them (Figure 8). Both the horizontal scale and the vertical scale of
the model were 1:25.

The experimental conditions were based on the actual hydrological condition of the 12.5 m
Deep-Water Channel Regulation Project on the Yangtze River. The water depth ranged from 26 cm to
36.5 cm (corresponding to 6.5~9.2 m on site) based on the Froude similarity, and, similarly, the velocity
upstream of the spur dike ranged from 15 cm/s to 33 cm/s (corresponding to 0.75~1.65 m/s on site).
Each experiment lasted for 3 h.Water 2018, 10, x FOR PEER REVIEW  7 of 16 
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The flow drag and local scour in the vicinity of the structure were the main reasons for the
damage to the spur dike [24]. Displacement, settlement, and inclination were the three major damage
patterns. Figure 9 shows the schematic diagram of these damage patterns. After a 3-h flow attack
experiment, the values of the displacement, settlement, and inclination were measured. Twenty-one (21)
measurement points were placed on the axis line of the spur dikes at an equal distance. Each set of data
included the values of displacement, settlement, and inclination at a measurement point. Sixteen (16)
groups of data were measured, and 336 sets of experimental data were collected in total, which are
used in this paper to train the machine learning model.
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2.4. The Kohonen Neural Network

Self-organized Feature Maps (SOM) was proposed by Kohonen [28], and is known as a Kohonen
neural network (KNN). KNN is an unsupervised learning model for cluster analysis. Figure 10 shows
the usual structure of KNN [29]. It has two layers, the input layer and the output layer. The number of
neurons in the input layer is determined by the input vector dimension. The neurons of the output
layer are placed on a two-dimensional matrix. There are weights between the neurons in the input
layer and the neurons in the output layer. There are also weights on the output layers between the
output neurons. For this paper, a one-dimensional KNN was used, whose structure is shown in
Figure 11. There were three neurons (X1, X2 and X3) in the input layer, standing for the input data
of displacement, settlement, and inclination. Damage to the spur dike in the flume experiment was
classified into three levels (L1, L2 and L3), so three neurons were set in the output layer.
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Assuming that there are N neurons in the input layer and M neurons in the output layer, here is
a brief introduction of the training process of the network. More detailed information about KNN can
be found in Kohonen [30] and Waller et al. [31]:

Step 1: Initialize the weights Wij randomly (i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m). Wij are the weights
between the input layer and the output layer.

Step 2: Calculate the Euclidean distance between the randomly selected input Xi and weight
vectors Wij.

dj =

[
n

∑
i=1

(
Xi −ωij

)2
]0.5

(5)

Step 3: The neuron that has the minimum Euclidean distance to the input vector X is defined as the
winner and marked as c. The winner has a neighborhood of Nc(t) whose radius is r. The neighborhood
radius size (r) changes linearly in the training process as shown in Equation (6).

rs = rmax −
s
T
(rmax − rmin) (6)

where T is the total number of training loops, s is the current training loop, rmax is the maximum
neighborhood radius size, rmax is referred to as the initial neighborhood size, and rmin is the minimum
neighborhood radius size.

Step 4: The weight of the winner neuron and the weights of other neurons within the neighborhood
of Nc(t) are adjusted using Equation (8). Meanwhile, the other weights retain the original value.

Nc(t) = (t| f ind(norm(post, posc)) < r) t = 1, 2, . . . , n (7)

ωij = ωij + η ×
(
Xi −ωij

)
(8)

where η is the learning rate, which changes linearly in the training process just like the neighborhood
size, post, posc are the positions of the neurons c and t, respectively, and “norm” stands for the
Euclidean distance between two neurons as shown in Equation (9).

dnorm =
[
(postx − poscx)

2 +
(

posty − poscy
)2
]0.5

(9)
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where postx and posty are the x coordinate value and the y coordinate value of neuron t, and poscx and
poscy are the x coordinate value and the y coordinate value of neuron c.

Step 5: Adjust the learning rate and neighborhood radius. If s = T, then the algorithm ends, if not,
go back to step 2, and new data are used to repeat the training steps.

The code for Kohonen neural networks can be downloaded on the website of http://www.
buaapress.com.cn/mzs/file/detail/id/442/key/037fdd19774875e6e8a9843838a62197. The parameters
set in the models were clarified in the paper. The structure of Kohonen neural network was changed in
this paper shown in Figure 11, according to the feature of this case.

2.5. Support Vector Machine

Support vector machine (SVM) is a frequently used data-driven model for prediction and
classification. It was developed by Vapnik [32]. SVM is formulated based on the structure risk
minimization principle. It has a great advantage in solving nonlinear problems with a small sample.
SVM has been widely used in hydrological prediction [33,34] and anomaly detection [23,35]. Figure 12
shows the structure of support vector machine.
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The C-SVC model was selected in this study, which is a widely used two-class SVM model.
The training process of C-SVC is as follows:

Consider a training set:
T = (x1, y1), . . . , (xl , yl) ∈ (X×Y)l (10)

where xi ∈ X = Rn, yi ∈ Y = {−1, 1}. xi is the input vector, and yi is the training label of the
input vector.

A nonlinear (linear) function ∅(x) is used to map the input vector xi from a d-dimensional input
space to a dh-dimensional feature space. The optimal hyperplane in the feature space is then defined as:

f (x) = w×∅(x) + b (11)

where w is the weight vector and b is the bias. The optimal hyper-plane must obey the following rule:

yi[w×∅
(

xi) + b
]
≥ 1 i = 1, 2, . . . , l. (12)

The classifier can be written as:

f (x) = sgn(w×∅(x)) + b). (13)

http://www.buaapress.com.cn/mzs/file/detail/id/442/key/037fdd19774875e6e8a9843838a62197
http://www.buaapress.com.cn/mzs/file/detail/id/442/key/037fdd19774875e6e8a9843838a62197
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The support vector machine aims at constructing a hyperplane with the maximal distance between
the two classes. It has been proved that finding the maximum distance is equivalent to finding the
minimum of φ(w):

minφ(w) =
1
2
‖ w ‖2. (14)

A slack variable ξi and a positive regularization constant C are introduced into Equation (15).
The greater the value of C is, the less error can be tolerated. The problem of finding the optimal
hyperplane can be generalized as follows:

minφ(w) =
1
2
‖ w ‖2 + C

l

∑
i=1

ξi (15)

s.t. yi[w× φ(xi) + b] ≥ 1− ξi, i = 1, 2, . . . , l. (16)

The penalty magnitude of the classifier function is determined by the positive regularization
constant C. If the value of C is too small, the accuracy of the prediction of the model will be too low.
On the other hand, if the value of C is too large, the training model may be over-fit to the training
data [36].

The function φ(xi) in the classifier function is given by the kernel function K
(

xi, xj
)
, and the

most frequently used kernel functions are shown in Table 3, where g determines the spread of the
kernel functions.

Table 3. A list of kernel functions.

Kernel Function Formula

Linear K
(

xi, xj

)
= xi

T xj

Polynomial K
(

xi, xj

)
= [g

(
xi, xj

)
]
3

Radial basis function K
(

xi, xj

)
= exp

(
−g ‖ xi − xj ‖2

)
Sigmoid K

(
xi, xj

)
= tanh

(
g
(

xi, xj

)
+ r
)

3. Results and Discussion

Not every instance of damage to a spur dike can be detected [37], and slight damage may not
affect the spur dike’s regular operation. The damage to the spur dike was classified into three levels.
The classification criteria were set empirically according to the damage condition of the spur dike in
the flume experiment and the field observation as shown in Table 4. The 336 experiment data sets were
categorized into these three damage levels.

Table 4. The empirical criteria for the damage level evaluation of the spur dike [24].

Damage level 3 2 1
General Damage Critical Damage Severe Damage

Inclination (◦) 2–5 5–10 >10
Displacement (cm) 3–6 6–8 >8

Settlement (cm) 1–2.4 2.4–5 >5

A supervised training model (SVM) and an unsupervised KNN-SVM model were built to predict
the damage levels. For the SVM model, 100 sets of data were selected randomly as training data, and
the remaining 30 sets of data were used as a validation sample, as shown in Table 5. All of the 336 sets
of experimental data were used to train the unsupervised Kohonen model.
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Table 5. The data sets for validation [24].

Inclination
(◦)

Displacement
(cm)

Settlement
(cm)

Damage
Level

Inclination
(◦)

Displacement
(cm)

Settlement
(cm)

Damage
Level

16 5 6.4 1 15 4.9 6.4 1
15 5.2 7.7 1 18.3 5.8 8.1 1

17.5 5.6 7.6 1 3.2 1 3.8 3
2.2 0.5 4.4 3 3 0.5 3.1 3
10 3 4.9 2 19 6 7.1 1

19.1 6 6.9 1 19 6.5 7.3 1
17.8 6.2 7.5 1 7.5 2.1 5.5 2
17.8 6.2 7.7 1 8 2.4 5.6 2
8.5 2.9 5.7 1 15.3 4.7 7.8 1
2.2 0.4 3 3 3 0.5 3 3
7 2.5 5.5 1 10 3 5.7 1

18.1 6 7.8 1 19 6.5 7.5 1
17 5.6 7.3 1 5.3 1.2 4 2

15.4 5 6.1 1 16 4 7.9 1
19 5.9 8 1 5.8 1.4 3.9 2

3.1. The Supervised Training Model

Choosing appropriate values for the positive regularization constant C and the spread g in the
kernel function is the key to building an SVM model with high accuracy. In this paper, the values
of C and g were selected using k-fold cross validation [38] (3-fold cross validation was used in this
paper). The optimal parameters that generate the highest regression accuracy for different kernel
functions are shown in Table 6. As we can see in the table, the models with a radial basis function
(RBF) and a sigmoid function have higher regression accuracy for this research. If the value of C is
too large, the training model may be over-fit to the training data [36]. So, the RBF kernel function and
the corresponding optimal parameters were chosen to train the SVM model. In this paper, “libsvm”,
which was an open source software developed by Chang and Lin [39], was selected to build the
SVM model. The open source code for the SVM model can be downloaded on the web site of
https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Table 6. The model regression accuracies of different kernel functions.

Kernel Function Accuracy Parameters

Polynomial 95% (95/100) -s 0 –v 3 –c 0.00098 -g 0.435275
Radial basis function 6% (96/100) -s 0 –v 3 -c 0.435275 -g 0.25

Sigmoid 96% (96/100) -s 0 –v 3 –c 21.1121 -g 0.0017

After the training process, the model was used to predict the damage levels of the validation
sample. Figure 13 shows the comparison between the damage levels of the validation sample predicted
by the model and evaluated according to the empirical criteria. Twenty-seven (27) samples were
predicted correctly by the model, so the accuracy was 90%. This suggests that the support vector
machine model can be an effective tool to predict the damage level of a spur dike. The damage levels
of one data set predicted by the model were higher than the ones evaluated by the empirical criteria,
and another two data sets were in the opposite situation. When the model is used for extrapolating
the damage level of real spur dikes on the Yangtze River, the number of training data sets should be
enough. No less than 50 sets of training data should be provided by the empirical criteria before the
model training process.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 13. A comparison between the model prediction result and the empirical evaluation result.

3.2. The Unsupervised Model

In most cases, measurement data are available but the classification criteria of the damage levels
are unknown, so no training data are available to build the SVM prediction model. To solve this
kind of problem, an unsupervised model was proposed by combining KNN and SVM. KNN is
a data-mining algorithm that can classify data with a common feature through observing, analyzing,
and comparing the data. In the KNN training process, the weights Wij are randomly initialized, so the
winner neuron (damage level) might be different for the same data set in different simulation processes.
Then, the SVM model was introduced to mitigate the problem of the unsteady output of the KNN
model. To obtain a steady result, the predicted results of KNN were selected as the training data of
the SVM model in combination with the corresponding measured data (inclination, displacement,
settlement); then, a steady damage level evaluation result was given by SVM.

During the training process of the KNN model, the learning rate η was reduced from 0.1 to 0.01,
and the neighborhood radius was reduced from 1.5 to 0.4. Two thousand (2000) loops were run to
adjust the learning rate and the neighborhood radius until the network converged. The number of
training loops for initial covering of the input space was determined by the neighborhood radius and
the learning rate. In this case, about after 200 training loops, a satisfactory result can be given when
compared with the empirical damage level classification. If more training loops are set, then a more
precise result will be given. After several training processes, the measurement data were classified by
the KNN model. The results show that the damage level classification of the KNN model demonstrated
two main classification patterns, as shown in Figures 14 and 15.
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Figure 14. Two different predicted results of the damage level classification pattern (I): (a) and (b) were
two different predicted results in different simulation processes.

In the KNN training process, the weights Wij were randomly initialized, so the winner neuron
might be different for the same data set in different simulation processes, as can be seen in Figure 14a,b
and Figure 15a,b. In the classification pattern (I), about half of the data sets were evaluated as
Level 1, while in pattern (II), about half of the data sets were evaluated as Level 3. That indicates
that the classification criteria in pattern (I) were much stricter than in pattern (II). For spur dikes,
relatively strict classification criteria are helpful for maintaining the river training structures; therefore,
the classification pattern (I) and its classification criteria were preferred for this research.
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Figure 15. Two different predicted results of the damage level classification pattern (II): (a) and (b)
were two different predicted results in different simulation processes.

With regard to the classification pattern (I), the results of different training processes with the
same model parameters were not exactly the same, as shown in Figure 14a,b, especially for the data
sets near the critical values of damage between different damage levels. A stable output of damage
level prediction is necessary in practical engineering, so the predicted damage levels of the KNN model
together with the corresponding experiment data were input to the SVM model to conduct supervised
training. To train the SVM model, 50 sets of the classification pattern (I) results together with the
corresponding experiment data were used as the training data of the SVM model. After the learning
process, the damage levels were classified by the SVM model and are shown in Figure 16. The damage
levels classified according to the empirical criteria are shown in Figure 17. It can be seen from the
comparison between Figures 16 and 17 that most of the damage levels classified by the model and
the empirical approach were the same. The data sets whose damage levels were evaluated differently
by the model and the empirical approach lay in the critical range between different damage levels.
This indicates that the classification criteria of the model were slightly different from the empirical
classification criteria.

The comparison between the damage levels classified by the unsupervised model and the
empirical approach is shown in Figure 18. The damage levels evaluated by the model and the empirical
approach of 298 data sets, which was 88.7% of the 336 data sets in total, were the same. As for the
remaining 38 data sets, most of the damage levels evaluated by the empirical approach were higher
than the damage levels evaluated by the model as shown in Figure 18. This indicates that the empirical
classification criteria (Table 4) were slightly stricter than the classification criteria of the unsupervised
model. The potential risk of using the KNN-SVM model for extrapolating the damage level of other
structures is the uncertain winner neuron for the same training data in different training processes,
and this would lead to different classification results. Then, an empirical evaluation result needs to be
provided as a reference.
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Figure 16. The damage level classification result predicted by KNN-SVM.
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4. Conclusions

A supervised support vector machine model was built based on the empirical damage level
evaluation results. The high accuracy achieved in predicting the damage levels of the validation data
sets indicated that the trained SVM model can be an effective tool for evaluating the practical damage
level of spur dikes with tooth-shaped structures.

An advanced unsupervised evaluation method, namely the KNN-SVM model, was proposed.
The data-mining algorithm Kohonen neural network was selected to initially classify the damage levels.
Then, the SVM model was adopted to learn from the results predicted by KNN, and stable evaluation
results were achieved. The prediction of the model agreed well with the empirical evaluation results.
The KNN-SVM model can be an effective method to evaluate the damage level of spur dikes and other
similar structures. Meanwhile, the result predicted by the unsupervised data-mining model could be
a reference for the stability study of spur dikes with tooth-shaped structures.

In this paper, the model inputs only included the displacement, settlement, and inclination of the
spur dike. In a further study, more parameters of the spur dike will be considered to develop a more
practical KNN-SVM model to evaluate the damage level of a spur dike.
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