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Abstract: This study applied a GR4J model in the Xiangjiang and Qujiang River basins for
rainfall-runoff simulation. Four recurrent neural networks (RNNs)—the Elman recurrent neural
network (ERNN), echo state network (ESN), nonlinear autoregressive exogenous inputs neural
network (NARX), and long short-term memory (LSTM) network—were applied in predicting
discharges. The performances of models were compared and assessed, and the best two RNNs
were selected and integrated with the lumped hydrological model GR4J to forecast the discharges;
meanwhile, uncertainties of the simulated discharges were estimated. The generalized likelihood
uncertainty estimation method was applied to quantify the uncertainties. The results show that
the LSTM and NARX better captured the time-series dynamics than the other RNNs. The hybrid
models improved the prediction of high, median, and low flows, particularly in reducing the bias
of underestimation of high flows in the Xiangjiang River basin. The hybrid models reduced the
uncertainty intervals by more than 50% for median and low flows, and increased the cover ratios for
observations. The integration of a hydrological model with a recurrent neural network considering
long-term dependencies is recommended in discharge forecasting.

Keywords: recurrent neural networks; long-short term memory; hydrological modeling; uncertainty;
stream flow forecasting

1. Introduction

Hydrological models are used to predict streamflows, ground water content, evapotranspiration,
and other hydrological variables. Hydrological models can present rainfall-runoff processes and
broaden our understanding of rainfall-runoff. However, errors and uncertainties in hydrological
modeling are inevitable due to limited knowledge of the hydrological system, forcing and response
data, and simplification of the real world [1,2].

Prediction errors are often presented as underestimation or overestimation in the discharge
predicted by a hydrological model. Errors can measure the performance of a model and serve as bases to
improve the prediction accuracy against observation by regression analysis. Errors contain information
about both observations and models; thus, they can be used to improve forecasting [3–5]. Uncertainty is
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often quantified as a range of prediction error. It is propagated through observation, parameterization,
and model structure [6]. Alleviating the errors and controlling the range of uncertainties is one of
the main issues of hydrological forecasting. In predicting, since extreme flows are in the tails of the
hydrologic frequency distribution and less information is available, uncertainties in extreme flows are
often larger than those in the mean flows, which make it more difficult to forecast [7,8].

There are various approaches to handle errors. Many studies quantified uncertainty in hydrological
modeling by using Bayesian methods [9–11] or the generalized likelihood uncertainty estimation (GLUE)
approach [12–14]. Besides, attempts have been made to improve forecasting accuracy through reducing
uncertainty by developing more sophisticated physically-based hydrological models [15], using more
accurate input data [16–18], and applying error-correction methods such as Kalman filtering, fuzzy logic,
and autoregressive (AR) processes [4,5,19]. AR models are a commonly used error correction method
because of their simplicity; they are more efficient than artificial neural networks (ANNs) and other
nonlinear autoregressive methods [4]. However, AR models are linear, which is a disadvantage in
representing the nonlinear dynamics inherent in hydrological processes [20].

When complete and accurate forcing data is unavailable to hydrological modelers, it makes
data-driven methods appealing for hydrological prediction. A number of methods have been widely
used in streamflow, drought, and groundwater level prediction, such as support vector machine
(SVM) and ANNs with various structures, including multilayer perceptrons (MLPs), neuro-fuzzy
neural networks (NFNNs), back propagation artificial neural networks (BPNNs), and recurrent neural
networks (RNNs) [21–26]. A feed-forward artificial neural network such as a BPNN does not treat
temporal ordering as an explicit feature of time series, so it has difficulty in dealing with the short-term
dynamics of a nonlinear system [27]. RNNs contain blocks that can remember information for an
arbitrary length of time. They can retain information from previous samples, and are thus suitable for
capturing the dynamic behavior of time series by recurrently sending information in current layers
forward to other layers [28].

In this study, a parsimonious hydrological model that is a lumped one with only four parameters
and four types of RNNs are integrated to improve the streamflow forecasting. RNNs have been used for
prediction in several recent studies [29–32]. For example, Change et al. used back propagation neural
network (BPNN), Elman recurrent neural network (ERNN), and nonlinear autoregressive networks with
exogenous inputs (NARX) to forecast inundation levels during flood periods [32]. Chen et al. applied
a reinforced neural network (R-RTRL NN) to improve multi-step ahead forecasts of reservoir inflow
during typhoon events [31]. Liang et al. made forecasts of the Dongting Lake water level based on a long
short-term memory network [33]. RNNs have been used independently in the studies mentioned above,
and the results have been compared with static models rather than with other RNNs. There is little
comprehensive analysis of the RNN’s performance in predicting streamflow, and the uncertainties of
hydrological modeling are also an important issue that few studies have covered. Since prediction errors
carry information about both observations and model performance, improvement can be expected in
streamflow prediction by integrating an RNN with a hydrological model.

Four different kinds of RNNs (ERNN, ESN, NARX, and LSTM) are applied to assess their ability
in forecasting the discharges and study their influences on modeling uncertainties by integrating with
a hydrological model. Therefore, the main objectives of the study are: (1) to compare the performance
of the RNNs and the hydrological model in streamflow prediction; (2) to assess the improvement in the
forecasting of streamflow gained by integrating a hydrological model and networks in the data-driven
approach; and (3) to quantify the effect of incorporating error correction on forecasting uncertainty.

2. Materials and Methods

2.1. Data and Study Area

Two geographically separated river basins of different sizes were selected as study areas for
comparison: the Xiangjiang River, a tributary of the Yangtze River in central southern China with a
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drainage area of ~81,600 km2; and the Qujiang River located in eastern China with a drainage area
of 5290 km2. Figure 1 shows the location and tributaries of the rivers together with the observation
stations. Overlapping time series data for 15 years (1981–1995) of observed daily precipitation,
temperature, and discharges from each station were used. Ten years of the data (1981–1990) were
used for model calibration, and the other five years (1991–1995) were used for model validation. Both
the Xiangjiang River basin and the Qujiang River basin have a mean annual total precipitation of
~1500 mm, and are dominated by the subtropical high climate system, which features a hot and rainy
summer. The Xiangjiang River is sourced from Yongzhou, and flows northward to the Yangtze River,
with a total length of 844 km. The major land-use types of the Xiangjiang River basin are forests,
paddy field, rainfed cropland, and meadow. The Qujiang River is sourced from Huangshan, and flow
northeast to the Qiantang River, with a total length of 522 km. The major land-use type of the Qujiang
River basin is farmland, which accounts for 88%. Due to differences in the topography and the size of
the drainage area, the maximum daily discharge of the Xiangjiang basin (20,600 m3/s) is about four
times greater than that of the Qujiang basin discharge (4800 m3/s).
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2.2. GR4J Model

The GR4J daily catchment water balance model, which has only four parameters, is used in this
study, and it has been effectively and extensively used worldwide for many areas [34,35]. The GR4J
models input include precipitation and potential evapotranspiration (PET). The four parameters are:
X1 (mm), the capacity of the production reservoir; X2 (mm), the catchment groundwater exchange
coefficient; X3 (mm), the maximum daily capacity of the routing reservoir; and X4 (days), the time
base of the unit hydrograph. The model has four subroutines: the soil moisture subroutine, the
effective precipitation calculation subroutine, the slow flow subroutine, and the quick flow subroutine.
GR4J obtains net rainfall by subtracting potential evapotranspiration from precipitation. Net rainfall is
divided into two parts: one part goes into the production reservoir where evaporation and percolation
occur, and the other part goes directly to the flow routing reservoir. Water in the production reservoir
reaches the flow routing reservoir through infiltration. The two flow components are combined and
then split into 90% runoff routed by a unit hydrograph to the nonlinear routing reservoir and 10%
runoff routed by a single unit hydrograph to runoff. The total runoff is obtained by adding these two
runoffs together.
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In terms of the sole model simulation, the performances of the hydrological model are compared
with the RNNs that are described in the following sections using the same input data. In terms of the
integration, the error in the output from GR4J is given by subtracting observation from prediction.
The error, together with precipitation and PET, is then used as input to the RNNs to forecast the error in
the next time step. The opposite value of estimated error from the RNN is added back to the discharge
obtained by GR4J as the final predicted discharge.

ErrG(t) = QSG(t)− Qo(t) (1)

Errp(t + 1) = f (ErrG(t), P(t + 1), PET(t + 1)) (2)

QSI(t + 1) = QSG(t + 1)− Errp(t + 1) (3)

where ErrG and Errp represent the error from the GR4J modeling, and the predicted error with RNNs.
Qo, QSG, and QSI represent the observed discharges, simulated discharges with GR4J, and forecasted
discharges with the integration model, respectively. P and PET represent the precipitation and potential
evapotranspiration. t is the time step. f () represents the integrated RNN.

2.3. Elman Recurrent Neural Network

The Elman recurrent neural network (ERNN) is a three-layer recurrent neural network [36]. It is
the basis for more complex RNN architectures. The ERNN architecture is shown in Figure A1 in the
Appendix A. There are input layers, hidden layers, and output layers in the ERNN. At each time step,
the input is fed forward, and a learning rule is applied to update the parameters, which takes past
states into account through recurrent connections. The output from the hidden layer h(t − 1) at time t
− 1 is kept (as a past state), together with the input x(t) for time t, are then fed back to the hidden layer
at time t. In this way, the context units always maintain a copy of the previous values in the hidden
layers. The equations for the state and output of the ERNN are:

h(t) = f (Whx(t) + Uhh(t − 1) + bh) (4)

y(t) = g
(
Wyh(t) + by

)
(5)

where f (·) is the activation function (a sigmoid function) of the hidden layers; g(·) is the transformation
function (a softmax function) for the output layer; h(t) is a hidden layer that represents the content
of the network at time step t; Wh, Uh, and Wy are the weighted variance matrices between the input
and the hidden layers, the context units and the hidden layers, and the hidden layers and the output,
respectively; bh and by are bias vectors for the hidden layers and the output layers, respectively;
and x(t) and y(t) are the input and output at time step t. ERNN in this study is developed in Matlab.
Parameters are optimized using gradient descent with momentum and adaptive learning rate back
propagation [37]. There are 30 hidden units in the recurrent hidden layer. The mean squared error is
used as the loss function. The network is trained for 1000 epochs for calibration.

2.4. Echo State Network

Training and optimizing the parameters in an RNN is computationally expensive, and can
sometimes lead to local minima in high-dimensional problems. The echo state network (ESN) provides
an alternative to train and use RNNs. An echo state network is a three-layer recurrent neural network
with a sparsely and randomly connected hidden layer [38,39], as shown in Figure A2 in the Appendix A.
The ESN is composed of an input layer, a hidden layer (known as the reservoir) consisting of large,
random, and fixed neural networks that receive input signals, and an output layer that produces
output by a linear or nonlinear combination of the reservoir signals. The outputs are sent back to the
reservoir. The equations for the state and the output of the ESN are:
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h(t) = f
(
Winx(t) + Wh(t − 1) + W f by(t − 1) + ε(t − 1)

)
(6)

y(t) = g
(
Wout[x(t); h(t)]

)
(7)

where x(t) and y(t) are respectively the input and output at time step t; h(t) is the hidden layer at time
step t; Win is the weight between the input and the hidden layer; W is the weight between the previous
state and the current state of the hidden layer; W f b is the weight between the previous output and the
hidden layer; and Wout is the weight between the concatenation of the input and hidden layer and the
output; [;] represents vector concatenation; ε(t − 1) is noise; and f (·) is the sigmoid function.

A variant of the basic ESN is an ESN with leaky integrator neurons. This kind of neurons not
only controls the input and output feedback scaling and the spectral radius of the reservoir, but also
controls the leaking rate. Such an ESN is more suitable for modeling a dynamic system. The equation
for the state can be expressed as:

h(t) = (1 − αγ)h(t − 1) + γ f
(
Winx(t) + Wh(t − 1) + W f by(t − 1) + ε(t − 1)

)
(8)

where α > 0, γ > 0, αγ < 1, α and γ are parameters for the leaky integrator neurons, and α > 0 is the
leaky decay rate. An ESN with leaky integrator neurons is used in this study. It contains 30 reservoir
units; the spectral radius is set to 0.5; input and output feedback scaling are in the interval [0.1, 1]; all of
the weights are fixed with randomly chosen values in the interval [–1, 1] having a uniform distribution.
Wout is going to be trained, and the training process is called teacher forcing, which is accomplished
by solving a convex problem using stochastic gradient descent.

2.5. Nonlinear Autoregressive Exogenous Inputs Neural Network

A nonlinear autoregressive exogenous inputs neural network (NARX) is a recurrent neural
network with several hidden layers that is suitable for modeling nonlinear systems, especially a
time series [40]. Gradient-descent learning can be more effective in NARXs than in other recurrent
architectures, and gives better performance for a time series with long-term dependencies [41,42].
The predicted value at the tth time step, y(t), can be expressed as:

y(t) = φ
(
y(t − 1), . . . , y

(
t − dy + 1

)
, x(t), x(t − 1), . . . , x(t − dx)

)
(9)

where φ(·) is the nonlinear mapping function performed by a multilayer perceptron (MLP); x(t) is the
input at time t; and dx and dy are the input and output lags, with dy ≥ 1, dx ≥ 1, and dy ≥ dx.

NARX architecture is shown in Figure A3 in the Appendix A. The NARX model in this
study is developed using Matlab. In training the NARX parameters, the output from the network
is fed back with the input, and the parameters can be obtained by a quasi-Newton search,
the Levenberg–Marquardt algorithm [43]. The loss function is the mean squared error. There are
10 hidden layers, and the network is trained for 1000 epochs.

2.6. Long Short-Term Memory

RNNs often experience the problem that error signals can either explode or vanish after several
steps of propagating to previous layers. NARXs provide an orthogonal mechanism to deal with such
problems by using a single factor, which represents the number of delays [44]. The long short-term
memory (LSTM) network also deals with the vanishing gradient or exploding problems. A long
short-term memory (LSTM) network is a special type of recurrent neural network. It was first
developed by Hochreiter and Schmidhuber [45] and then refined by many other researchers [46–48].
It preserves states over long periods of time without a loss of short-term dependencies by introducing
gates to blocks [45]. The gates help the LSTM network decide what to forget and what to remember,
so it avoids error signal decay by keeping the errors in memory. This feature of LSTM is also suitable
for discharge forecasting, where the predicted discharge is related to previous simulations over a
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long period. LSTM networks have gained attention recently because of their capacity to remember
information for a long time. LSTMs are effective in making time-series predictions for air pollution [49],
sewer overflow monitoring [50], rainfall-runoff modeling [51], and lake water level forecast [33].

Similar to other RNNs, the LSTM network consists of an input layer, an output layer, and a
number of hidden layers, and the architecture has the form of a chain of repeating modules of neural
networks. The repeating module, called a cell, has five different components that are altered by three
gates (input, output, and forget gates). The behavior of the gates is controlled by a set of parameters
that can be trained by the descending gradient descent method. The LSTM architecture is shown in
Figure A4 in the Appendix A. The equations for the forward pass of an LSTM cell are:

forget gate : σf (t) = σ
(
Wfx(t) + Rfy(t − 1) + b f

)
(10)

input gate : σi(t) = σ(Wix(t) + Riy(t − 1) + bi) (11)

output gate : σo(t) = σ(Wox(t) + Roy(t − 1) + b0) (12)

cell state : h(t) = σf (t)� h(t − 1) + σi(t)� g1(Whx(t) + Rhy(t − 1) + bh) (13)

output : y(t) = σo(t)� g2(h(t)) (14)

where x(t) and y(t) are the input and output at time t; h(t) is the cell state at time t; Wf, Wi, Wo,
and Wh are the weights for the input; Rf, Ri, Ro, and Rh are the weights for the recurrent output; b f , bi,
bo, and bh are biases; σ(·) is a sigmoid function; and g1(·) and g2(·) are pointwise nonlinear activation
functions. The operator � denotes the Hadamard product (entrywise multiplication). The forget gate
σf determines what information to discard from the previous cell state. The input gate controls how
much to update the new cell state with candidate values. The output gate, a sigmoid function, decides
the parts of the cell states to output. All three gate functions are relative to the input and the output of
the previous time step. The LSTM in this study is developed using the deep learning framework Keras.
There are 50 hidden neurons in the hidden layer. The initial weights of the LSTM are sampled from a
uniform distribution in the interval [0, 1] and rescaled by 2%. The loss function is the mean squared
error, and adaptive moment estimation (Adam) is used as the optimization algorithm.

2.7. Measurement of Performance

Three statistical indicators—the Nash–Sutcliffe efficiency coefficient (NSE), the root mean square
error (RMSE), and mean absolute percentage error (MAPE)—are used in this study to evaluate the
performance of the hydrological models and RNNs. The equations of the indicators are:

NSE = 1 − ∑T
t=1
(
Qt

o − Qt
s
)2

∑T
t=1
(
Qt

o − Qo
)2 (15)

RMSE =

√√√√ 1
T

T

∑
t=1

(Qt
o − Qt

s)
2 (16)

MAPE =
1
T

T

∑
t=1

∣∣Qt
o − Qt

s
∣∣

Qt
o

(17)

where Qt
o is the observed discharge at time t; Qt

s is the simulated discharge at time t; and T is the length
of the time series. The discharges were categorized into high, medium, and low flows to compare the
accuracy of the hybrid models for different discharge levels in the basins. High flow is the discharge
above the 90th percentile of the 15-year daily discharges; low flow is the discharge below the 10th
percentile of the 15-year daily discharges; and medium flow is in between.



Water 2018, 10, 1655 7 of 17

2.8. Quantification of Uncertainty

The generalized likelihood uncertainty estimation (GLUE) method was used to estimate the range
of uncertainty for the predicted discharges from various model parameters. GLUE is based on the
concept of equifinality, which indicates there are many parameter sets and models that can lead to
good representations of the rainfall-runoff process [52]. The major steps of GLUE include:

(1) 10,000 parameter sets are generated from the uniform distribution with upper and lower
boundaries for each parameter. Previous studies involving an application of the GR4J model
are used as references for the boundaries. The ranges of the parameters (Table 1) cover most
reasonable values [34,53,54].

Table 1. Ranges of parameters of the GR4J model.

Parameters Description Minimum Maximum Unit

X1 Capacity of the production reservoir 10 2000 mm
X2 Groundwater exchange coefficient −8 6 mm
X3 One day capacity of the routing reservoir 10 500 mm
X4 Time base of the unit hydrograph 0 4 d

(2) Definition of the likelihood function and choosing the threshold value for the behavioral
parameter sets. NSE is used as the likelihood function. The threshold is defined as 0.7 [54],
which means that parameter sets with an efficiency <0.7 are rejected.

(3) Calculation of the posterior likelihood distribution based on the prior distribution and likelihood.
(4) Estimation of the uncertainty range. Outcomes that fall between the fifth and 95th percentiles are

used to calculate the uncertainty ranges.

The uncertainties of high, median, and low flows were assessed individually. The annual maximum
daily discharge (Qmax), the annual median daily discharge (Qmed), and the annual daily discharge of
the fifth percentile (Q95) were used to represent extremely high flow, median flow, and extremely low
flow, respectively.

3. Results

3.1. Model Evaluation and Error Diagnostics

The calibration and validation results for the discharge of the two river basins given by GR4J
and the RNNs are compared in Table 2. Comparison among RNNs shows good agreement between
observed discharges and the predicted discharges of the NARX, ESN, and LSTM. The statistical
indices for both basins show that the NARX and LSTM, which both have long-term memory in
their architecture, provide the most accurate estimates, followed by ESN. ERNN performs the worst.
Note that all of the RNNs and hydrological models that were used in the study are more accurate for
the Qujiang basin, which has a smaller catchment area, smaller peak flows, and less variance in the
hydro-meteorological time series, than those for the Xiangjiang basin. Besides, the Qujiang River basin
has a higher meteorology station density than the Xiangjiang River basin, which could provide more
wholesome information for the models. The NARX and LSTM are more accurate than GR4J for the
Xiangjiang basin. However, GR4J performs well for the Qujiang basin, having similar index values
with the NARX and LSTM; NSE for GR4J increases to >0.93.

Figure 2 shows the errors (prediction minus observation) of discharge predictions for the
Xiangjiang and Qujiang basins with the GR4J, NARX, and LSTM models. In general, the errors
increase with the volume discharged. All three models tend to underestimate the higher volumes in
the Xiangjiang basin, and GR4J more so than the NARX and LSTM. Note that for the Qujiang basin,
the largest overestimate given by GR4J is at ~2000 m3/s rather than at higher volumes, and there are
both underestimates and overestimates by all three models.
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Table 2. Performance indicators of the hydrological model GR4J and different recurrent neural networks
(RNNs). MAPE: mean absolute percentage error, NSE: Nash–Sutcliffe efficiency coefficient, RMSE: root
mean square error.

Gauge Stations Models
Calibration Validation

NSE RMSE (m3/s) MAPE NSE RMSE (m3/s) MAPE

Xiangjiang

GR4J 0.860 724 0.223 0.869 837 0.189
ERNN 0.381 1522 0.672 0.450 1725 0.470
ESN 0.745 970 0.428 0.780 1088 0.360

NARX 0.936 489 0.103 0.934 595 0.096
LSTM 0.933 500 0.091 0.932 608 0.086

Qujiang

GR4J 0.933 90 0.281 0.936 122 0.336
ERNN 0.664 201 1.349 0.713 259 1.320
ESN 0.889 116 0.683 0.906 148 0.663

NARX 0.933 89 0.243 0.938 120 0.241
LSTM 0.929 92 0.336 0.946 112 0.348

Note: Bold text represents the best performance in the column.
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3.2. Integration of GR4J with RNNs

Analysis of the performance indicators shows that the LSTM and NARX are the best RNNs to
forecast discharges. They show a good match between forecasting and observation for both basins.
The hydrological model GR4J was integrated with LSTM (referred to as GL) and NARX (referred to
as GN) to improve forecasting. The major difference between the GR4J model and the hybrid model
is that the hybrid model combines the data-driven models with the GR4J model. The GR4J model
used precipitation and PET as input, while the GL and GN models used errors from the GR4J model
simulation, which contains the information from discharges at previous time steps. It makes the hybrid
model more advantageous in fully utilizing the available data.

The statistical indicators for the hybrid models are given in Table 3. The results show that the
hybrid models are more accurate than GR4J, especially in the Xiangjiang basin. It could be explained
that the hybrid model has more input data, which involves the error information in the previous
time steps, and the RNNs learns the information and makes a correction on the next time step.
The improvement of the discharges by hybrid models are less in the Qujiang River basin. Figure 3
shows the performance and the prediction errors of the GR4J model and the hybrid models (right
side) in 1994, when there were several floods in both basins. The figure shows that in both basins,
GL and GN perform similarly. Despite a few overcorrected points, the advantages of the hybrid models
(both GL and GN) are more obvious when the flow is >14,000 m3/s, which is where the GR4J model
severely underestimates. Errors in hybrid model forecasting for high flows tend to be less biased in the



Water 2018, 10, 1655 9 of 17

Xiangjiang basin. For the Qujiang basin, GR4J has given good forecasting for the high flows, but the
hybrid models could not.

Table 3. Performance indicators for GR4J and the hybrid models.

Gauge Stations Models
Calibration Validation

NSE RMSE MAPE NSE RMSE MAPE

Xiangjiang
GR4J 0.860 724 0.223 0.869 837 0.189
GL 0.954 414 0.098 0.952 510 0.098
GN 0.954 414 0.098 0.957 480 0.085

Qujiang
GR4J 0.933 90 0.281 0.936 122 0.336
GL 0.942 83 0.210 0.954 104 0.221
GN 0.942 83 0.210 0.955 102 0.181
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Figure 4 shows the range of errors for low, medium, and high flows with 95% confidence
intervals. A positive value represents overestimation, and a negative value represents underestimation.
If measured with absolute values, the greatest improvement for the Xiangjiang basin is found in the
forecasting of high flow, where the underestimation by the GR4J model was reduced from >4000 m3/s
to ~2000 m3/s by GN and GL. If measured with relative percentage, the low flows improved a lot,
with errors reduced by 66% by GN and 63% by GL. The forecasting of high flow in the Qujiang basin
was more accurate and improved with less magnitude: overestimation of high flow by GR4J was
reduced by ~100 m3/s by GN and GL.
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3.3. Uncertainty in the Integrated Models

A parameter set that gives an NSE value >0.7 is regarded as behavioral, and the uncertainty range
of the predicted discharge values is related to the behavioral parameter set. Hereafter, GR4J and all of
the behavioral parameter sets are integrated with the NARX and LSTM. Figure 5 shows the NSE values
for GR4J versus the NSE values of GN and GL for both basins. Both GN and GL values are above
the solid line, and as the NSE value of GR4J increases, the line gets closer to the circles and triangles.
The figure shows that GN and GL perform better than GR4J in terms of NSE, as expected. It is partly
due to the additional data that was used as input in the GN and GL models. The improvement is more
obvious for the models with low NSE values than for those with high NSE values. The circles converge
better than the triangles, indicating that the performance of the GL model is more stable than that of
the GN model.

Figure 6 shows the uncertainty ranges of Qmax, Qmed, and Q95 ranking from low to high in
each of the 15 years by GR4J, GN, and GL in both river basins. The forecasting of high flows is more
uncertain than that of low flows. GR4J has greater uncertainty intervals than GN and GL for extremely
high, median, and extremely low flows in most cases, and there are some uncertain intervals from
GR4J that did not cover the observed values, particularly in underestimates of high flows in both the
Xiangjiang and Qujiang basins. Table 4 shows the mean uncertainty intervals and cover ratios of Qmax,
Qmed, and Q95 by the models for both basins (the cover ratio is the proportion of observations that
are within the uncertainty interval). The smallest uncertainty intervals and the largest cover ratios
among the three models are in boldface. In most cases, GN has the smallest uncertainty interval and
the highest cover ratio, especially for extremely high and extremely low flow forecasting, in both
basins. Although GR4J has a higher cover ratio for Qmed in the Xiangjiang basin than both GN and
GL, the uncertainty intervals were reduced by more than 50%. The GL model had smaller uncertainty
intervals than both the GN and GR4J models in the Qujiang basin, but at the expense of the cover ratio.
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Table 4. Average uncertainty intervals and cover ratios of Qmax, Qmed, and Q95 with GR4J, GN, and GL.

River Basin Criteria
Qmax Qmed Q95

Uncertainty
Interval

Cover
Ratio

Uncertainty
Interval

Cover
Ratio

Uncertainty
Interval

Cover
Ratio

Xiangjiang
GR4J 5950 0.40 1250 0.93 725 0.93
GN 3975 0.60 315 0.80 215 1.00
GL 5200 0.33 525 0.67 265 1.00

Qujiang
GR4J 1990 0.60 175 1.00 115 0.93
GN 1325 0.73 60 1.00 50 1.00
GL 890 0.27 35 0.80 30 0.93

Note: Bold texts represent the best performance of the model in corresponding river basins.



Water 2018, 10, 1655 12 of 17

4. Discussion

GR4J is a lumped hydrological model, and this study showed that it is more suitable for the
smaller Qujiang basin, which tends to be more spatially homogeneous than the larger basin. Thus, if a
larger catchment is treated as being homogeneous, more errors will be produced. The GR4J model
combines physical processes in a simplified form, whereas the RNNs are black boxes that do not model
physical processes, and are without the need for predetermined equations as the processes-based
models. GR4J produces results by gaining information directly from the time-series data. The hybrid
model could utilize the extra information from discharges at previous time steps. The lumped model
is inferior to the NARX and LSTM models acting on the same input datasets when the hydrology
condition is complex and there is a limited representation of hydrological processes. The integrated
models have a better performance than any single model in this study, since the error information from
previous simulations are used as input in the hybrid models, which contribute to the improvement to
some extent.

RNNs are neural networks that have at least one feedback loop from previous computations,
which enables them to store (or remember) information when processing new input data. However,
some types of RNNs did not provide accurate forecasting in this study; GR4J outperformed ERNN
and ESN, although it is inferior to the LSTM and NARX. The RNNs with more complex architecture,
LSTM and NARX, can better predict discharges. The architecture (Figure A1) shows that the hidden
layers can retain information from previous time steps as memory for the present time step, but the
vanishing gradient problem reduces the network’s ability to use information from distant time steps.
If a catchment stores water such that discharge at the outlet is related to the meteorology and hydrology
of several previous time steps, an RNN without distant memory will not reflect the dynamics of a time
series with long-term data dependency.

An ESN has a reservoir with randomly assigned sparse connections. Inputs are fed to the reservoir,
and the reservoir states are captured and stored. The reservoir allows previous states to echo, and by
fixing the weight of the inner reservoir echo, the ESN avoids the vanishing gradient problem of the
ERNN. An ESN is an improvement over the ERNN, but ESN short-term memory is dependent on the
spectral radius with a small value. Increasing the spectral radius value strengthens long-term memory,
but at the expense of the network’s ability to recognize rapid changes in the time series [55].

Some studies have shown that the NARX also suffers from the vanishing gradient problem [46,56],
but in our study, the NARX outperformed ERNN and ESN. We also found that the NARX performed
much better than other conventional RNNs in simulating basin hydrology. It is easier to discover
long-term dependencies with the gradient descent of the NARX architecture than with other RNN
architectures without output delays [41,42,57], maybe because long-term dependencies are influenced
by the output delays. As illustrated in Figure A3 which shows the unfolded NARX architecture,
the output delays (TDL in the figure) are manifested as jump-ahead connections in the unfolded
network, and these jump-ahead connections provided a shorter path for propagating gradient
information, which reduced the sensitivity to long-term dependencies. Besides, the output delays
are passing ahead together without propagating through nonlinear hidden layers at every time step.
This makes the gradient avoid degradation due to the partial derivative of the nonlinearity at every
time step [44,57]. The performance of the LSTM is equivalent to that of the NARX in predicting
discharges, since the LSTM architecture (Figure A4) facilitates the gradient information flows by
adding a path in the cell between adjacent time steps and by adding gates, which controls whether
the cell remembers or forgets certain information. Thus, the LSTM also addresses the long-term
dependency problem, but by using a different mechanism.

5. Conclusions

This study compared the performance of the GR4J model and four recurrent neural networks in
predicting the streamflow for two basins in China. The LSTM and NARX networks outperformed the
ERNN and ESN networks. Hybrid models (GR4J with LSTM and GR4J with NARX) were developed
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to improve the accuracy of the discharge forecasting. In addition, the uncertainties of high, median,
and low flows from the hybrid models were analyzed in comparison with flows from the single
hydrological model.

The selection of a suitable RNN architecture is critical in simulating basin hydrology. RNNs with
more complex architecture, which can accommodate long-term dependency, such as the LSTM and
NARX, can better capture time-series dynamics and exhibit more promising ability in predicting
streamflow than simpler RNNs. The models showed consistent results for the two basins, and the
GR4J model with both LSTM and NARX performed better for the smaller catchment, which had less
drainage area, smaller peak flows, and less time-series variation. However, LSTM and NARX were
less variable, since the differences in measurement indicators (NSE, RMSE, and MAPE) were less for
different basins.

More accurate streamflow forecasting for both basins were given by integrating the hydrological
model with the RNNs (hybrid models GL and GN) than a single hydrological model or an RNN alone.
The integrated models also provided better estimates of high, median, and low flows in both basins.
Underestimation of the high flows with GR4J was reduced by 50% with GN and GL. If measured with
relative percentage, low-flows errors reduced by 66% with GN and 63% with GL for the Xiangjiang
River basin.

The uncertainty intervals of the median and low flows in the two basins predicted by both GN and
GL were reduced by >50%. The GN model also increased the cover ratios in most cases, particularly for
the high and low-flow forecasting. The GL model reduced the range of the uncertainty interval for the
Qujiang basin more than the GN model, but this was accompanied by a reduction of the cover ratio.
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Figure A1. ERNN architecture. 𝑥, 𝑦 and ℎ represent input, output and the hidden state, respectively. 𝑊 ，𝑈  and 𝑊  represent weighted matrices between the input and the hidden layers, the context 
units and the hidden layers, and the hidden layers and the output, respectively. 

Figure A1. ERNN architecture. x, y and h represent input, output and the hidden state, respectively.
Wh, Uh and Wy represent weighted matrices between the input and the hidden layers, the context
units and the hidden layers, and the hidden layers and the output, respectively.
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Figure A2. ESN architecture. x, y and h represent input, output and hidden state, respectively. Wout are
the trainable weights for the output. Win, W and W f b are randomly initialized. They represent weights
between the input and the hidden layer, weights between the previous state and the current state of the
hidden layer, weights between the previous output and the hidden layer.
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Figure A3. NARX architecture. x and y represent input and output, respectively. TDL in the blocks
represent the time delay of the input and output. Win, Wh and Wo represent the weights between
the input and hidden layers, weights between the previous state and the current state of the hidden
layer, weight between the hidden layer and the output. bin, bh and bo represent corresponding
bias. Sigmoid signature represents nonlinear transfer function and oblique line represents the linear
transfer function.
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Figure A4. LSTM architecture. x, y and h represent input, output and hidden state, respectively. t is
the time step. g1 and g2 are pointwise nonlinear activation functions. σf , σi and σo represent forget,
update and output gates, respectively.
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