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Abstract: Reservoir inflow forecasting is crucial for appropriate reservoir management, especially
in the flood season. Forecasting for this season must be sufficiently accurate and timely to allow
dam managers to release water gradually for flood control in downstream areas. Recently, several
models and methodologies have been developed and applied for inflow forecasting, with good
results. Nevertheless, most were reported to have weaknesses in capturing the peak flow, especially
rare extreme flows. In this study, an analogue-based forecasting method, designated the variation
analogue method (VAM), was developed to overcome this weakness. This method, the wavelet
artificial neural network (WANN) model, and the weighted mean analogue method (WMAM) were
used to forecast the monthly reservoir inflow of the Sirikit Dam, located in the Nan River Basin,
one of the eight sub-basins of the Chao Phraya River Basin in Thailand. It is one of four major
dams in the Chao Phraya Basin, with a maximum storage of 10.64 km3, which supplies water to 22
provinces in this basin, covering an irrigation area of 1,513,465 hectares. Due to the huge extreme
monthly inflow in August, with inflow of more than 3 km3 in 1985 and 2011, monthly or longer
lead time inflow forecasting is needed for proper water and flood control management of this dam.
The results of forecasting indicate that the WANN model provided good forecasting for whole-year
forecasting including both low-flow and high-flow patterns, while the WMAM model provided
only satisfactory results. The VAM showed the best forecasting performance and captured the
extreme inflow of the Sirikit Dam well. For the high-flow period (July–September), the WANN model
provided only satisfactory results, while those of the WMAM were markedly poorer than for the
whole year. The VAM showed the best capture of flow in this period, especially for extreme flow
conditions that the WANN and WMAM models could not capture.

Keywords: reservoir inflow forecasting; artificial neural network; wavelet artificial neural network;
weighted mean analogue; variation analogue

1. Introduction

Reservoirs are manmade structures that are widely used in water resource management, and are
recognized as some of the most efficient infrastructure components in integrated water resource
management and development [1]. Reservoirs are among the major solutions to water demand
and water-related problems, including irrigation, hydropower, urban and industrial water supply,
conservation of ecology, and flood control. Nevertheless, there are several factors that affect the
performance of the reservoir system, for example, the reservoir sedimentation [2] and the reservoir
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operation. In reservoir operation, care is required, especially for multipurpose reservoirs where there
may be a number of potentially conflicting objectives. For water supply, operations should keep
reservoirs as full as possible, whereas flood control requires reservoirs to be kept as empty as possible
to allow the capture of flood water [3]. Reservoirs should be neither partially empty at the end of
the rainy season nor full at the time of a series of peak floods that lead to heavy releases, causing
floods in downstream areas [4]. Due to its complexity, reservoir operation is a challenging problem
for water resource planners and managers. To optimize operating rules, many optimization and
simulation models have been developed and applied over the past several decades [5–9]. However,
these operating rules are not easy to implement, as appropriate reservoir operations depend on the
accuracy of inflow forecasting and the operating time horizon [10]. Accurate inflow prediction is
not only an important non-engineering measure to ensure flood-control safety and increase water
resource use efficiency, but also can provide guidance for reservoir planning and management, because
streamflow is the major input into reservoirs [11,12].

Due to its importance, several models and methodologies for reservoir inflow forecasting have
been developed and applied in real-world situations [13]. One method that is widely used to forecast
reservoir inflow is the artificial neural network (ANN) model. Although this is a black-box model in
which the internal structure of the process involved cannot be understood, it has many advantages
from the viewpoint of practical application. First, it is able to recognize the relation between the input
and output variables without explicit physical consideration [14]. Second, it is very convenient to
review the model when the data of interest are suspected as having changed. It can be recalculated
as soon as new data are available with low cost and time requirements. Third, once the model is
developed, it can be adapted very flexibly to other areas or for other purposes. In addition to these
advantages, ANN models have been shown to be applicable to hydrology, including reservoir inflow
prediction [14,15]. There have been several reports of the application of the ANN model for predicting
short-term reservoir inflow at hourly and daily time scales [16,17]. Most studies have concluded
that the ANN model provides satisfactory forecasting results. The ANN model can also be applied
to forecast long-term and seasonal reservoir inflow as reported in several studies [18–20]. Some
studies attempted to improve forecasting results by incorporating sea-surface temperature (SST) and
climatic indices as inputs of the ANN model [21]. Most studies reported the good prediction results
and the incorporation of SST provide improved predictions relative to the same model using only
reservoir inflows.

Although ANNs have been used successfully in various fields, the precision of the results has still
required improvement in many cases. Several hybrid ANN models have been proposed to fulfill this
requirement. Kim and Valdés [22] developed a model for drought forecasting in the Conchos River
Basin in Mexico, making use of the ability of neural networks to model and forecast nonlinear and
non-stationary time series and the ability of wavelet transforms to provide useful decompositions of
an original time series. The results indicated that the conjunction model significantly improved the
ability of neural networks to forecast the index regional drought. A similar study which indicated
the successful integration of the ANN and wavelet analysis to predict water levels in the Nan River,
Thailand, can be found in the work of Amnatsan et al. [23].

Another technique that has been widely used in forecasting is the analogue method (AM),
which was first introduced by Lorenz in 1969 to predict the evolution of the states of a dynamic
system [24]. This is the simplest statistical technique that can establish nonlinear relationships between
variables in a straightforward manner [25]. The analogue forecasting approach is based on the
hypothesis that two relatively similar synoptic situations may produce similar local effects [26]. This
approach has two main advantages and has been commonly used in weather prediction. First,
the use of observed weather patterns helps to maintain the local-scale weather in the simulated
field. Second, it is easy to construct scenarios for non-normally distributed variables, such as daily
precipitation, because the AM does not assume the form of probability distribution of downscaled
variables [27]. There have been many reports of successful implementation of the AM in weather
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prediction [25,26,28,29]. However, there have been few reports regarding its application to streamflow
forecasting. Bellier et al. [30] evaluated probabilistic flood forecasting on the Rhone River using
ensemble- and analogue-based precipitation forecasts. They reported that forecasting performance of
the two methods for the peak amplitude and peak timing of floods was very similar. Svensson [31]
performed flow forecasting based on flow persistence and historical flow analogues. The river flows at
one and three months in the future at 93 individual river flow stations across the United Kingdom
were forecast using two historical AMs, i.e., the weighted mean method and the shifted weighted
mean method. The results indicated that forecasts based on persistence of the previous month’s
flow generally outperformed the analogue approach, particularly for slowly responding catchments
with large underground water storage in aquifers. For the weighted-mean AM, the forecasting
performance was increased with the length of historical flow records. The considerable success used of
the weighted-mean in an interlayer forward validated scheme was reported in Panagoulia [32].

In this study, the wavelet artificial neural network (WANN) and the weighted mean AM (WMAM)
were used to forecast the monthly reservoir inflows of the Sirikit Dam in Thailand. Monthly and
seasonal inflow forecasting are very important for proper management of this multipurpose dam,
which has a large catchment area of 13,130 km2 and maximum storage of 10.64 km3. This is one of four
major dams that supply water to 22 provinces in the Chao Phraya Basin, covering an irrigation area
of 1,513,465 hectares. Difficulty in the operation of this dam occurs mainly in the monsoon season,
especially in July to September, the months which account for about 50% of the annual inflow. During
this period, the dam managers have to decide whether to keep or release water. They have to retain
sufficient water to supply demand in the next dry season, but for downstream flood control they must
not keep too much water. As the capacity of the downstream river is limited, large amounts of water
cannot be released in too short a time. An incorrect decision due to lack of an accurate and timely inflow
forecast will lead to excessive release in a short time, resulting in flooding in downstream areas. On the
other hand, a long forecast lead time will allow dam managers to release water gradually. Therefore,
monthly or seasonal weather and reservoir inflow forecasting are crucial for proper management of
this dam [33].

In addition to the WANN and WMAM methods, a forecasting method designated as the variation
analogue method (VAM) was developed and employed to forecast the reservoir inflow of this dam.
This study was performed to evaluate the performance of different forecasting methods in predicting
the reservoir inflow, especially with regard to predicting extreme flow. Many researchers have reported
that ANN-based models cannot predict extreme values in river flow [34,35]. The WMAM, which was
found to show good predictive performance for a low-response watershed [31], may not be able to
forecast the peak flow for the high-response catchment of the Sirikit Dam.

Several previous studies have indicated that SSTs and ocean indices are associated with the
seasonal and interannual climate of Thailand [36–39], and therefore the variability of rainfall and
reservoir inflows may be associated with SST anomalies. Manusthiparom [40] reported that adding
SSTs as ANN inputs significantly improved the results of monthly rainfall and runoff forecasting for the
Chao Phraya River Basin. In this study, we incorporated SSTs and ocean indices into the WANN and the
VAM to improve the performance of inflow forecasting. Their forecasting performance was compared
using four indicators: the root mean square error (RMSE), the correlation (R), the Nash–Sutcliffe
efficiency index (EI), and the coefficient of determination (CD).

2. Study Area and Methods

2.1. Study Area and Data

The Sirikit Dam is located in the Nan River Basin, one of the eight sub-basins of the Chao
Phraya River Basin in Thailand, as shown in Figure 1. It is the largest earth-filled dam in Thailand,
with a catchment area of 13,130 km2 and a maximum storage of 10.64 km3. The main functions of
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this dam are flood prevention, water supply for domestic use, ecological conservation, agriculture,
industry, fishing, and as an important tourist attraction.

The sources of data used in this study are listed in Table 1. The monthly reservoir inflow data of
Sirikit Dam used in this study were obtained from the Electricity Generating Authority of Thailand
(EGAT). The data were for the period from January 1974 to December 2014.

Water 2018, 10, x  4 of 22 

 

 
Figure 1. Location of the Sirikit Dam. 

Table 1. Sources of data used in this study. 

Data Used SST Regions/Ocean Index 
Name 

Source 

Sea-surface temperature 
(SST) 

Niño 1 + 2 

The U.S. National Oceanic and 
Atmospheric Administration 

(NOAA) 

Niño 3 
Niño 3.4 
Niño 4 

Pacific Ocean 
South China Sea 

Andaman Sea 

Ocean index 

Southern Oscillation Index (SOI) 

Dipole Mode Index (DMI) 
Japan Agency for Marine-Earth 

Science and Technology 
(JAMSTEC) 

Monthly reservoir inflow  Electricity Generating Authority of 
Thailand (EGAT) 

Figure 1. Location of the Sirikit Dam.

Table 1. Sources of data used in this study.

Data Used SST Regions/Ocean Index Name Source

Sea-surface temperature (SST)

Niño 1 + 2

The U.S. National Oceanic and
Atmospheric Administration

(NOAA)

Niño 3
Niño 3.4
Niño 4

Pacific Ocean
South China Sea

Andaman Sea

Ocean index
Southern Oscillation Index (SOI)

Dipole Mode Index (DMI)
Japan Agency for Marine-Earth

Science and Technology
(JAMSTEC)

Monthly reservoir inflow Electricity Generating Authority
of Thailand (EGAT)
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The SSTs and the El Niño/La Niña Southern Oscillation (ENSO) indices in Niño 3, Niño 4,
Niño 1 + 2, and Niño 3.4 regions, including the Southern Oscillation Index (SOI), were used in
this study. The data were taken from the U.S. National Oceanic and Atmospheric Administration
(NOAA), available at http://www.cpc.ncep.noaa.gov/. These are monthly data from January 1950 to
December 2014.

In addition, the Dipole Mode Index (DMI) was also used as another ocean index. The DMI,
which represents the intensity of the Indian Ocean Dipole (IOD), shows the anomalous SSTs between
the western Indian Ocean and the southeastern Indian Ocean. The DMI data were obtained from the
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) website (http://www.jamstec.go.
jp).

Additional SST data for the Pacific Ocean, the South China Sea, and the Andaman Sea were also
used in this study to improve the accuracy of reservoir-inflow forecasting. The Extended Reconstructed
Sea Surface Temperature (ERSST) version 3b dataset, a global monthly SST analysis derived from
the International Comprehensive Ocean-Atmosphere Dataset with missing data filled in by statistical
methods, was taken from the U.S. National Oceanic and Atmospheric Administration (NOAA),
available at http://www.ncdc.noaa.gov.

For the WANN forecasts, data from January 1974 to December 2004 were used for training, from
January 2005 to December 2010 for validation, and from January 2011 to December 2014 for testing
of the models. For the WMAM and VAM forecasts, the inflow data from January 1974 to December
2004 were used as historical analogues for forecasting inflow from January 2005 to December 2014.
This forecasting period corresponded to the validation and testing periods in the WANN models.

2.2. Wavelet Artificial Neural Network

The WANN is a hybrid version of the ANN model in which wavelet analysis is used as a data
pre-processing technique to improve accuracy. According to the investigation of the American
Society of Civil Engineers (ASCE) Task Committee on Application of Artificial Neural Networks
in Hydrology [14] that a feed-forward network with a single hidden with an arbitrary number of
sigmoidal hidden nodes can approximate any continuous function, a multilayer perceptron (MLP)
feedforward network with one hidden layer was adopted in this study. The network was trained in
a supervised manner with an error back-propagation algorithm. As suggested in Panagoulia et al. [41],
input variables should be “first stage” selected, depending on their robustness, from an inclusive set
which influences the physical model underlying the ANN structure with the constraint of minimizing
redundancy and noise. In the second stage of selection, an association via statistics must be established
to determine those first stage input variables that are maximally and distinctly connected to the major
internal model variables. In this study, the reservoir inflow was selected and the autocorrelation
analysis between different lag versions of those inflows was performed in an initial experiment. After
that, other inputs were selected and cross-correlation analyses between the different lag versions of
those inputs and the inflows were performed. Trials with changes in activation function, learning
rate, number of hidden neurons, and momentum of the ANN network were also performed to
obtain the best forecasting results. After obtaining the best forecasting results for each input dataset,
the original input data were then decomposed into their detailed (high frequency) and approximated
(low frequency) components by a discrete wavelet transform. Based on the study of Wang et al. [42],
using different mother wavelets in the wavelet neural network affected the accuracy of prediction
results. In this study, the Haar wavelet, the simplest and oldest of all wavelet functions [43], was used.
This wavelet function provided a good prediction result in the study of Wang et al. [42]. The simplicity
of this wavelet function facilitated the decomposition process and consequently supported practical
implementation. Only one level of decomposition was used in this study. After decomposition,
the decomposed data were used as the input for the ANN model. The architecture of the WANN
model used in this study is shown in Figure 2.

http://www.cpc.ncep.noaa.gov/
http://www.jamstec.go.jp
http://www.jamstec.go.jp
http://www.ncdc.noaa.gov
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2.3. Weighted Mean Analogue Method

The full details of the WMAM were presented by Svensson [31]. In the present study, the forecast
was obtained by first calculating the reservoir inflow anomalies. In the calculation, monthly reservoir
inflows were transformed to the log form to ensure that the distribution was similar to a normal
distribution, and when assessing the similarity of the analogues to the recent past, the highest
inflows became less extreme. After log transformation, standardized reservoir inflow anomalies
were calculated for use in the analysis as follows. For each of the 12 calendar months (mon), the mean
reservoir inflow (mmon), and standard deviation (smon) were calculated from the log-transformed
monthly reservoir inflow (qt). A series of standardized monthly anomalies (at) was then calculated as:

at =
qt − mmon

smon
(1)

where t denotes the serial number of the month, starting from January 1974, and mon refers to the
calendar month corresponding to t. Forecasts could be made once the observed data for the latest
month were received by comparing the monthly anomalies of the most recent past months with all
possible historical sequences of anomalies covering the same months of the year. From this annual
series of potential analogues based on the RMSE, the Nana historical analogues most similar to those of
the recent past were selected. Then, we used the inverse of these RMSEs to weight the inflow anomalies
in the months following the analogues to obtain the WMAM forecast. The RMSE was calculated for
each potential analogue in the observed record as follows:

RMSE =

√√√√ 1
Dana

Dana

∑
k=1

(
ap(k)− ar(k)

)2 (2)

where ap(k) is the inflow anomaly for each month k in the potential analogue of duration Dana, and ar(k)
is the corresponding inflow anomaly in the recent past. The RMSEs for the selected Nana analogues
were used to calculate the weight, w, for each analogue as follows:

w(n) =
1

RMSE(n)
/

Nana

∑
n=1

1
RMSE(n)

(3)

where n = 1, . . . , Nana is the rank of the ordered RMSEs (the potential analogue ap(n) with the smallest
RMSE had rank n = 1). The weighted mean forecast anomalies, af(m), for each month m = 1, . . . , Df in
the forecast duration, Df, formed the last part of the constructed analogue, ac, and were calculated as:

a f (m) = ac(Dana + m) =
Nana

∑
b−1

w(b)ap,b(Dana + m), (4)
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where ap,n is the vector of inflow anomalies for the potential analogue with rank n. The Dana, Nana,
and Df were set to 5, 5, and 1, respectively.

2.4. Variation Analogue Method

The VAM was developed and used to forecast the reservoir inflow in this study. The idea behind
this method emerged from the concept of a force system. Consider a force system in which two objects
are located at different locations and subjected to different forces. If we observe both objects through
a small window and notice that they move to the same location at the same time, we cannot assume
that the next location of these objects after some time interval will be the same. This is because they
are subjected to different forces and start moving from different initial locations. This is similar to
most forecasting methods in hydrology and meteorology that try to compare historical amounts of
rainfall, discharge, runoff, or inflow to forecast future values of the data of interest. If similarities in the
values of the data of interest are the result of different forcing factors and different initial conditions,
the forecasting result may be worse than expected. Compare this to another force system in which two
objects are located at different locations but are subjected to the same force. In this system, at the same
time interval, the objects will again move to different locations. However, although the new locations of
the two objects are different, their displacement will be equal. If we compare the displacements of the
objects instead of their locations, we can predict that in the next time interval of interest the two objects
will have the same displacement. Consequently, the locations of the two objects can be calculated
from their predicted displacement. Based on this concept, the forecasting method known as VAM was
developed in this study. This method compares the variation (displacement) in standardized inflows
instead of comparing standardized inflows as in the WMAM. It replaces data points by their successive
differences so that the model target is shifted towards prediction based on differences rather than
absolute positioning. By this method, a measure of chronological stability around a suitably chosen
statistical quantity is established based on long-term data calculation. Considering the standardized
monthly anomalies (at) as calculated in Equation (1), the variation (vt) in at can be calculated as:

vt = at − at−1 (5)

Once the observed data for the latest month have been received and the variation (vt) has been
calculated, this variation is compared to all possible historical sequences of variations covering the
same months of the year. From this annual series of potential variation analogues (vana), the Nana

historical variation analogues most similar to the recent variation are selected. The variation for the
next month can then be forecast as:

vt+1 =
1

Nana
/

Nana

∑
n=1

[
vt + vana(t+1) − vana(t)

]
. (6)

Then, the forecast standardized monthly anomaly for the next month can be calculated as:

at+1 = vt+1 + at (7)

Comparison of the variation in standardized inflows is similar to comparison of the displacement
of objects subjected to a force—if the objects have the same properties and are subjected to the same
force, their displacement will be the same, regardless of their initial locations. Building on this concept,
if the displacement of one of these objects is known, it is possible to predict the displacement of the
other objects. Applying this to inflow forecasting, if the variation in inflow in the current month of the
current year is similar to the variation in inflow in the same month of a historical year, the inflows of
the two years are inferred to occur due to similar forcing factors. If it is assumed that these forcing
factors persist, the variation in inflow in the next month of the current year can be forecast from the
variation in inflow of the historical year. Using this method, reservoir inflows are standardized as
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in the WMAM forecasts. Then, the variation in standardized inflows between successive months is
calculated and used in forecasting as described above.

3. Results

The forecasting using the WANN model in this study was begun by finding the input parameters
of the ANN model that produced the best forecast. After several trials, the best forecasting results were
obtained from a model with 22 input parameters, as shown in Table 2. The activation function of this
model in both the hidden and output layers was a hyperbolic function. The number of hidden neurons,
learning rate, and momentum that provided the best results were 10, 0.0001, and −0.5, respectively.
After obtaining the best forecast from the ANN model, all input parameters were decomposed into
their detailed (high frequency) and approximated (low frequency) components. Then, all decomposed
components were fed into the neural network model. The performance indicators of the WANN model
in each model period are shown in Table 3.

Table 2. Input parameters of the artificial neural network (ANN) model that produced the best forecast.
SOI: Southern Oscillation Index; DMI: Dipole Mode Index.

Input Parameter SST Region/Ocean Index Name Lag Used (Month)

Sea-surface temperature

Niño 1+2 5, 17, 18
Niño 3 4, 16, 17

Niño 3.4 5, 15, 16
Pacific Ocean 6, 7, 18

South China Sea 6, 18, 19
Andaman Sea 7, 18, 19

Ocean index
SOI 5
DMI 16

Reservoir inflow - 1, 12

Table 3. Performance indicators of the wavelet artificial neural network (WANN) model. CD: coefficient
of determination; EI: efficiency index; RMSE: root mean square error; R: correlation.

Model Period
Model Performance Indicators

RMSE R EI CD

Training 179.85 0.95 0.90 0.89
Validation 248.68 0.90 0.81 0.85

Testing 210.80 0.95 0.89 0.77

For the forecasting using the WMAM and VAM methods, reservoir inflow data from 1974 to 2004
were used to forecast the inflow of the years 2005 to 2014. Therefore, there were at least 31 years of
monthly records for use as historical analogues. For the WMAM method, the selection of potential
historical analogues was based on calculation of the RMSE as described in the Methodology section.
Figure 3 shows an example of reservoir inflow forecasting for March 2013. Five historical analogues
gave the minimum root mean square values selected for the forecast. After selection, the weights for
each analogue were calculated, and these weights were then used to calculate the forecast standardized
value and converted to obtain the forecast inflow for March 2013. The yellow broken line and the
yellow solid line are the forecast and observed standardized inflows in March 2013, respectively.
The forecast standardized inflows were converted to inflows in a normal form and used to calculate
the performance indicators.

Figure 4 shows an example of the variation values plotted against standardized inflow values
from February to January of the following year. Assuming that the most current month is December
2005, we can forecast the inflow in January 2006. The variation from March to January of previous
years is plotted alongside the variation from March to December of 2005. Then, the most similar
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variation analogue is selected by comparing the variation vectors from November to December. In this
example, the most similar analogue is the plot for 1993–1994, as shown in Figure 4. Thus, the variation
in January 2006 is calculated from the variation in December 1993 and January 1994. Then, the forecast
standardized value for January 2006 is calculated from this forecast variation value, as shown in
Figure 4. The plot of standardized inflows from October 2005 to January 2006 is very similar to the
plot from October 1993 to January 1994. It is evident from the plot that VAM forecasting has the
advantage that it allows determination of similar patterns among inflow events even if they occurred
in different zones. This is different from the WMAM, in which selection of potential historical dialogues
depends on the RMSE between inflows of previous years and the current year. The selection will
include all nearby inflow patterns even if they are not similar to the inflow pattern of the current year,
while similar patterns in different zones, as in this example, will not be selected.
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To improve forecasting results of the VAM, additional processes to assist selection of the most
similar analogue were investigated. Consider the predicted inflow of the Sirikit Dam in August
1995, which was the most extreme Sirikit Dam inflow on record, shown in Figure 5. The plot of the
variation in standardized inflow for June–July 1995 is very similar to the plot for the same period in
1992. The forecast variation in standardized inflow in August 1995 should follow the red dotted line.
Nevertheless, the actual variation followed the dark red line, which is very far from the forecast result.
These observations indicate that the VAM still has some weaknesses and requires further improvement.
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Several previous studies have indicated that SSTs and climatic indices are associated with climate
and rainfall in Thailand. Moreover, several previous studies have reported that incorporating SSTs and
climatic indices into river-flow forecasts can improve results. The incorporation of SSTs and climatic
indices as inputs to the WANN in this study confirmed that these data can improve reservoir inflow
forecasts, implying that SST and climatic indices are also associated with reservoir inflow. Based on
this assumption, years with similar patterns of standardized inflow variation should have similar SST
and climatic-index patterns. These similar SST and climatic-index patterns can then act as guidelines
in the selection of the most potentially useful historical analogues. Therefore, cross-correlation analysis
between SSTs and the climatic indices used as the inputs of the WANN model and standardized
inflow was performed. The correlation values between SSTs, climatic indices, and standardized inflow
were calculated for each month. The SSTs and climatic indices with correlation values exceeding the
threshold for significance (0.304 for 41-year inflow data in this study) [44] were considered significant
SSTs and indices in the selection of historical analogues of the corresponding month. As examples,
Appendix A lists the significant SSTs and climatic indices for the Sirikit Dam inflows in January and
August; the number −1 behind a month indicates the month in the previous year compared to the
year of inflow. For example, Niño 3 (Jan-1) refers to the Niño 3 index in January of the previous
year compared to the year of the inflow to be forecast. These significant SSTs and climatic indices
will be used to decide the most useful potential historical analogue for forecasting the inflow of the
current year.

An example of forecasting the inflow of the Sirikit Dam in January 2008 is presented. In this case,
the most current month is December 2007, and the inflow to forecast is that of January 2008. The steps
of forecasting the inflow are as follows.

1. The variations in standardized inflows for March to December 2007 are plotted along with the
variations in standardized inflows for March to January of the available analogues. Potential



Water 2018, 10, 1614 11 of 22

analogues with variation patterns similar to that of December 2007 are selected. In this case, there
are three historical analogue candidates: December 1976, December 1988, and December 1989
(Figure 6).

2. To forecast the inflow for January 2008, the significant SSTs and climatic indices for inflows in
January 2008, January 1977, January 1989, and January 1990 are plotted to assist in selection of
the best potential analogue (see Appendix B). In this case, most of the significant climatic indices
and SSTs for January 2008 are very similar to those for January 1989, and therefore January 1989
is selected as the best potential analogue.

3. The forecast variation for January 2008 is calculated from the variation in January 1989 using
Equation (6) and plotted as the red-dotted line in Figure 6.

4. After obtaining the variation for January 2008, the standardized inflow is calculated using
Equation (7) and converted to the normal form of inflow. The forecast inflow values calculated
from this method and the observed inflow in January 2008 are 138.29 and 136.84 million cubic
meters, respectively.
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For a greater understanding of forecasting using the VAM with the consideration of SSTs and
climatic indices (the VAM-improved), the readers can read the examples of forecasting for the inflow in
August 1995 and August 2011, which were the most extreme inflows on record (Appendices C and D,
respectively).

Based on the results described above, the improved VAM that considers climatic indices was
used to forecast July, August, and September, which are high-flow periods in Sirikit Dam inflow.
The forecasting performance of all methods for the whole-year and high-flow periods was evaluated
and compared. To compare the performance of the WANN with other methods, the forecasting results
of the WANN in the validation and testing periods were combined and the performance indicators
were recalculated to match the forecasting period of the WANN with that of the WMAM and VAM.
The performance indicators of all methods in predicting the reservoir inflow of the Sirikit Dam from
January 2005 to December 2014 are shown in Table 4. Plots of forecast and observed inflows for the
whole-year and high-flow periods are shown for comparison in Figures 7 and 8, respectively.
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Table 4. Performance indicators of all forecasting methods for forecasting the Sirikit Dam inflow in
2005–2014. VAM: variation analogue method; WANN: wavelet artificial neural network; WMAM:
weighted mean analogue method.

Forecasting Period Method
Model Performance Indicator

RMSE R EI CD

Whole year
(January–December)

WANN 234.20 0.92 0.85 0.81
WMAM 335.45 0.84 0.69 0.62

VAM 186.33 0.95 0.90 1.01
VAM-improved 115.55 0.98 0.96 0.92

High flow
(July–September)

WANN 366.78 0.83 0.67 0.60
WMAM 627.42 0.37 0.04 0.37

VAM 305.59 0.84 0.84 0.87
VAM-improved 215.55 0.95 0.92 0.86
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For the whole-year forecasting period, which included both low-flow and high-flow patterns,
the WANN model provided good forecasting results as all performance indicators were above 0.80.
The WMAM provided only satisfactory forecasting results, as the EI and CD values were <0.70 and the
RMSE was higher than for the other methods. The forecasting performance of the VAM was superior
to that of other methods as all performance indicators were >0.9 and the RMSE had the lowest value.
It can also be seen from the comparison plot in Figure 8 that the VAM forecast captured the extreme
inflow of the Sirikit Dam reservoir.

For the high-flow period, the forecasting performance of all methods significantly worsened.
The WANN method, which produced good results for the overall period, provided only satisfactory
results for this period. This was not unexpected; poor performance in predicting peak flow is a common
weakness of ANN methods, as noted in several previous reports (e.g., Sudheer [34]; Yang et al. [35]).
The forecasting performance of the WMAM was markedly lower in the high-flow period compared to
the whole year, indicating that this method is not suitable for prediction of inflow in a high-response
watershed, especially for the high-flow season, as in this case. This weakness of the WMAM was
also noted by Svensson [31], who reported a high degree of uncertainty in the historical analogue
approach, particularly in catchments with a rapid response. The VAM captured flow best in this period
comparing to the WANN and the WMAM, especially peak flow. Taking SSTs and climatic indices into
consideration significantly improves forecasting results of the VAM. The VAM-improved performance
indicators were the best in both the whole-year and high-flow forecasting periods; this model provided
very good performance indicators even in high-flow periods, with all indicators having values above
0.85. The improvement can be seen in Figure 8, where most of the VAM-improved forecast values are
closer to the observed values than those of the standard VAM (i.e., the VAM without consideration of
SSTs and climatic indices).

Based on the very high reliability and low uncertainty of the improved VAM indicated by the
results, this method can be used for management of the Sirikit Dam, especially in high-flow periods.
It provides very good forecasting results, with all performance indicators above 0.85, and its uncertainty
as defined by RMSE values is less than the reservoir surcharge storage (998,000,000 m3). Moreover,
in testing, it predicted extreme flow such as occurred in August 2011, whereas other methods did
not. However, in forecasting based on historical analogues, there may be high-return-period events
for which no suitable analogues are available. Therefore, scenarios based on forecasts with various
uncertainty values should be modeled. The most suitable scenario for the current month can then
be selected for dam operation. For example, if the water level in the dam is very low in August,
well below the upper curve of the reservoir operation rule, and low inflow is forecast in September,
then a scenario with less inflow than that forecast is selected to retain the water for the coming dry
season. On the other hand, if the water level in the dam is very high in August, close to the upper
curve of the reservoir operation rule, and high inflow is forecast in September, then a scenario with
more inflow than that forecast is selected. The dam operator can then decide to release water gradually
to make space for the expected inflow. For the low-flow season, the forecasting results of all of the
methods examined in this study were acceptable for dam operation, as their uncertainties were close
enough to observed values. Moreover, most of the inflow in the low-flow period is kept for water
supply, so uncertainty is less important.

4. Discussion and Conclusions

This study compared three forecasting methods—the WANN method, the WMAM, and the
VAM—for use in forecasting the monthly reservoir inflow of the Sirikit Dam in Thailand. The results
indicate that for whole-year forecasting, which includes both low- and high-flow seasons, the WANN
method provided good results, while those obtained using the WMAM were only satisfactory.
The performance of the VAM was superior to that of the other methods and accurately predicted
extreme inflow. For the high-flow period (July–September), the VAM predicted flow best, especially
in the case of peak flow. However, the performance of all of the methods was significantly lower for
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the high-flow period. The WANN method, which produced good results for whole-year forecasts,
provided only satisfactory results for the high-flow period. The performance of the WMAM method
was markedly worse in the high-flow period compared to the whole-year period. Based on the results
of this study, the following conclusions were reached with regard to the methodologies and application
to Sirikit Dam in Thailand.

1. The WANN model, a hybrid of ANN and wavelet analysis, produced good results in forecasting
the monthly reservoir inflow of Sirikit Dam. However, for the high-flow period it provided
only satisfactory results. This indicated that the WANN model is weak in forecasting peak
flows because such flows are rare compared to low- and moderate-flow events. As ANN-based
models rely on learning from past events, the number of peak flow events is insufficient for ANN
models to learn and produce good forecasting results. This characteristic of ANN-based models
is a common issue that has been reported in the literature (e.g., Sudheer [34]; Yang et al. [35]).
Wavelet analysis, a data pre-processing technique, generally improved the forecasting results,
but the improvement was not enough to predict peak flow. In conclusion, the WANN method
has a poor ability to forecast peak flows.

2. The WMAM provided only reasonably satisfactory predictions for the whole-year period and
its performance was markedly worse in the high-flow period. This may have been because the
forecasting is dependent on the RMSE between historical and current inflows. The selection of
historical analogues based on RMSE may result in the inclusion of all recent inflow patterns,
even if they are not similar to the pattern of the current year. This leads to incorrect selection of
analogues, especially for a high-response catchment such as the Sirikit Dam. This characteristic
of analogue-based methods such as the WMAM was reported previously by Svensson [31],
who concluded that the uncertainty of the historical analogue approach can be large, especially
in catchments with a fast response.

3. The developed VAM provided excellent predictions of the monthly reservoir inflow of the Sirikit
Dam. Its ability to forecast extreme peak flow represented an advantage over the other methods.
However, it has the drawback that it relies on past observation data. Therefore, in the absence
of a similar historical analogue it may not provide good results. This is especially important
in the case of events with return periods that may be longer than the record length, making
rare situations that have not been observed in the past very difficult to forecast. The example of
this situation is the case of forecasting the inflow in August 1995 described earlier. In addition,
changes in land use, urbanization processes, or changes in the morphology of the rivers may
affect the discharge arriving to the reservoirs. The study of the effect of those changes should be
further conducted to clarify this issue.

4. The incorporation of SSTs and climatic indices in the WANN model and the VAM significantly
improved forecasts. In the WANN model, SSTs and climatic indices were used as an input
to the model. In the VAM, significant SSTs and climatic indices for the inflow each month
were plotted and compared to aid in selecting appropriate historical analogues. The idea
behind investigating use of SSTs and climatic indices as guidelines for selection of the most
suitable historical analogues was derived from the results of several previous studies that
indicated that SSTs and climatic indices were associated with the Thai climate and rainfall
(e.g., Singharattna et al. [36]; Bejranonda and Koch [37]; Chansaengkrachang [38]; Bridhikitti [39];
and Manusthiparom [40]). The improvement in forecasts in this study after incorporation of SSTs
and climatic indices supports these previous reports. However, future studies should clarify the
individual contributions of SSTs and the climate indexes.

5. Although the VAM could provide excellent predictions of the reservoir inflow of the Sirikit Dam,
the leading time of prediction in this study is only one month, which may not be enough for
the open large reservoir where prediction times of longer than one month are often needed.
The further study of longer lead-time prediction using the VAM is hence needed for better
reservoir operation.
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Appendix A

Table A1. Significant SSTs and climatic indices for Sirikit Dam Inflow in January and August. SCS:
South China Sea; AO: Arctic Oscillation.

January August

Significant
SSTs/Indices Correlation Significant SSTs/Indices Correlation

Andaman (MAR-1) −0.404 Andaman (AUG) −0.321
Andaman (APR-1) −0.366 Andaman (MAY-1) −0.372
Andaman (MAY-1) −0.400 Andaman (JUN-1) −0.336
Andaman (JUN-1) −0.320 AO (FEB-1) −0.345
Andaman (JUL-1) −0.342 AO (DEC-1) −0.308

Andaman (AUG-1) −0.556 AO (MAY) −0.356
Andaman (SEP-1) −0.499 DMI (APR) 0.312
Andaman (OCT-1) −0.303 DMI (MAR-1) 0.325
Andaman (NOV-1) −0.371 DMI (APR-1) 0.421
Andaman (DEC-1) −0.325 DMI (MAY-1) 0.324

Niño 3 (JAN-1) −0.375 SOI (MAR) 0.448
Niño 3 (FEB-1) −0.422 Niño 1 + 2 (MAR) −0.316

Niño 3 (MAR-1) −0.391 Niño 1 + 2 (APR) −0.440
Niño 3 (APR-1) −0.388 Niño 1 + 2 (MAY) −0.404
Niño 3.4 (Jan-1) −0.398 Niño 1 + 2 (JUN) −0.342
Niño 3.4 (FEB-1) −0.403 Niño 1 + 2 (JUL) −0.307

Niño 3.4 (MAR-1)) −0.422 Niño 1 + 2 (AUG) −0.334
Niño 3.4 (APR-1) −0.459 Niño 3 (MAR) −0.330
Niño 3.4 (MAY-1) −0.327 Niño 3 (APR) −0.421
Niño 4 (JAN-1) −0.327 Niño 3 (MAY) −0.439
Niño 4 (FEB-1) −0.321 Niño 3 (JUN) −0.357

Niño 4 (MAR-1) −0.322 Niño 3 (JUL) −0.310
Pacific (FEB-1) −0.339 Niño 3 (AUG) −0.329

Pacific (MAR-1) −0.327 Niño 3.4 (APR) −0.318
Pacific (APR-1) −0.325 Niño 3.4 (MAY) −0.353
Pacific (MAY-1) −0.394 Pacific (JUL) −0.409
Pacific (JUN-1) −0.487 Pacific (AUG) −0.355
Pacific (JUL-1) −0.591

Pacific (AUG-1) −0.544
Pacific (SEP-1) −0.354
SCS (APR-1) −0.334
SCS (MAY-1) −0.320
SCS (JUN-1) −0.346
SCS (JUL-1) −0.361

SCS (AUG-1) −0.340
SOI (JAN-1) 0.362
SOI (FEB-1) 0.412

SOI (MAR-1) 0.531
SOI (APR-1) 0.398
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Figure A1. Plots of significant SSTs and climatic indices for forecasting Sirikit Dam inflow in January
2008 (a) Niño 3; (b) Niño 4; (c) Niño 3.4; (d) SOI; (e) Standardized SST in the South China Sea;
(f) Standardized SST in the Pacific Ocean (g) Standardized SST in the Andaman sea.

Appendix C

The inflow forecasts for August 1995 using the VAM.
In the inflow forecasts for August 1995 described in the Results section, if we assume that all inflow

data from 1974 to 2014 were available for prediction of inflow in August 1995 (which is impossible
because 1996–2014 was in the future in August 1995), the potential variation analogues would be as
plotted as in Figure A2. When considering the plots of significant SSTs and climatic indices for the
inflow in August 1995 and all candidate analogues (see Figure A3), it is evident from the plots that most
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of the significant SSTs and climatic indices for August 1995 are similar to those for August 2001 and
August 2013. It is also evident that the most significant SSTs and climatic indices for August 1992 differ
from those for August 1995. Therefore, the variation in standardized inflow in August 1995 does not
align with the variation in August 1992, even though it is the most visually similar among the available
candidates. In this case, the variation in standardized inflow in August 1995 could be calculated from
the variation in August 2001 and August 2013 using Equation (6). The forecast variation in August
1995 is shown by the red dotted line in Figure A2, which is closer to the observed value than before.
This is the strength of the improved VAM that considers significant SSTs and climatic indices to predict
extreme peak flow accurately.
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Figure A3. Plots of Significant SSTs and climatic indices for forecasting Sirikit Dam inflow in August
1995 (a) Niño 1 + 2; (b) Niño 3; (c) Niño 3.4; (d) Standardized SST in the Pacific Ocean; (e) Standardized
SST in the Andaman Sea; (f) DMI; (g) Other SSTs and indices as stated in Appendix A.

Appendix D

The inflow forecasts for August 2011 using the VAM.
The inflow in August 2011 is another extreme event in the record. To confirm the ability of

the VAM to predict extreme inflow, the forecast procedure for this extreme event is discussed. The
prediction follows the steps described for the January 2008 inflow. Here, the most current month is July
2011, so we require a similar pattern of variation in July in the optimal analogue. Visual examination
of the variation plots produces six potential analogues with patterns similar to that of July 2011 (see
Figure A5). The significant SSTs and climatic indices for inflow in August 2011 and all candidate
analogues are plotted to determine which analogue is the best potential candidate for forecasting (see
Figure A6). The August 2011 patterns of SSTs and significant indices are not very similar to any one or
two historical analogues, unlike the previous cases in the Results section. Therefore, the climate-forcing
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factors affecting the rainfall and inflow of the Sirikit Dam Basin in August 2011 are a mix of the forcing
factors in the candidate analogue years. Based on this assumption, the variation in standardized
inflow in August 2011 is the average of the variation in August of all candidate analogues and can be
calculated using Equation (6). The results are shown by the red dashed line, which is very close to the
observed value depicted by the dark red line (see Figure A5). This result confirms the strength of the
improved VAM in forecasting extreme peak flows. In other methods that attempt to compare or search
for historical inflow information, finding candidate analogues is very difficult, especially in the case of
extreme events such as in August 2011, because the events occur in a very high-flow zone and similar
events are very rare (see Figure A4).
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