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Abstract: One-dimensional (1D) Saint-Venant equations, which originated from the Navier–Stokes
equations, are usually applied to express the transient stream flow. The governing equation is based
on the mass continuity and momentum equivalence. Its momentum equation, partially comprising
the inertia, pressure, gravity, and friction-induced momentum loss terms, can be expressed as
kinematic wave (KIW), diffusion wave (DIW), and fully dynamic wave (DYW) flow. In this study,
the method of characteristics (MOCs) is used for solving the diagonalized Saint-Venant equations.
A computer model, CAMP1DF, including KIW, DIW, and DYW approximations, is developed.
Benchmark problems from MacDonald et al. (1997) are examined to study the accuracy of the
CAMP1DF model. The simulations revealed that CAMP1DF can simulate almost identical results
that are valid for various fluvial conditions. The proposed scheme that not only allows a large time
step size but also solves half of the simultaneous algebraic equations. Simulations of accuracy and
efficiency are both improved. Based on the physical relevance, the simulations clearly showed that
the DYW approximation has the best performance, whereas the KIW approximation results in the
largest errors. Moreover, the field non-prismatic case of the Zhuoshui River in central Taiwan is
studied. The simulations indicate that the DYW approach does not ensure achievement of a better
simulation result than the other two approximations. The investigated cross-sectional geometries
play an important role in stream routing. Because of the consideration of the acceleration terms,
the simulated hydrograph of a DYW reveals more physical characteristics, particularly regarding
the raising and recession of limbs. Note that the KIW does not require assignment of a downstream
boundary condition, making it more convenient for field application.

Keywords: Saint-Venant equations; dynamic wave flow; diffusion wave flow; kinematic wave flow

1. Introduction

The one-dimensional (1D) Saint-Venant equations founded by Adhémar Jean Claude Barré de
Saint-Venant are usually applied to express gradually varying open channel flows [1]. The governing
equation was originally derived from the Navier–Stokes equations and followed the assumptions
of mass continuity and momentum equivalence. One continuity equation as well as the momentum
equations must be solved. The momentum equation of the exact unsteady flow includes the
local/convective inertia terms, pressure gradient, gravity effect, and friction losses [2]. To neglect the
different components in the momentum equation, the solutions can be cast as quasi-steady dynamic
wave, gravity wave, noninertia wave, and kinematic wave flows [3]. A fully dynamic wave (DYW)
flow encompasses all the aforementioned momentum terms in the governing equation. The diffusion
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wave (DIW) flow contains the pressure effect and friction losses. A kinematic wave (KIW) flow only
retains the gravity and friction effects.

To deal with hyperbolic type of partial differential equations such as Saint-Venant equations,
high-order shock-capturing schemes, e.g., the total variation diminishing (TVD) McCormack
scheme [4], the relaxation scheme [5], the non-oscillatory (ENO) and WENO (weighted ENO)
scheme [6] and the four-point implicit Preissmann scheme [7] have been devised to eliminate spurious
oscillations, numerical diffusion, and peak attenuations. However, they often require excessively
small time-step sizes to satisfy numerical stability. Based on computational experiences, with very
large values of the space step, there is a tendency for physically unrealistic negative outflows to
occur [8]. This study uses the method of characteristics (MOCs) to solve the KIW, DIW, and DYW
flows. The difference in the above approximations is in the adopted governing equation, in which
the conservative form of the governing equations may be cast into either the advective form or
the characteristic form. The characteristic form is derived in this study because it is amenable
to solution with the particle tracking methods. It is known that as small distance steps are used,
it is possible to use time steps with large Courant numbers with relatively little loss of accuracy [9].
For simultaneous consideration of simulation accuracy and efficiency, this study applies a high-order
implicit approximation to retain simulation accuracy for time integration instead of the commonly
used Runge–Kutta scheme. The proposed algorithm allows the larger time steps to speed up
simulation, whereas the other approaches require smaller time steps to achieve numerical stability.
The proposed sub-element tracking method has been verified for use in the cases of a large wave
speed [10], and is superior to the semi-Lagrangian method [11]. The study also uses the monotonic
shape-preserving method to calculate the characteristic variable at the root in order to avoid the
interpolation oscillations [12]. The algorithm uses the scheme that not only allows a large time step
size but also solves half of the simultaneous algebraic equations. The more complicated problems
implemented are, the more tremendous the amount of Central Processing Unit (CPU) memory that is
saved [10].

It is known that, although the Saint-Venant equations are not exact, they reasonably represent
the transient fluvial water in an open channel [13]. Ponce et al. (1978) assessed the wave propagation
characteristics using sinusoidal perturbations to the steady uniform flow by KIW, DIW, and DYW
approaches. The study indicated that bed slope and wave period are important physical characteristics
in determining the applicability of the approximate models [14]. Storm-induced flash flood routing
and storm runoff in a surface flow are studied in 1D dam break problems. Other research topics
include channel constriction and obstruction issues [15], the effect of gravity for waves reduced by
sudden flow stoppage [16], and the movement of particles along potential flow streamlines through
junctions [17]. These can be studied using 1D Saint-Venant equations. During the past few decades,
several computer software packages of 1D channel flow have been proposed, e.g., FLUCOMP [18,19],
LISFLOOD-FP [20], ISIS [21,22], MASCARET [23], WASH123D [24], HEC-RAS [25], MIKE 11 [26],
SOBEK [27], MIKE-SHE [28], InfoWorks RS [29], and WASH1DF [10]. Each model has its simulation
restrictions because of the selected governing approximation and adopted numerical method. A DYW
model is valid for all unsteady open channel flows, e.g., HEC-RAS, InfoWorks, MIKE 11, SOBEK, ISIS,
SWMM, and WASH1DF. A DIW model can be used when the acceleration terms are much smaller
compared to the other terms of the momentum equation. The DIW model is also named the noninertia
wave flow model, e.g., in MIKE SHE and LISFLOOD-FP. The KIW flow model is valid for uniform
flow, and its friction loss is approximately equal to the channel slope.

The Computational and Applied Hydrology of Numerical Programming Laboratory (CAMP)
developed an one dimensional open-channel flow model, CAMP1DF, which includes the KIW, DIW,
and DYW approximations. The theoretical and numerical bases of CAMP1DF are introduced in
Section 2. In Section 3, the analytical solutions of the 1D Saint-Venant equations provided by
MacDonald et al. (1997) [30] are applied to test the accuracy of CAMP1DF. Moreover, the comparisons
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of a prismatic case and field nonprismatic case of the Zhuoshui River in central Taiwan for
understanding the inertial effects of an open channel flow are discussed in Section 4.

2. Theoretical and Numerical Approximations

The theoretical basis of our governing equation is assumed to follow the mass continuity and the
momentum equivalence in which fluid mass and momentum are conserved. The conservative form
derived from the governing equations is rewritten in the characteristic wave expression. Moreover,
the governing equations are numerically solved via the Lagrangian–Eulerian method with finite
element meshes. A computer program, CAMP1DF, including the DYW, DIW, and KIW modules,
is developed. More details are provided below.

2.1. Theoretical Basis

The conservation forms of governing equations of a 1D, unsteady, gradually varying open channel
flow (see on Figure 1) can be expressed as follows [15,31].

Water 2018, 10, x FOR PEER REVIEW  3 of 20 

 

2. Theoretical and Numerical Approximations 

The theoretical basis of our governing equation is assumed to follow the mass continuity and 
the momentum equivalence in which fluid mass and momentum are conserved. The conservative 
form derived from the governing equations is rewritten in the characteristic wave expression. 
Moreover, the governing equations are numerically solved via the Lagrangian–Eulerian method with 
finite element meshes. A computer program, CAMP1DF, including the DYW, DIW, and KIW 
modules, is developed. More details are provided below. 

2.1. Theoretical Basis 

The conservation forms of governing equations of a 1D, unsteady, gradually varying open 
channel flow (see on Figure 1) can be expressed as follows [15,31]. 

 
Figure 1. Schematic diagram of river illustrates in (a) top view, (b) longitudinal view, and (c) the 
hydraulic section. 

A Q S
t x

∂ ∂+ =
∂ ∂   (1) 

( )0 f
Q VQ hgA gA S S
t x x

∂ ∂ ∂+ = − ⋅ + ⋅ −
∂ ∂ ∂

 (2) 

where t is the time [t], x is the axis along the river/stream/canal direction [L], A is the cross-sectional 
area of the river/stream [L2], Si is source/sink flow rate [L2/t], Q is the flow rate of the 
river/stream/canal [L3/t], V is the river/stream/canal velocity [L/t], h is the water depth [L], g is the 
gravity [L/t2], S0 is the slope of the bottom elevation, and Sf is the friction loss. 

All the terms of Equation (2) are retained of the dynamic wave approach. In this study, its 
conservative form is transformed into a characteristic form. The solution of using particle tracking 
methods is adopted, among which the most natural and amenable approach is employing advective 
numerical methods [10]. For a river network, cross-sectional areas with respect to the water depth 
and river distance are derived. Subsequently, the cross-sectional area differentiated with respect to 
the flow direction and time can further cast the advection form. Next, the eigenvalues and 
eigenvectors of the fluvial cross sections are obtained. The characteristic forms of Equations (1) and 
(2) yield 

( ) ( ) ( ) #
0V V Zg V AV c g

t x c B x x
ω ω∂ + ∂ +   ∂∂  + + = − + −   ∂ ∂ ∂ ∂  

, 
(3) 

( ) ( ) ( ) #
0V V Zg V AV c g

t x c B x x
∂ − ∂ −   ∂∂  + − = − − + −   ∂ ∂ ∂ ∂  

ω ω
, 

(4) 

Figure 1. Schematic diagram of river illustrates in (a) top view, (b) longitudinal view, and (c) the
hydraulic section.
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where t is the time [t], x is the axis along the river/stream/canal direction [L], A is the cross-sectional
area of the river/stream [L2], Si is source/sink flow rate [L2/t], Q is the flow rate of the
river/stream/canal [L3/t], V is the river/stream/canal velocity [L/t], h is the water depth [L], g is the
gravity [L/t2], S0 is the slope of the bottom elevation, and Sf is the friction loss.

All the terms of Equation (2) are retained of the dynamic wave approach. In this study,
its conservative form is transformed into a characteristic form. The solution of using particle tracking
methods is adopted, among which the most natural and amenable approach is employing advective
numerical methods [10]. For a river network, cross-sectional areas with respect to the water depth and
river distance are derived. Subsequently, the cross-sectional area differentiated with respect to the flow
direction and time can further cast the advection form. Next, the eigenvalues and eigenvectors of the
fluvial cross sections are obtained. The characteristic forms of Equations (1) and (2) yield
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where A# is a function of the water depth (h) along the river/stream/canal direction x; and B = ∂A#/∂h is
the top width of the cross-section [L]. The wave speed (c) and its transformed value (ω) are expressed as

c =

√
gA
B

; ω =

h∫
0

g
c(s)

ds, (5)

For transient simulations, Equation (3) implies that the positive gravity wave (V + ω) is advected
by speed, whereas Equation (4) presents a negative wave (V − ω). This wave has advantages in
its amenability to innovative advective numerical methods, such as a semi-Lagrangian scheme [32].
Theoretically, a boundary assignment is only required in the case of wave flowing into the domain.
It is not necessary to specify a boundary condition for a wave flowing out of the simulated domain.
At an upstream node, for example, boundary conditions of the given discharge and water depth/stage
need to be assigned according to whether the fluvial conditions are supercritical or subcritical.
At a downstream point, no boundary condition is required if the wave is of subcritical flow. Analytical
correction for the special case of the gravity waves induced by a sudden downstream discharge
stoppage is proposed [16].

In the DIW approach, the inertial terms are assumed negligible in the momentum equation.
The velocity of the river is expressed as follows [33]:

V = − a
n

 R

1 +
(

∂Z0
∂x

)2


2
3

1√∣∣∣− ∂H
∂x

∣∣∣
(

∂H
∂x

)
(6)

where coefficient a is 1 for SI units and 1.49 for U.S. customary units. n is Manning’s roughness
[tL−1/3], R is hydraulic radius [L] to be assigned, and H is the water stage [L]. The cross-sectional
discharge calculated by the average velocity multiplied by its areas is used to substitute Equation (6)
into Equation (1) to obtain

∂A
∂t
− ∂

∂x

(
K

∂H
∂x

)
= 0 (7)

where

K =
a · A · R 2

3

n
·
[
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(
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∂x

)2
]− 2

3

·
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∂x
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2

(8)

To perform transient simulations, both upstream and downstream boundary conditions must be
assigned in the DIW simulation.

In the KIW approximation, all assumptions for the diffusive approach are hold. However,
the velocity is given by modifying Equation (6) with ∂(Z0)/∂x replacing ∂(H)/∂x. That means the
friction and gravity forces balance each other (S0 = Sf) [2]. Advective transport of cross sections is
expressed as

K =
a · A · R 2

3

n
·
[

1 +
(

∂Z0

∂x

)2
]− 2

3

·
(∣∣∣∣−∂(Z0)

∂x

∣∣∣∣)− 1
2

(9)

The upstream boundary conditions are required for transient simulation. To assign a stage/depth,
no boundary conditions at the downstream node are applicable. In short, DYW considers all the
acceleration and pressure terms in the momentum equation; DIW neglects the local and convective
acceleration terms but incorporates the pressure term; and KIW neglects the local acceleration,
convective acceleration, and pressure terms.
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2.2. Numerical Approximations

CAMP1DF uses the hybrid Lagrangian-Eulerian (semi-Lagrangian) method to solve the DYW
module. Unstructured meshes generated by finite element method are implemented. The backward
track procedure is illustrated in Figure 2. We integrate Equations (3) and (4) along their respective
characteristic lines from xi, which is the coordinate of node i, at the new time level to x*

i1 and x*
i2,

which show the location of a fictitious particle tracked backward from xi along the first and second
characteristics. The derivation is illustrated in detail in the work of Shih and Yeh (2018) [10]. Tracking
time can be obtained via a backward track method along their first (∆τ1) and second (∆τ2) respective
characteristics. To ignore the eddy diffusion effects, Equations (3) and (4) can be further expressed
as follows:

(Vi + ωi)−
(
V∗i1 + ω∗i1

)
∆τ1

= −1
2
(
(K+)iVi + (K+)

∗
i1V∗i1

)
+

1
2
(
(S+)i + (S+)

∗
i1
)
, (10)

(Vi −ωi)−
(
V∗i2 −ω∗i2

)
∆τ2

= −1
2
(
(K−)iVi + (K−)

∗
i2V∗i2

)
+

1
2
(
(S−)i + (S−)

∗
i2
)
, (11)

where subscript (i) represents a node, and superscript (n) denotes the time level; Vi and ωi are the
values of V and ω at xi at a new time level, respectively; Vi1

* and ωi1
* are the values of V and ω at

point xi1
*, respectively; (K+)i and (S+)i are the values of K+ and S+, respectively, at node i at a new time

level; (K+)i1
* and (S+)i1

* are the values of K+ and S+, respectively, at node xi1
*; Vi2

* and ωi2
* are the

values of V and ω at point xi2
*, respectively; (K−)i and (S−)i are the values of K− and S−, respectively,

at node i at a new time level; and (K)i2
* and (S−)i2

* are the values of K− and S−, respectively, at node
xi2

*. The primary variables are calculated through interpolations at both their new and previous time
levels.

V ∗i1 = a1(i)V
(n)

k(i)l

+ a2(i)V
(n)

k(i)2

+ a3(i)Vk(i)l
+ a4(i)Vk(i)2

, (12)

ω ∗i1 = a1(i)ω
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+ a2(i)ω
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(n)
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ω ∗i2 = b1ω
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+ b2ω
(n)

j(i)2

+ b3ω
j(i)l

+ b4ω
j(i)2

, (15)

where k1
(i) and k2

(i) are the two nodes of the element in which the backward tracking from node i, along
the first characteristic, stops; j1(i) and j2(i) are the two nodes of the element in which the backward
tracking from node i, along the second characteristic, stops; and a1(i), a2(i), a3(i), a4(i), b1(i), b2(i), b3(i), and
b4(i) are the interpolation parameters associated with the backtracking of the i-th node, all within the
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It is noted that either tracking time or distance should be employed to determine whether to
stop the tracking sequence. Simulation coefficients and forcing terms (source and sink terms) have
a functional dependency on the above varying variables. These terms can be calculated because the
primary variables are obtained through backward tracked. More details regarding the numerical
approximation can be obtained from Shih and Yeh (2018) [10].

A hybrid Lagrangian–Eulerian method adopting finite element meshes is also employed for the
case of DIW and KIW flows. Using the definition of the cross-sectional average discharge, Equation (2)
can be described in the following Lagrangian form:

DV A
Dτ

+
∂VA
∂x

= 0, (16)

The characteristic line from the new time level is obtained from the previous time level or
boundary. It can be formulated as(

1 +
∆τ

2
Ki

(n+1)
)

Ai
(n+1) =

(
1− ∆τ

2
K ∗i

)
A ∗i . (17)

The tracking time should be equal to the calculated time step as the characteristic root is
obtained. It may be less than time step as the tracking reaches the boundary. The above equation is
considered a linear hyperbolic problem with the nonlinear effects evaluated using the cross-sectional
area at a previous time. Therefore, it can be essentially treated as a nonlinear hyperbolic problem.
The cross-sectional area will be iteratively obtained. The water depths at all interior nodes are
interpolated via the implemented function.

For using the Lagrangian method to solve the KIW equation, all the assumptions in the DIW
approach are retained, except Sf = S0.

3. Model Calibrations

Analytic benchmark solution for open-channel flows derived by MacDonald et al. (1997) [30]
are applied to evaluate the accuracy of the proposed CAMP1DF model. MacDonald et al. (1997) [30]
illustrated four open-channel flow cases with a fixed upstream discharge and Dirichlet-type
downstream boundary conditions. Cases 1 and 2 are rectangular channels, and cases 3 and 4 are
trapezoidal. The subcritical fluvial condition is designed in cases 1 and 3, but case 3 presents the
frequent oscillations of wave propagation. Cases 2 and 4 are subcritical and supercritical changed flows,
whereas case 4 illustrates a hydraulic jump. More details are presented in MacDonald et al. (1997) [30].

3.1. Calibration of the Fully Dynamic Wave Module

The calculation errors of the DYW model relative to the analytic results are shown in Table 1,
and the simulations of hydrograph are revealed in Figure 3. The abscissa represents the distance
along the river, and the ordinate represents the water depth. The black line shows the benchmark
solutions calculated by MacDonald et al. (1997) [30], and the crosses indicate the DYW simulations
by CAMP1DF. Error analysis to evaluate mean errors (εmean) and to enlarge error discrepancy
via weighting quadratic terms (root mean square error, RMSE) is performed. The variability on
relations (Pearson’s coefficient, C2), goodness-of-fit efficiency (Nash–Sutcliffe efficiency, R2), and
Theil’s prediction/inequality coefficient (U2) of paired simulations and analytics are performed.
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Table 1. Error calculations in the CAMP1DF fully dynamic wave (DYW) simulations of the benchmark
problems relative to the analytical results by MacDonald et al. (1997) [30]. RMSE: root mean square
error; εmean: mean error; U2: Theil’s prediction/inequality coefficient; C2: Pearson´s coefficient; R2:
Nash–Sutcliffe efficiency; εp: peak error.

Case 1 Case 2 Case 3 Case 4

εmean −0.0006 0.0000 −0.0046 −0.0052
εp 0.0012 0.0001 −0.0125 −0.0004

RMSE 0.0009 0.0001 0.0123 0.0185
C2 1.0000 1.0000 0.9995 0.9955
R2 1.0000 1.0000 0.9952 0.9949
U2 0.0000 0.0000 0.0001 0.0003
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Figure 3 shows that the simulated hydrograph agrees with analytical solutions very well in
all benchmark cases. Practically identical hydrographs are revealed. Table 1 also indicated that the
discrepancy between CAMP1DF simulations and benchmark values is very small. First, the benchmark
case is a subcritical flow problem. CAMP1DF very well captures the sharp front, both in peak time
and in value. The model has a very good potential to solve subcritical fluvial propagation problem.
Case 2 is a fluvial condition that changes from subcritical to supercritical. Nearly the same results of
the simulations and the analytics are identified because the CAMP1DF uses the sub-element tracking
method with monotonic shape-preserving interpolation [12,34]. The result verified that the mixed
subcritical and supercritical fluvial problem can be solved by CAMP1DF without difficulty. CAMP1DF
demonstrated a good capability to perform good matches to the frequent wave oscillations problem
of case 3. The error calculation yields a very small difference between the simulations and analytics
in terms of peak error (εp = −0.0125). The indicators of the wave propagation trend, i.e., C2, R2, and
U2, display the agreement between the CAMP1DF simulation and analytical data. For the fluvial
transition problem of case 4, in which the subcritical to supercritical flow with a hydraulic jump,
CAMP1DF also exhibits a significant agreement with the benchmark results and precisely captures the
hydraulic jump. In short, the above DYW simulation results show a near perfect match to those of
the analytical solutions in all the cases. The results indicate that the CAMP1DF model can accurately
consider all types of transient fluvial problems between subcritical and supercritical flows in these
benchmark problems.
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3.2. Calibration of Diffusion Wave Module

Because there is no analytical derivation of the DIW flow, the numerical results simulated by
WASH123D are selected to validate the accuracy of the CAMP1DF DIW module. The WASH123D was
originally developed by Yeh G. T. in 1998. WASH123D has been applied for many issues, for example
in everglade restoration, flood forecasts, wetland protection, ecosystem restoration, coast inundation,
groundwater resources, etc. [10,35–38]. The WASH123D model has been verified for numerous
applicable cases; its DIW routing module can be considered reliable.

The same benchmark problems of MacDonald et al. (1997) [30] are examined in this study.
The comparisons between the CAMP1DF DIW module and WASH123D simulations are shown in
Figure 4, where the x-axis, y-axis, and plotting notations are as same as those in Figure 3. The errors
for these two models simulations are listed in Table 2. Figure 4 shows a very good agreement between
these two simulations for all the cases. For benchmark problems 1 and 2, all the error indicators of
the mean errors and their biases are shown to be almost identical for the paired CAMP1DF DIW and
WASH123D modeling results. Both εmean and RMSE indicate the presence of very minor errors, within
1.0D-3 m, for the rest of the cases. Moreover, the error indicators of C2, R2, and U2 all suggest that the
values from the CAMP1DF DIW and WASH123D simulations are nearly identical. Thus, the CAMP1DF
simulation is demonstrated to offer the same simulation trend as the WASH123D simulations for all
four open-channel flow problems. Briefly, the DIW simulation module shows a nearly perfect match to
the WASH123D simulations in all the cases, where the true values are assumed. The results indicate
that the CAMP1DF model can accurately implement DIW routing results of transient flow between
subcritical and supercritical flows in these benchmark problems.

Table 2. Error calculations in the CAMP1DF DIW and WASH123D simulations of the
benchmark problems.

Case 1 Case 2 Case 3 Case 4

εmean 0.0000 0.0000 0.0033 −0.0009
εp 0.0000 0.0000 −0.0018 0.0004

RMSE 0.0000 0.0001 0.0051 0.0011
C2 1.0000 1.0000 0.9994 1.0000
R2 1.0000 1.0000 0.9990 1.0000
U2 0.0000 0.0000 0.0000 0.0000
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3.3. Calibration of Kinematic Wave Module

The assumption in the KIW approach is that the hydraulic gradient is equal to the gradient of the
riverbed, i.e., S0 = Sf. MacDonald et al. (1997) [30] examined two types of cross-sectional geometries:
a rectangular channel in cases 1 and 2 and a trapezoidal channel in cases 3 and 4. Therefore, we used
Manning’s equation, expressed as follows, solved by the Newton–Raphson method to estimate the
analytic solutions.

Q = A · 1
n
· R2/3 · S0

1/2, (18)

where n is Manning’s coefficient, R is the hydraulic radius, and S0 is the hydraulic gradient.
For the case of a rectangular cross-section, Equation (18) could be extended to differential forms

as follows:

f (h) =
Q · n

B · (S0)
1
2
·
(

1
h
+

B
2

) 2
3
− h (19)

f ′(h) =
Q · n

B · (S0)
1
2
·
[

2
3
·
(

1
h
+

B
2

)−1
3
·
(
−1
h2

)]
− 1 (20)

where f(h) is a function of shifting all terms to the right hand side; and its differential result is expressed
as f’(h). For benchmark case 3, a 5-km long trapezoidal channel (T = 10 + 4y, P = 10 + 2y

√
5) was

designed. Its differential form is derived as

f (h) =
(

Q · n√
S0

) 3
5
·

(
B + 2 ·

√
5 · h

) 2
5

(B + 2 · h) − h (21)

f ′(h) =
(

Q · n√
S0

) 3
5
·

4 ·
√

5
5
·

(
B + 2 ·

√
5 · h

)− 3
5

(B + 2 · h) −
2 ·
(

B + 2 ·
√

5 · h
) 2

5

(B + 2 · h)2

− 1 (22)

For case 4 of a trapezoidal channel with an angle of 45◦ between the ground and hypotenuse,
the derivations are

f (h) =
(

Q · n√
S0

) 3
5
·

(
B + 2 ·

√
2 · h

) 2
5

(B + h)
− h (23)

f ′(h) =
(

Q · n√
S0

) 3
5
·

4 ·
√

2
5
·

(
B + 2 ·

√
2 · h

)− 3
5

(B + h)
−

(
B + 2 ·

√
2 · h

) 2
5

(B + h)2

− 1 (24)

Then we used the Newton–Raphson method to solve f(h) = 0 for h via the convergence of iterations.
The solutions can be obtained when the updated error of the water stage is less than the convergence
criterion during the nonlinear iterations. These results are fine approximations of the analytical
solutions of the KIW approximation.

The cases provided by MacDonald et al. (1997) [30] are examined for evaluating the accuracy of
the CAMP1DF KIW module. The comparisons between the CAMP1DF KIW simulations and solutions
of Manning’s equation obtained by the Newton–Raphson method are shown in Figure 5, and the errors
in the CAMP1DF numerical simulations and Newton-Raphson approximation are listed in Table 3.
In Figure 5, the x-axis, y-axis, and plotting notations are the same as those in Figure 3. It is can be
obviously seen in Figure 5 that the results of these two approximations are almost identical in all the
cases. For all the benchmark problems, not only the mean errors (εmean) or quadratic errors (RMSE) but
also their variabilities and prediction trends (C2, R2, and U2) revealed nearly fitting estimations of the
paired CAMP1DF KIW and Newton–Raphson approximation results. In short, in all the cases, the KIW
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simulation module shows a near perfect match to the numerical approximation results obtained by
the Newton-Raphson method. The results demonstrate that the CAMP1DF model can implement
an accurate KIW routing for the nonprismatic cross-section, nonuniform bed slope, and transient flow
scenarios between subcritical and supercritical flows in the benchmark problems.

Table 3. Error calculations for the CAMP1DF kinematic wave (KIW) simulations of the benchmark
problems and Newton–Raphson approximations.

Case 1 Case 2 Case 3 Case 4

εmean 0.0006 −0.0003 0.0098 0.0003
εp −0.0005 0.0004 −0.0136 −0.0008

RMSE 0.0008 0.0004 0.0115 0.0011
C2 1.0000 1.0000 0.9997 1.0000
R2 1.0000 1.0000 0.9988 1.0000
U2 0.0000 0.0000 0.0001 0.0000

Water 2018, 10, x FOR PEER REVIEW  11 of 20 

 

 
Figure 5. Calibration result of KIW of (a) benchmark 1, (b) benchmark 2, (c) benchmark 3, and (d) 
benchmark 4 of MacDonald et al. (1997) [30]. 

4. Result and Discussions 

In this section, the inertia effects of open channel flow are discussed. The examples provided by 
MacDonald et al. (1997) [30] are examined as prismatic cases, and the Zhuoshui Creek basin located 
in central Taiwan is taken as a nonprismatic example. More detailed discussions are presented below. 

4.1. Discussion on Prismatic Cases 

The accuracy of the DYW, DIW, and KIW flow modeling by CAMP1DF is demonstrated by the 
abovementioned calibrations. In this section, the comparisons between the simulation results and 
analytics solutions of DYW, DIW, and KIW approximations are plotted in Figure 6, where the x- and 
y-axis are defined in a manner similar to the previous figure. The black line represents the analytical 
solutions calculated by MacDonald et al. (1997) [30], the circle dots with a red line represent the DYW 
simulations, the cross dots with a blue line depict the DIW simulations, and the rectangular dots with 
green line represent the KIW simulations of CAMP1DF. The modeling errors in DYW/DIW/KIW and 
the analytic derivation are listed in Table 4. Both the hydrograph and the error calculations clearly 
indicate that the DYW simulation achieves the most accurate results, whereas the KIW flow has the 
largest discrepancies. The simulation results in Figure 6a clearly exhibit that the KIW flow simulation 
overestimates the flow peak by 3%, whereas the DIW wave underestimates it by 2%. However, the 
KIW flow predicts peaks with a 5% discrepancy along the x-direction. The hydrograph of KIW reveals 
a positive skew pattern compared with the analytical solution. The DIW simulation slightly 
underestimates the results, and a negative skew is obtained from the analytics. Only the DYW 
approximation can simulate the flow peak and its occurrence without difficulty. Thus, only 
considering the friction loss and gravity effects easily tend to misestimate the hydrograph. 
Combining the pressure effects in the momentum equation will improve the simulation accuracy and 
extensively ameliorate the peak time. Including the inertial terms, such as in the DYW approximation, 
can catch flow peak and its occurrence without difficulty. On further examination of the error 

Figure 5. Calibration result of KIW of (a) benchmark 1, (b) benchmark 2, (c) benchmark 3, and (d)
benchmark 4 of MacDonald et al. (1997) [30].

4. Result and Discussions

In this section, the inertia effects of open channel flow are discussed. The examples provided by
MacDonald et al. (1997) [30] are examined as prismatic cases, and the Zhuoshui Creek basin located in
central Taiwan is taken as a nonprismatic example. More detailed discussions are presented below.

4.1. Discussion on Prismatic Cases

The accuracy of the DYW, DIW, and KIW flow modeling by CAMP1DF is demonstrated by the
abovementioned calibrations. In this section, the comparisons between the simulation results and
analytics solutions of DYW, DIW, and KIW approximations are plotted in Figure 6, where the x- and
y-axis are defined in a manner similar to the previous figure. The black line represents the analytical
solutions calculated by MacDonald et al. (1997) [30], the circle dots with a red line represent the DYW
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simulations, the cross dots with a blue line depict the DIW simulations, and the rectangular dots with
green line represent the KIW simulations of CAMP1DF. The modeling errors in DYW/DIW/KIW
and the analytic derivation are listed in Table 4. Both the hydrograph and the error calculations
clearly indicate that the DYW simulation achieves the most accurate results, whereas the KIW flow
has the largest discrepancies. The simulation results in Figure 6a clearly exhibit that the KIW flow
simulation overestimates the flow peak by 3%, whereas the DIW wave underestimates it by 2%.
However, the KIW flow predicts peaks with a 5% discrepancy along the x-direction. The hydrograph
of KIW reveals a positive skew pattern compared with the analytical solution. The DIW simulation
slightly underestimates the results, and a negative skew is obtained from the analytics. Only the DYW
approximation can simulate the flow peak and its occurrence without difficulty. Thus, only considering
the friction loss and gravity effects easily tend to misestimate the hydrograph. Combining the pressure
effects in the momentum equation will improve the simulation accuracy and extensively ameliorate the
peak time. Including the inertial terms, such as in the DYW approximation, can catch flow peak and
its occurrence without difficulty. On further examination of the error estimations, the error indicators
εmean and RMSE indicate that the inertial effects are important to subcritical routing. The flow pattern
related errors, i.e., C2 and R2, suggest that the acceleration term plays an important role in this example.
It is also noted that the simulation time of DYW is 1.3 times that of KIW and almost as the same as the
DIW routing. Therefore, using DYW to solve this case can provide both efficiency and accuracy in
achieving the solution.
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Table 4. Error calculations obtained from the CAMP1DF DYW/DIW/KIW simulations and analytical
results by MacDonald et al. (1997) [30].

Case 1 Case 2 Case 3 Case 4

DYW DIW KIW DYW DIW KIW DYW DIW KIW DYW DIW KIW

εmean −0.0006 −0.0028 0.0025 0.0000 −0.0168 0.0059 −0.0046 −0.0102 0.0837 −0.0052 0.0135 −0.1023
εp 0.0012 0.0168 −0.0279 0.0001 0.0151 −0.0099 −0.0125 0.0243 0.4328 −0.0004 0.0000 0.1686

RMSE 0.0009 0.0202 0.0306 0.0001 0.0203 0.0108 0.0123 0.0275 0.2580 0.0185 0.0569 0.1449
C2 1.0000 0.9770 0.9478 1.0000 0.9956 0.9991 0.9995 0.9873 0.4689 0.9955 0.9558 0.8912
R2 1.0000 0.9751 0.9426 1.0000 0.9753 0.9930 0.9952 0.9758 −1.1311 0.9949 0.9518 0.6870
U2 0.0000 0.0005 0.0011 0.0000 0.0007 0.0002 0.0001 0.0006 0.0424 0.0003 0.0029 0.0242

Case 2 reveals that the bed slope is steep at 500 m from the upstream, and the fluvial conditions
are changed from subcritical to supercritical. The result shown in Figure 6b suggests that the DYW
simulations yield the most accurate results, the KIW results in a slight overestimation, and the DIW
underestimates at the upstream boundary. It is noted that the DIW simulations has twice the εmean

and RMSE of the KIW simulations. Therefore, the upstream boundary effects play an important
role in this case. The error indicators of the flow pattern, i.e., C2, R2, and U2, yield similar trends
for the two modules. The DYW flow clearly provides the most accurate simulations among the
three approximations; however, it also spends 1.42 times the calculation time of the KIW flow and
1.23 times that of the DIW flow. In short, these three approaches can all achieve good simulations
of the subcritical and supercritical transform problems because the proposed approximation utilizes
sub-element tracking with monotonic shape-preserving interpolation, and the inertial effects are not
obvious in this case.

Case 3 presents a subcritical flow with sequent oscillations in the entire fluvial flow. The result
shown in Figure 6c demonstrates that the DYW/DIW simulations have a slight discrepancy from
the analytical solutions despite the KIW simulation. The KIW flow has almost twice the depth
errors compared with the analytical solution. Both DYW and DIW yield reasonable hydrographs,
with negative mean bias differences (εmean) at slightly lower water levels obtained relative to the
analytics. Error indicators of C2 and R2 depict the agreement between the simulations and analytics for
these two approaches. The simulations are confirmed to reveal a good flow pattern in this oscillating
open-channel problem. However, the water depths reveal a large discrepancy in the KIW routing.
Therefore, the inertia and gravity terms are important in this wave oscillation problem.

Case 4 is a flow that transitions from supercritical to subcritical with an occurrence of hydraulic
jump. The result is shown in Figure 6d. The simulated hydrograph of DYW exhibits good agreement
with the analytical solutions. It is also noted that the εmean and RMSE indicate the DYW has smaller
errors among the three options. The KIW flow has a significant error in the downstream jet, whereas
the DIW flow yields an inaccurate result around the hydraulic jump. Only the DYW flow reveals
a near exact agreement at the location of the hydraulic jump. Error indicators of the mean errors
and biases or variabilities all reveal slightly discrepancies between the simulations and analytical
derivations. Therefore, the fluid condition of a subcritical/supercritical fluid transfer with a hydraulic
jump confirms that only considering the inertial effect can yield accurate results.

The above simulations confirm that the DYW flow can precisely consider any transition flows
between the subcritical and supercritical flow benchmark problems. The DIW approximation,
which neglects the inertial acceleration, can reasonably simulate the fluvial flow, except for an abrupt
condition, such as a hydraulic jump problem. The KIW flow based on the simplest assumption tends
to yield the most discrepancy in the results. However, KIW costs the least simulation time, and there is
no need to assign a downstream boundary; therefore, it may be more feasible for field applications.

4.2. Discussion of Nonprismatic Cases

In the study, the Zhuoshui River was selected to test the inertial effects of the field fluvial problem.
The Zhuoshui River alluvial fan located in central Taiwan formerly had abundant groundwater
resources and was labeled one of the most important feeding areas in agriculture. Because of the
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over-pumping of groundwater in the past few decades, critical issues of land subsidence and
degradation of groundwater environments, such as seawater intrusion and contamination, have arisen
in the Zhuoshui River alluvial fan. The rainfall distribution in the river alluvial fan has large spatial
and temporal variations, causing significant wet and dry season differences that limit the development
of new water resources, and thus, leads to significant challenges in their management. The Chi-Chi
diversion weir located in the Zhuoshui River was constructed to better control the discharges and
efficiently support sustainable development in the water resources. The Zhuoshui River is considered
as a good example to study inertial effects for a nonprismatic cross-sectional transient flow because the
Chi-Chi diversion reasonably controls the discharges from the upstream side, and it has a total of five
gauge stations with observation stages for tracking the fluvial flow, as shown in Figure 7. In addition,
three heavy typhoon-induced floods that occurred in the recent years were selected for study, as shown
in Figure 8. The models of the cross-sections of the Zhuoshui River are constructed from the latest field
geometry measurement, and Manning’s coefficients (Mn) are obtained from the official investigations
conducted by the Fourth River Management Office, Water Resource Agency of Taiwan. A total of 137
cross-sections and five Manning’s coefficients, varying from 0.040 to 0.027, are obtained.Water 2018, 10, x FOR PEER REVIEW  14 of 20 
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Figure 8. Study events.

The three extreme typhoons of Dujuan (2015), Meranti (2016), and Megi (2016) are simulated.
The results of the DYW/DIW/KIW flows are compared with the observation stage results in
Figures 9–11, in which the abscissa is the simulation time and the ordinate axis is the water stage.
The black line represents the observations, and the red/blue/green lines represent the simulations
of DYW/DIW/KIW. Figure 9 shows the simulations of Typhoon Dujuan (2015). The simulations
reveal a reasonable hydrograph among all the approaches. It is noted that all the simulations are
in good agreement with the observations for both the rising and receding limbs. The flow peak
is also captured well along the river. The flow patterns of DIW and KIW are similar; however,
the flow peak is overestimated by DYW in some upstream stations. Figures 10 and 11 also show
that the DIW and KIW simulations have a similar pattern and smaller discrepancies for the various
bridges. This result indicates that the pressure term influence on the water stage in the nonprismatic,
nonuniform riverbed problem is minor. The DYW flow, however, reveals a more sensitive vibration in
the water stage. The water stage rises and recesses more dramatically than in the other two approaches.
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Therefore, the inertial acceleration tends to cause a sensitive water stage variation. This phenomenon
is understandable from a physical perspective. However, the simulation of DYW does not ensure
the most accurate results, despite it having the most physical relevance, because the Zhuoshui River
in Taiwan is labeled as meandering and its riverbed is stepped. However, because of the limited
investigations, each cross-sectional geometry is measured at approximately 500–1000 m intervals
every 5 years. This result implies that using field-investigated cross-sections to implement channel
routing may lead to some uncertainties. The modeling uncertainty will be exaggerated with the
complexity of the geometries between two cross-sections. Thus, Manning’s coefficients are utilized
as a strategy to rationalize the answers, even though they should have a physical meaning in the
routing. In the example of the His-Bin Bridge, a station located at the downstream of the Zhuoshui
River is much flatter compared to others. Therefore, its acceleration-induced inertial effects are minor.
Thus, the three approaches have similar simulated water stages at the His-Bin Bridge. In comparison,
stepped riverbeds, such as those at the Ming-Zhu Bridge, Chun-Yun Bridge, and Chi-Chou Bridge,
tend to have obvious inertial effects.

Figures 12–14 display the DYW/DIS/KIW simulation errors related to the observations of the
study events. The errors are found to be chaotic. For example, the Ziu-Chian Bridge performs
poorly with DYW routing, whereas the Ziu-Chian Bridge exhibits good results. There is significant
uncertainty in the rivers of Taiwan. Regarding the numerical approximation, it is clear that DYW
requires the most computation time to achieve numerical convergence, i.e., it spends the longest
simulation time among the three approaches. Therefore, DYW may not fit the requirement of real-time
simulations such as flood forecasting or disaster mitigation. According to the above simulation,
the time difference in the calculations from the three approximations is within a couple of seconds.
Thus, the calculation is not an issue for convergence integration. Even though the DYW wave cannot
ensure achievement of the most accurate results, it yields the most reasonable response hydrograph,
including the inertial effects. The simulation accuracy may then be adjusted by tuning the Manning’s
coefficients. Another important point to consider is that the DYW wave does not ensure achievement
of numerical convergence for nonprismatic and nonuniform field riverbed problems if the physical
assumptions are not satisfied. The KIW flow satisfies the uniform flow assumption, and the absence of
the requirement of a downstream boundary is an advantage for field cases.
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5. Conclusions

This study developed a numerical model, CAMP1DF, to use the characteristics-based particle
tracking method to solve one-dimensional fully dynamic wave, diffusion wave, and kinematic wave
flow problems. The solutions to benchmark problems confirmed the accuracy of CAMP1DF in
this study. The proposed scheme not only allows a large time step size but also solves half of
the simultaneous algebraic equations. Simulations of accuracy and efficiency are both improved.
The simulations further indicated that the dynamic wave approach clearly yielded the most accurate
results among all the approximations. The inertial effects (particularly in sharp riverbeds), such as
hydraulic jumps, were identified to be important. In an oscillation problem, the kinematic wave
flow was found to have twice the depth errors as that of the others. A field nonprismatic case of the
Zhuoshui River in central Taiwan showed that the dynamic wave approach did not ensure a better
performance than the other two approximations. However, the dynamic wave approach clearly yielded
a reasonable response because of the inclusion of the inertial effect; its simulation accuracy could be
improved by adjusting Manning’s coefficients. The kinematic wave flow was found to satisfy the
uniform flow assumption and did not require a downstream boundary, making it advantageous for
field cases.
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