
water

Article

Assessment of Machine Learning Techniques for
Monthly Flow Prediction

Zahra Alizadeh 1, Jafar Yazdi 1 , Joong Hoon Kim 2,* and Abobakr Khalil Al-Shamiri 2

1 Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran 16589-53571,
Iran; alizadeh.zahra92@gmail.com (Z.A.); j_yazdi@sbu.ac.ir (J.Y.)

2 School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-713, Korea;
abobakr2030@yahoo.com

* Correspondence: jaykim@korea.ac.kr; Tel.: +82-02-3290-3316

Received: 11 October 2018; Accepted: 14 November 2018; Published: 17 November 2018 ����������
�������

Abstract: Monthly flow predictions provide an essential basis for efficient decision-making regarding
water resource allocation. In this paper, the performance of different popular data-driven models
for monthly flow prediction is assessed to detect the appropriate model. The considered methods
include feedforward neural networks (FFNNs), time delay neural networks (TDNNs), radial basis
neural networks (RBFNNs), recurrent neural network (RNN), a grasshopper optimization algorithm
(GOA)-based support vector machine (SVM) and K-nearest neighbors (KNN) model. For this purpose,
the performance of each model is evaluated in terms of several residual metrics using a monthly
flow time series for two real case studies with different flow regimes. The results show that the
KNN outperforms the different neural network configurations for the first case study, whereas
RBFNN model has better performance for the second case study in terms of the correlation coefficient.
According to the accuracy of the results, in the first case study with more input features, the KNN
model is recommended for short-term predictions and for the second case with a smaller number of
input features, but more training observations, the RBFNN model is suitable.

Keywords: Gaussian process regression; grasshopper optimization algorithm; K-nearest neighbor
regression; neural network; support vector machine

1. Introduction

Future river discharge predictions have been widely used for flood control, drought protection,
reservoir management, and water allocation. However, it is difficult to develop an exact physically
based mathematical model to express the relationship between flow discharge and future forecasted
precipitations, due to various uncertainties. Owing to a lack of adequate knowledge regarding the
physical processes in the hydrologic cycle, traditional statistical models, such as the auto regressive
moving average (ARMA) and auto regressive integrated moving average (ARIMA) models [1], have
been developed to predict and generate synthetic data. Nevertheless, such models do not attempt to
represent the nonlinear dynamics inherent to the hydrological process, and may not always perform
well [2]. During the past few decades, artificial neural networks have gained considerable attention for
time series predictions [3]. ANNs have been successfully applied to river level predictions and flood
forecasting [4,5], daily flow forecasting [6], rainfall-runoff modeling and short-term forecasting [7], and
monthly flow predictions [8]. The main advantage of using an ANN instead of a conventional statistical
approach is that an ANN does not require information on the complex nature of the hydrological
process under consideration to be explicitly described in a mathematical form. However, ANN models
suffer from overfitting or overtraining, which decreases the capability of the prediction for data far
from the training samples.
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Another machine learning algorithm that appears to be successful in hydrological predictions is
support vector machine (SVM), which is also called support vector regression (SVR) when applied to
function approximation or time series predictions. SVMs have been successfully applied to time series
forecasting [9], the stock market [10] and in particular, water-related applications for the prediction
of wave height [11]), the generation of operating rules for reservoirs [12], drought monitoring [13],
water level prediction [14], and short- and long-term flow forecasting [15], among others. Overfitting
and local optimal solution are unlikely to occur with an SVM, and this enhances the performance
of SVM for the prediction. A major challenge in the application of the SVM method is the tuning
of the parameters of the model and kernels, which severely affects the accuracy of the results [16].
Applying SVR model in combination with other machine learning models can lead to more accurate
predictions [16,17] or discharge estimations at ungauged sites [18]. For this study, a grasshopper
optimization algorithm (GOA) [19] is used and combined with the SVM to enhance the ability of the
machine for river-flow predictions.

KNN is another data-driven method, a simple, but efficient, method to model monthly flow [20]
and daily inflow [21].

The main contribution of this paper is the assessment of different soft-computing methods in a
unified platform along with applying Gaussian process regression (GPR) and GOA-SVR models for
predicting monthly river discharge as the basis of reservoir management. To evaluate the efficiency
of the proposed models, two study area with different input variables are chosen. In the first study
area, the input data set involves monthly discharge and temperature, each with three temporal lags,
which belong to a period of 18-years (from 1983 to 2004) and in another case study, there are three
input variables, including river discharge of three temporal lags which have been observed monthly
during 40 years (from 1962 to 1990). The results obtained were compared with those found by different
types of artificial neural networks, including feedforward neural networks (FFNNs), time delay neural
networks (TDNNs), radial basis neural networks (RBFNNs), recurrent neural networks (RNNs), and
a KNN model. The remainder of this paper is organized as follows. In Section 2, a brief description
of the models and their concepts, including the GPR, SVR, GOA, ANN configurations, and KNN,
are represented. The case studies used, and their characteristics, are then illustrated in Section 3.
In Section 4, the models are applied to time series predictions for the two case studies, and the
performance of the models is compared in terms of statistical metrics. Finally, Section 5 offers some
concluding remarks and future research issues.

2. Materials and Methods

There are many textbooks and scientific papers in the literature that provide a detailed description
of GPR [22], SVM [23,24], neural networks, and their variants [25] in terms of both theory and
application. Hence, in this paper, only a brief description of the applied techniques is given.

2.1. Gaussian Process Regression

Gaussian process regression (GPR) as a statistical method, is a generalization of the Gaussian
probability distribution. This method is described as follows:

Consider a training dataset with n observations D = {(xi, yi)|i = 1, 2, . . . , n}where xi is the input
variable and yi is the target. The principal goal is the estimation of output value y∗ corresponding to
the new (test) input x∗. In the Gaussian process regression, it is assumed that the observations are
noisy as yi = f (xi) + ε where f (x) is a regression function approximated by a Gaussian process with
the corresponding mean m(x) that is often null and the covariance (or kernel) function k(x, x′). Also, ε

is the noise that follows a Gaussian distribution N(0, σ2
n). Thus, the form of GPR model is as follows:

f (x) ∼ GP(m(x), k(x, x′)) (1)

m(x) = E( f (x)) (2)
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k(x, x′) = E(( f (x)−m(x))( f (x′)−m(x′))) (3)

k =


cov(x1, x1) cov(x1, x2) . . . cov(x1, xn)

cov(x2, x1) cov(x2, x2) . . . cov(x2, xn)
...

... . . .
...

cov(xn, x1) cov(xn, x2) . . . cov(xn, xn)

 (4)

Considering the properties of Gaussian distribution, the marginal distribution of y can be
defined as:

p(y|X) = N(y
∣∣∣ f , σ2

n I) (5)

where, X is the input data set, y is the set of target values and f = [ f (x1), f (x2), . . . , f (xn)] is the value
of the stochastic function f calculated for each input variable. There is a joint distribution between
outputs y and f∗ as below: [

y
f∗

]
∼ N(0,

[
K(x, x) + σ2

n I K(x, x∗)
K(x∗, x) K(x∗, x∗)

]
) (6)

where x∗, f∗, and I are the test data set, testing outputs, and identity matrix, respectively. In addition,
K(x, x), K(x, x∗) and K(x∗, x) are covariance matrices. The covariance function plays an important
role in a Gaussian process regression to specify the similarity among data. There are several types of
covariance functions; some of the most useful ones are written in the following:

• Squared exponential: KSE(x, x′) = σ2
f exp

[
− (x−x′)2

2σ2
l

]
;

• Exponential: KE(x, x′) = σ2
f exp

(
− (x−x′)

σl

)
;

• γ-exponential: K(x, x′) = σ2
f exp

(
−
(
(x−x′)

σl

)γ)
for 0 < γ ≤ 2;

• Rational quadratic: KRQ(x, x′) = σ2
f

(
1 + (x−x′)2

2ασ2
l

)−α

;

• Matern 3/2: KM(x, x′) = σ2
f

(
1 +

√
3(x−x′)

σl

)
exp

(
−
√

3(x−x′)
σl

)
;

• Matern 5/2: KM(x, x′) = σ2
f

(
1 +

√
5(x−x′)

σl
+ 5(x−x′)2

3σ2
l

)
exp

(
−
√

5(x−x′)
σl

)
.

where σ2
n is the noise variance; σl (the length scale parameter), σf (the signal standard deviation), α

and γ are the parameters to be learned. The marginal likelihood is defined according to the Equation
(7), where p( f |X ) is the prior and p(y| f , X ) is the likelihood. The log prior is defined as Equation (8),
and the final log marginal likelihood is obtained as Equation (9):

p(y|X ) =
∫

p(y| f , X)p( f |X )d f (7)

log p( f |X ) =
−1
2

f TK−1 f − 1
2

log|K| − n
2

log 2π (8)

log p(y|X ) =
−1
2

yT(K + σ2
n I)y− 1

2
log
∣∣∣K + σ2

n I
∣∣∣− n

2
log 2π (9)

According to the conditional distribution, the prediction process in GP regression for a given test
data can be stated as:

f∗|x, y, x∗ ∼ N(m( f∗), k( f∗)) (10)

where m( f∗) and k( f∗) are considered as posterior mean and covariance functions, respectively and
defined as:

m( f∗) , K(x∗, x)
[
K(x, x) + σ2 I

]−1
y (11)
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k( f∗) , K(x∗, x∗)− K(x∗, x)
[
K(x, x) + σ2 I

]−1
K(x, x∗) (12)

For more details on GPR algorithm, the reader is referred to [22].

2.2. SVR

Support Vector Machine is employed as a regression method in which a function is applied to
discover the relationship between input and output variables, x and y, respectively.

f (x) = WTφ(x) + b (13)

y = f (x) + noise (14)

where mapping the input vector into a high dimensional space is performed by non-linear transfer
functions, φ(x). The most important feature of this space is the possibility of using a simple linear
regression function. W is a coefficient vector and b represents a bias term.

A set of training data are employed to determine f (x) by calculating W and b. Then, the obtained
coefficients are used to minimize the error function as below equations:

Min
1
2
‖W‖2 + C

N

∑
i=1

(ξi + ξ∗i ) (15)

Subject to:
Wφ(xi) + b− yi ≤ ε + ξ∗i
yi −Wφ(xi) + b ≤ ε + ξi
ξi, ξ∗i ≥ 0, i = 1, 2, . . . , N

In the training process, the occurrence of the training error is inevitable. Therefore, a penalty term
must be considered which is demonstrated by C. φ and N are the kernel function, and the number of
samples, respectively. Moreover, ξi, ξ∗i are two indices of slack variables. ε stands for loss function
related to the accuracy of the training process.

Finally, the SVR function can be rewritten as:

f (x) = ∑ (αi, α∗i ).K(x, xi) + b (16)

where αi, α∗i ≥ 0 are Lagrangian coefficients, K(x, xi) is the kernel function. In the following, there is a
number of these functions

• linear, K(xi, xj) =
〈

xi, xj
〉
;

• polynomial, K(xi, xj) =
(
γ
〈

xi, xj
〉
+ r
)d, γ > 0;

• radial basis function (RBF) or Gaussian, K(xi, xj) = eγ‖xi−xj‖d
, γ > 0;

• sigmoid, K(xi, xj) = tanh(γ
〈

xi − xj
〉
+ r), γ > 0;

• quadratic, K(xi, xj) = (< xi, xj > +1)2.

The best SVR parameter values are often selected through a grid search with exponentially
growing sequences of parameter values [23]. Another approach is applying an optimization algorithm.
In this paper, GOA is applied to identify optimal values for the SVR parameters. The main steps of
this algorithm are briefly described in the following section. The details of the SVR algorithm can be
found in [23,24].

It is worth noting that there is a relationship between GPR and SVR algorithms. In order to
obtain the maximum a posteriori margin (MAP) value of p( f |X ), presented in Equation (8), the below
equation must be minimized:

1
2

f TK−1 f −∑ log p( f |X ) (17)
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On the other hand, by kernelizing Equation (13), the objective function can be stated as:

1
2

f TK−1 f + C
n

∑
i=1

(ξi + ξi
∗) (18)

As can be seen, these two optimization problems are similar and by using a particular kernel and
likelihood function in GPR model, the SVR model can be derived [22].

GOA Algorithm

The grasshopper optimization algorithm developed by Saremi et al. [19] is one of the recent
algorithms inspired by grasshopper swarm behavior in nature. Grasshoppers, the insects moving in a
network to find food, have a social interaction that leads to one of two type forces: Opposite forces
and attraction forces that make possible global and local search, respectively. There is an area called
comfort zone, where there is a balanced state between these forces such that they neutralize each other.

To reach the network target, in each step, grasshoppers move in the way so that their position is
at the least spatial distance from the target while there must be a balance between local search and
global search. Ultimately, after repeating the search steps, grasshoppers meet the optimum position.
The mathematical structure of the grasshopper optimization algorithm is as follows:

Xd
i (t + 1) = c


G

∑
j = 1
j 6= i

c
ubd − lbd

2
s(
∣∣∣Xd

j (t)− Xd
i (t)

∣∣∣)Xj(t)− Xi(t)
dij

+ T̂d (19)

s(d) = f exp(
−d

l
)− exp(−d) (20)

where:

Xd
i (t): the d-dimensional position of the ith grasshopper in the iteration t;

G: the number of grasshoppers;
s: an evaluation function of social interactions;
l: the attractive length scale;
ubd: the upper bound in the d-dimensional functions;
lbd: the lower bound in the d-dimensional functions;
dij: the distance between the ith and jth grasshoppers;

T̂d: is the d-dimensional position of the optimum solution found;
c: the reduction factor to decrease the comfort zone;

In this algorithm, three agents have influences on the new place of each grasshopper: Its current
location, the target point, and the situation of other grasshoppers.

2.3. Artificial Neural Networks

Artificial Neural Networks (ANNs) are highly flexible tools commonly used for function
approximation and time series predictions. ANNs are typically a collection of neurons with a specific
architecture constructed based on the relationship among neurons at different layers. This relatively
complex architecture provides a nonlinear mapping from the input to the output space that can be
used for a time series prediction. A typical problem of neural networks is overfitting or overtraining of
the network arising from the “conformability” of the model structure with the shape of the available
data. Overfitting decreases the generalization ability of ANN and degrades the accuracy level of
the approximation model for data away from the training data. In this study, the early stopping
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approach [26] is used to avoid overtraining of ANN models. It is worth pointing out that this approach
requires consistent data availability, and its application is not suggested in cases with sparse data
where some alternative methods have better performance. In this technique, the available data are
divided into three subsets. The first subset is the training set, which is used for computing the gradient
and updating the network weights and biases. The second subset is the validation set. The error in
the validation set is monitored during the training process. The validation error normally decreases
during the initial phase of training, as does the training set error. However, when the network begins
to overfit the data, the error in the validation set typically begins to increase. When the validation error
increases for a specified number of iterations, the training is stopped, and the weights and biases at the
minimum of the validation error are returned. The test set error is not used during training but is used
to verify the generalization capability of the ANN model after training.

Based on the configuration of the network elements, different types of neural networks have been
developed, and in this study, three commonly used ANNs, i.e., feedforward NNs, time delay NNs,
and radial base NNs were chosen for monthly flow predictions. These networks are briefly described
in the following section.

2.3.1. Feedforward Neural Networks

Feedforward neural networks (FFNNs) in this paper refer to multilayer perceptrons (NN-MLPs),
which are by far the most popular type of neural networks [27]. Figure 1 illustrates a standard FFNN
consisting of three layers: An input layer (note that sometimes an input layer is not counted as a layer),
a hidden layer, and an output layer.

Figure 1. A feedforward neural network (FFNN).

As shown in this figure, the output of an FFNN for any given input pattern zp is calculated with a
single forward pass through the network. For each output unit ok, we have

ok,p = fok

(
netok,p

)
= fok

(
J+1

∑
j=1

wkj fyj(netyj,p)

)
= fok

(
J+1

∑
j=1

wkj fyj

(
I+1

∑
i=11

vjizi,p

))
(21)

where fok and fok are the activation function for output unit ok and hidden unit yj, respectively, wkj is
the weight between output unit ok and hidden unit yj, and zi,p is the value of input unit zi of input
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pattern zp. In addition, the (I + 1)-th input unit and the (J + 1)-th hidden unit are bias units, representing
the threshold values of neurons in the next layer.

FFNNs with one sigmoidal hidden layer and a linear output layer have been proven capable of
approximating any function with any desired accuracy if the associated conditions are satisfied [28].

In this study, a two-layer feedforward neural network (one hidden layer and one output layer) is
used for predicting monthly flows. The number of neurons in the hidden layer, along with the weights
and biases, are obtained, based on the errors in the predicted values. Sigmoid and linear activation
functions are used for the hidden layer and output layer, respectively. The weights and biases of the
network are obtained using a back propagation Levenberg-Marquardt algorithm. After tuning the
weights and testing the network, it is used for the prediction.

2.3.2. Radial Basis Neural Network

Radial basis neural networks are referred to as networks that, in contrast to conventional neural
networks use regression-based methods and are not inspired by the biological neural system [29]. They
work best when many training vectors are available [30]. A radial basis function (RBF) neural network
(RBFNN) is an FFNN in which hidden units do not implement an activation function, but represent
a radial basis function. An RBFNN approximates the desired function through the superposition of
non-orthogonal, radially symmetric functions. An RBF is a three-layer network, with only one hidden
layer. The output of each hidden unit is calculated as follows:

yj,p(zp) = Φ
(
‖zp − µj‖2

)
(22)

where µj represents the center of the basis function, and ‖•‖2 is the Euclidean norm. The output of an
RBFNN is calculated as

ok,p =
J+1

∑
j=1

wkjyj,p (23)

2.3.3. Time Delay Neural Networks

MLP neural networks only process input patterns that are spatial in nature, i.e., input patterns
that can be arranged along one or more spatial axes, such as a vector or an array [30]. In many tasks,
such as a time series prediction, the input pattern comprises one or more temporal signals. Time-delay
neural networks (TDNNs) are of the dynamic neural network configurations that can handle temporal
patterns of data. A TDNN [31] is a temporal network in that its input patterns are successively delayed
over time. A single neuron with nt time delays for each input unit is illustrated in Figure 2. The output
of a TDNN is calculated as follows:

ok,p = fok

(
J+1

∑
j=1

wkj fyj

(
I

∑
i=1

nt

∑
t=0

vj,i(t)zi,p(t) + zI+1vj,I+1

))
(24)
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Figure 2. A single time delay neuron.

2.3.4. Recurrent Neural Network

This section is intended for recurrent neural network (RNN) description. RNNs have a feedback
loop to enhance the ability to learn from data sets. A simple type of these networks is schematized in
Figure 3. As shown, outputs of the hidden layer, before entering to the output layer, are considered as
new inputs with weights equal 1, to the (first) hidden layer. The input vector is therefore [25]:

z = (z1, · · · , zI+1︸ ︷︷ ︸
actual inputs

, zI+2, · · · , zI+1+J︸ ︷︷ ︸
context layer

) (25)

Figure 3. A recurrent neural network (RNN).
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Context units zI+2, . . . , zI+1+J are connected to all hidden units yj (for j = 1, · · ·, J) with a weight
equal to 1. Thus, the activation value yj is simply copied to zI+1+j. Each output unit’s activation is then
calculated as [25]:

ok,p = fok

(
J+1

∑
j=1

wkj
fyj(

I+1+J

∑
i=1

vjizi,p)

)
(26)

where (zI+2,p, . . . , zI+1+J,p) = (y1,p(t−1), . . . , yJ,p(t−1)).

2.4. KNN Model

K-nearest neighbor (KNN) method, one of the nonparametric regression methods, utilizes the
own data set to estimate the unknown variables applying the data in the nearest neighbor. Each of the
close neighbors, the participants in the estimation process, has own weight which is determined based
on its Euclidean distance from the unknown variable. The KNN formulation is presented as:

Zr =
K

∑
k=1

fk(∆rk)× Zk (27)

where Zr is the amount of the unknown variable, Zk is the neighbors’ values in the estimation process,
∆rk is the Euclidean distance between known and unknown variables, and fk(∆rk) is the weight of
each neighbor in the estimation process determined as follows:

fk(∆rk) =
1/∆rk

K
∑

k=1
1/∆rk

(28)

Since, the number of diverse neighbors, leads to different results, it is important to find the best
number of neighbors. Here, the choice of the various number of neighbors leads to relatively similar
accuracy and the optimal value of K, considered as 7, has been obtained through a trial and error
process with an accuracy of r2 = 0.97 in terms of the correlation coefficient.

For the Alavian Basin, both the temperature and discharge data are available from the recorded
data from Maragheh Station. Therefore, the monthly discharges and temperatures with three temporal
lags, i.e., Q(t − 2), Q(t − 1), Q(t), T(t − 2), T(t − 1), and T(t), are considered as input variables to predict
the next month’s discharge of the river, Q(t + 1), as the output variable. To assess the performance of
the models, the observed time series datasets were divided into two independent subsets, namely,
training and verification subsets. The training sets were used to learn the GPR, the SVR, and ANNs for
prediction, whereas the verification sets were used to verify the ability of the models for prediction.
The dataset from June 1983 to November 1996 (75% of the data) was selected for training, whereas that
from December 1996 to June 2001 (the remaining 25%) was used for verification.

3. Case Studies

In this paper, two different study areas in Iran were considered to analyze the capabilities of the
developed techniques in the prediction of monthly river flows.

3.1. Alavian Basin

The first study region is Alavian Basin with an area of 239.10 km2 in the northwest part of Iran
(Figure 4). Sufichay River is the main stream of the basin, which ends at Erumiyeh Lake. This river also
constitutes the main inflow discharges to Alavian Dam, and its average annual discharge is estimated
to be around 4.6 MCM. For this area, weather information, including the average precipitation and
temperature at a monthly scale for an 18-year period (from 1983 to the end of 2001), were gathered
from the Maragheh weather station, and monthly flow discharges were provided using the historical
records of the Tazkand hydrometric station upstream of Alavian Dam. Owing to the snow melting
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in this basin, the monthly flow data can be a function of seasonal variations, and thus all gathered
information, including monthly discharges and temperatures, each with three temporal lags, were
considered as the inputs of the models (six input variables) for predicting the monthly flows. Figure 4
also shows the status of the monitoring stations in the Sufichay Basin.

Figure 4. Map of the Alavian River Basin.

3.2. Dez Basin

The second area chosen is Dez Basin, which has a considerably larger area and flow discharges
than the former basin. This basin with an area of 23,252 km2 is located in the western part of Iran,
between longitude 48◦10′ to 50◦20′ and latitude 31◦36′ to 34◦08′. The main river of the basin, Dez River,
stems from the mountainous areas upstream, and ends up in the Persian Gulf. Half of the precipitation
occurs during the winter. Two-thirds of the area is higher than 1000 m, and one-third is higher than
2000 m. Hence, precipitation most often occurs in the form of snow. Figure 5 shows the state of the
Dez Dam and the monitoring stations spread throughout the basin. The monthly flow data from the
TaleZang hydrometric station, upstream of Dez Dam, for 1962 to 1999 are available, and thus, only this
period of data was used for predicting the monthly flows in this case study.
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Figure 5. Map of the Dez River Basin.

4. Results and Discussion

To employ the GPR for monthly flow prediction, a rational quadratic function was chosen as the
appropriate kernel function and the basis function was considered as constant. The related parameters
for the rational quadratic kernel were acquired as σl = 2.61, α = 91.69, and σf = 7.49. To use the SVR
for prediction, the SVR algorithm was coded in MATLAB, and a GOA algorithm was then utilized to
identify the best values for the SVR parameters. Table 1 shows the suitable parameter values of the
GOA algorithm.

Table 1. The parameters used in the grasshopper optimization algorithm (GOA).

Parameter Lower Bound Upper Bound Search Agents Max Iteration

ε 0.01 0.3
100 100C 1 100

Support vector regression with quadratic kernel function was considered for prediction process.
The optimal parameters for the quadratic kernel were obtained as ε = 0.001 and C = 231.52.

For the training of neural networks, as mentioned, the observed data were divided into three
subsets: Training, validation, and test datasets. The previous verification data (from December 1996
to June 2001) used for the evaluation of the SVR are considered the test data of the ANNs. A portion
of the remaining data (20%) is randomly selected as the validation dataset, and the other portion is
used for training the networks (tuning the weights and biases). In order to avoid overfitting, K-fold
cross-validation with k = 5 is used in all methods.

To select a suitable architecture, different architectures are checked; however, when considering
different architectures, the arrangement of the training, validation, and testing data are not changed.
Furthermore, the training of all architectures is started with the same initial weights and biases.
The candidate architecture is constructed by only one hidden layer, and the network is allowed to
incrementally increase the numbers of its neurons within a suitable range. This range depends on the
amount of data available for training, and five to 20 neurons are considered herein. After stopping the
training process, errors in the network, including (training + validation) the dataset and test dataset
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(also referred to as verification data), are checked and the network with the minimum level of error is
chosen for a time series prediction.

For both the FFNN and TDNN, the best architecture was obtained as a network with 14 neurons
in the hidden layer. For the RBFNN, the number of neurons was equal to the number of experimental
pairs of training data, and the Gaussian function parameter was determined by the user through trial
and error. Moreover, for the RNN, the best network contains 9 hidden neurons.

To compare the performance of the described techniques for a monthly flow prediction, several
statistical metrics, including R, MRAE, MAE, AME, MSE, RMSE, and E, were considered. These
metrics and their values are tabulated in Tables 2 and 3 for the training and verification datasets,
respectively. All metrics have an ideal value equal to zero except for R and E metrics, whose ideal
value is 1.

Table 2. Residual criteria for the results of training data for Alavian Basin, where n is the number
of observations, yi and ŷi are the simulated and observed data, respectively, and ŷi is the average
observed data.

Criteria Formula FFNN TDNN RBFNN RNN GPR SVR-
Quadratic KNN

correlation
coefficient

(R)

n(
n
∑

i=1
ŷiyi)−(

n
∑

i=1
ŷi)(

n
∑

i=1
yi)√

[n
n
∑

i=1
ŷi

2−(
n
∑

i=1
ŷi)

2
][n

n
∑

i=1
yi

2−(
n
∑

i=1
yi)

2
]

0.94 0.95 0.93 0.92 0.94 0.92 0.88

Mean
Relative
Absolute

Error
(MRAE)

1
n

n
∑

i=1

|yi−ŷi |
ŷi

0.378 0.425 0.464 0.53 0.43 0.45 0.47

Mean
Absolute

Error (MAE)

1
n

n
∑

i=1
|yi − ŷi| 1.051 0.947 1.181 1.25 1.23 1.13 1.41

Absolute
Maximum

Error (AME)
max|yi − ŷi| 6.492 6.250 7.2511 8.44 7.16 8.08 8.73

Mean Square
Error (MSE)

1
n

n
∑

i=1
(yi − ŷi)

2 2.627 2.046 3.213 3.99 4.02 3.35 5.35

Root Mean
Square Error

(RMSE)

√
1
n

n
∑

i=1
(yi − ŷi)

2 1.621 1.430 1.792 1.99 2.01 1.83 2.31

Nash-Sutcliffe
Coefficient

(E)
1− ∑n

i=1(ŷi−yi)
2

∑n
i=1(ŷi−ŷi)

2 0.885 0.910 0.859 0.83 0.81 0.85 0.77

Table 3. Residual criteria for the results of verification data, Alavian Basin.

Criteria FFNN TDNN RBFNN RNN GPR SVR-Quadratic KNN

R 0.91 0.9 0.9 0.92 0.91 0.87 0.92
MRAE 0.491 0.670 0.513 0.7 0.5 0.55 0.53
MAE 0.977 1.048 1.041 1.13 0.99 1.11 0.95
AME 5.936 5.804 5.753 5.78 6.16 7.07 5.84
MSE 2.451 2.710 2.772 2.79 2.6 3.39 2.23

RMSE 1.566 1.646 1.665 1.67 1.61 1.84 1.49
E 0.822 0.803 0.7985 0.81 0.81 0.76 0.84

In the first case study, the KNN model has the best performance according to the residual criteria
for the results of verification data, including R, MSE, RMSE and E. Among the neural network models,
RNN model has the highest correlation coefficient and the other predictors, i.e., FFNN, TDNN, and
RFBNNs, showed almost the same level of performance in this case and SVR-Quadratic with optimal
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parameters, could not improve the prediction accuracy. In the models, such as ANNs, SVR, and GPR
where there is a training step, as the number of noisy input variables increases, the prediction accuracy
decreases. The KNN model, unlike other techniques, has no training process.

Figure 6 shows scatter plots of the observed discharges versus the predicted discharges during the
training (left) and verification (right) periods for the five prediction models. This figure also confirms
the KNN forecasting method has the desired performance based on the value of the correlation
coefficient. In order to provide a visual comparison between the applied models, the results of the
correlation coefficient (R), the most important criterion in the process of choosing the best model, are
reported in the form of a bar histogram in Figure 7.

Figure 6. Performance of SVR-Quadratic and KNN (the worst and best techniques) in terms of correlation
coefficient for Alavian Basin: (a) SVR-Quadratic_training data; (b) SVR-Quadratic_verification data;
(c) KNN-training data; (d) KNN- verification data.

Figure 7. Bar histogram of the correlation coefficient (R) values derived from various models.
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Figure 8 compares the flows predicted by the models with the flows observed during the
verification periods. It can be seen that the RNN and RBFNN models produce mostly the same
results, whereas the TDNN model has slightly worse prediction for low flows. Again, the KNN
model shows highly accurate predictions, whereas less accurate results are obtained by the SVR with
quadratic kernel.

Figure 9 plots the observed and predicted flows by KNN model versus the whole time series
period for June 1983 to June 2001 (during both the training and verification periods). This figure clearly
demonstrates the high capability of the KNN model for predicting a monthly discharge.

Figure 8. Monthly flow prediction for verification dataset for Alavian Basin: (a) NNRBF and RNN, and
(b) NNRBF, SVR-Quadratic, KNN, and GPR.
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Figure 9. Cont.
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Figure 9. Comparing the observed flows with the predicted flows obtained by (a) KNN and (b) SVR-Quadratic for the period 1983–2001 for Alavian Basin.
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The second case study was conducted on the Dez River Basin, which has considerably higher
flow regimes and longer periods of observed data than the previous area. For this case, the only type
of data available was on the monthly discharge, and thus monthly discharges with three temporal lags,
i.e., Q(t − 2), Q(t − 1), and Q(t), were used as the input variables to predict the next month’s river
discharge, Q(t + 1), as the output variable. In this case, the dataset from April 1962 to August 1988
(70% of the data) was selected for training, whereas the dataset from September 1988 to November
1999 (the remaining 30%) was used for verification.

To apply the GPR for monthly discharge prediction, the model with a squared exponential kernel
function and a constant basis function was selected as the proper regression model. The related
parameters for the rational quadratic kernel were acquired as σl = 2.86 and σf = 321.98.

The optimal parameters for the SVR with a quadratic kernel were obtained as ε = 0.0166 and
C = 1. The best architecture for the FFNN, TDNN, and RNN models was obtained for networks with
14, 10, and 37 neurons in the hidden layer, respectively.

The results of training and verification based on residual metrics are shown in Tables 4 and 5,
respectively. Here, the best performance is by the RBFNN model based on R, AME, MSE, RMSE and E
criteria. The RBFNN model showed the better performance because in this case study there were more
observed data, and RBF networks perform better than other NNs as there is a large number of training
vectors available [30].

Table 4. Residual criteria for the results of the data training for Dez Basin.

Criteria FFNN TDNN RBFNN RNN GPR SVR-Quadratic KNN

R 0.76 0.7 0.91 0.7 0.77 0.74 0.71
MRAE 0.365 0.538 0.292 0.55 0.42 0.67 0.36
MAE 96.815 125.487 62.5402 113.64 94.169 112.2 94.79
AME 1092.976 1177.905 418.0132 1210.2 1095.94 1178.4 1132.9
MSE 27,871.642 36,228.586 10,857.818 29,642.51 23,597.1 26,823.89 28,282

RMSE 166.948 190.338 104.201 172.17 153.61 163.78 168.17
E 0.553 0.414 0.826 0.48 0.59 0.53 0.5

Table 5. Residual criteria for the results of verification data for Dez Basin.

Criteria FFNN TDNN RBFNN RNN GPR SVR-Quadratic KNN

R 0.75 0.71 0.89 0.82 0.73 0.73 0.72
MRAE 0.503 9.508 0.807 0.65 0.58 0.67 0.55
MAE 92.649 103.872 78.786 111.55 118.2 131.51 117.15
AME 526.256 632.494 373.554 581.38 764.72 785.74 826.99
MSE 20,467.509 23,024.515 12,757.705 24,670.98 34,144.9 34,384.28 35,878.1

RMSE 143.065 155.391 112.950 157.07 184.78 185.43 189.42
E 0.536 0.447 0.711 0.67 0.53 0.53 0.51

Comparing other neural network models, it is evident that RBFNN has the best performance
according to the R2 and E criteria. Furthermore, the results of R, MSE, RMSE and E criteria from these
two case studies also show that the FFNN outperforms the TDNN. This means that establishing a
static neural network (or FFNN) with independent input variables of the time lags is more successful
for time series prediction than time delay network configurations, which have a smaller number of
input variables, but with delay signals.

Figure 10 shows the scatter plots of observed discharges versus the predicted discharges during
the training (left) and verification periods (right), and the correlation coefficient for the best and
the worst prediction models. The RBFNN method is also more accurate in terms of the correlation
coefficient. As displayed in Figure 11, the bar histogram of correlation coefficient values acquired from
various models shows the best performance of NNRBF model.
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Figure 10. Performance of TDNN and NNRBF (the worst and best techniques) in terms of correlation
coefficient for Dez Basin. (a) TDNN- training data; (b) TDNN- verification data; (c) NNRBF- training
data; (d) NNRBF- verification data.

Figure 11. Bar histogram of the correlation coefficient (R) values obtained from various models.

Figure 12 shows a graphical comparison of the observed data and the results of the prediction
models for the verification period in Dez Basin. The FFNN and TDNN models show a relatively
suitable prediction for median and low flows, but their prediction capability for extreme flows is poor.
The RBFNN model predicts extreme flows slightly better than the two previous models. Although the
GPR, SVR-Quadratic, and KNN models have the relatively same prediction quality, their prediction
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performance is weaker than the RBFNN, FFNN, and RNN models. Figure 13 shows the observed and
predicted discharges of the RBFNN model for the whole time series, from April 1962 to November 1999.

Figure 12. Monthly flow prediction for verification dataset for Dez Basin: (a) NN-MLP and TDNN,
and (b) NNRBF, SVR-Quadratic, KNN and GPR.
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Figure 13. Cont.
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Figure 13. Comparison of the observed flows with predicted flows obtained by (a) NN-RBF and (b) TDNN for the period 1962–1999 for Dez Basin.



Water 2018, 10, 1676 22 of 24

5. Conclusions

In this study, GPR and GOA based SVR models were applied to predict long-term river flows
in Alavian and Dez Basins based on historical records. Five other machine learning algorithms, i.e.,
feedforward neural network, time delay neural network, radial basis neural network, recurrent neural
network, and KNN were also established to verify the capability of these algorithms for discharge
prediction. Through a comparison of the results based on the value of the coefficient of correlation, it
was found that the KNN model, without any training process in which a part of noisy data is used to
train the model, and RBFNN model can provide more accurate predictions for Alavian and Dez Basins,
respectively. In the first study area, Alavian Basin, where there were six predictor variables, the KNN
and RNN models have the maximum correlation coefficient in comparison to other models. Based on
MRAE criterion for the verification data, the FFNN model is the most accurate prediction model and
the GPR has a better performance than the SVR-Quadratic and KNN models. In the first study area,
KNN has the lowest prediction error in terms of MAE and MSE criteria. In addition, FFNN with a
lower value of MAE and MSE criteria than TDNN, RBFNN, RNN, GPR, and SVR-Quadratic, provides
more accurate predictions. Also, the RNN model has less predictive accuracy in terms of MRAE, MAE,
and RMSE than FFNN and RBFNN models in Alavian Basin. In the second case study, Dez Basin
with more observations, but fewer features, in comparison to the first study area, the RBFNN model
has been selected as the best predictor model based on correlation coefficient (R) criterion for the
verification data. Although, the SVR model linked with a powerful optimizer, i.e., the GOA algorithm
to identify the SVR parameters, leads to more accurate predictions than the GPR and KNN models in
terms of R criterion, but it was not precise enough for extreme point predictions and based on MAE
criterion, it has undesirable performance in comparison to other prediction models. In the study area
according to MAE, AME and MSE criteria, RBFNN has more accurate predictions than FFNN, TDNN,
RNN, GPR, SVR-Quadratic, and KNN. Furthermore, the RNN model has a higher prediction error
in terms of MRAE, MAE, AME, and MSE in comparison to FFNN and RBFNN models in Dez Basin.
Considering AME, and RMSE, the GPR model has a more accurate prediction than the SVR-Quadratic
and KNN models.

As a result, comparing the results of the current study, developing a GOA-SVR model, with many
of previous ones indicated that the GPR and SVR models are not always the best estimators in time
series prediction.

Applying other optimization algorithms, suggested for future researches, can affect the model
efficiency. Furthermore, changing the time step of observations (e.g., using daily data instead of
monthly ones) is proposed as another suggestion for future studies that may vary the derived results
from various models.
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