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Abstract: Hydrologic models are an approximation of reality, and thus, are not able to perfectly
simulate observed streamflow because of various sources of uncertainty. On the other hand, skillful
operational hydrologic forecasts are vital in water resources engineering and management for
preparedness against flooding and extreme events. Multi-model techniques can be used to help
represent and quantify various uncertainties in forecasting. In this paper, we assess the performance
of a Multi-model Seasonal Ensemble Streamflow Prediction (MSESP) scheme coupled with statistical
post-processing techniques to issue operational uncertainty for the Manitoba Hydrologic Forecasting
Centre (HFC). The Ensemble Streamflow Predictions (ESPs) from WATFLOOD and SWAT hydrologic
models were used along with four statistical post-processing techniques: Linear Regression (LR),
Quantile Mapping (QM), Quantile Model Averaging (QMA), and Bayesian Model Averaging (BMA)].
The quality of MSESP was investigated from April to July with a lead time of three months for the
Upper Assiniboine River Basin (UARB) at Kamsack, Canada. While multi-model ESPs coupled
with post-processing techniques improve predictability (in general), results suggest that additional
avenues for improving the skill and value of seasonal streamflow prediction. Next steps towards
an operational ESP system include adding more operationally used models, improving models
calibration methods to reduce model bias, increasing ESP sample size, and testing ESP schemes at
multiple lead times, which, once developed, will not only help HFCs in Canada but would also help
Centers South of the Border.

Keywords: ensemble streamflow forecast; multi-model combination; post-processing; uncertainty
estimation; WATFLOOD; SWAT

1. Introduction

The science of hydrological forecasting has greatly improved with the introduction of
numerous distributed hydrologic models, numerical weather models (NWMs), and data assimilation
techniques [1]. A large number of hydrological forecasting models are in operation around the globe,
and several of these are used in Canada [2]. However, no single hydrologic model is suitable for
all drainage systems due to the varying characteristics and complexities of watersheds, local-scale
heterogeneity, and different climate zones [3]. The model used by a forecasting unit is dependent upon
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the data availability, hydrologic expertise, type of the watershed, and the specific nature of the problem.
Distributed and physically based hydrologic models are data-intensive but are considered to be reliable
in providing improved streamflow forecasting, mainly because they are capable of leveraging a variety
of spatially distributed data [4,5]. In operational forecasting, however, there are trade-offs between
the complexity of the model, the inclusion and accuracy of catchment-scale processes affecting runoff
generation, and the model speed. The goal is always, and always must be, the highest accuracy
forecasts for reliable, operational flood management and warning [6,7].

Flood forecasting is not only required to be sufficiently accurate within a defined time
horizon but must also provide information on the forecasting uncertainty to facilitate effective
decision-making and the timely issuing of forecasts [8]. Consideration of uncertainty has been
recognized as an essential component for both research and operations [9,10], and provides added
value in water-resources-related decision-making. Informed uncertainty prediction can increase
confidence in forecasts, which are most certainly imperfect [11]. Four major sources of uncertainty
have been identified: input, parameter, model structure and uncertainty due to observations, or output
uncertainty [10,12]. Several approaches have been developed to assess uncertainty in hydrological
modeling [13,14]. Among others, the ensemble streamflow prediction (ESP) [15] approach has led
to the development of Hydrological Ensemble Prediction System (HEPS) [16,17] which allow us to
estimate uncertainty in weather forecasts as well as predicting the most likely outcomes [18].

In ESP, hydrologic models are forced with historical sequence of climate data, such as precipitation,
temperature and/or potential evapotranspiration during the time of forecast, providing a plausible
range of future streamflow states [19]. The method assumes that the forcing data and model are
perfect, that is, there are no errors in the initial hydrological conditions (IHCs) [20]. In operational
practice, the skill attributed to IHCs has been ranked high in comparison to the skills attributed to the
climate forecast [21], with both being the two major contributing factors to successfully predicting
streamflow dynamics.

Whether or not forecasts are generated using deterministic or ensemble methods, raw forecasts
should not be used directly for operational decision-making due to their bias [22]. Consequently, a
number of hydrological post-processing statistical techniques [23,24] have been developed to improve
the ability of a forecast which accounts for uncertainty in the hydrological output. This has led to
the development of schemes that seek to obtain consensus from a combination of multiple model
predictions to compensate for errors in one model by the others.

This study is designed to develop a new post-processing tool to help identify the uncertainty
in seasonal streamflow forecasts for the Manitoba Hydrologic Forecast Centre (HFC) using their
operational forecasting model (WATFLOOD), and one newly developed research-based model (SWAT).
The goal is to improve ensemble decision-making capacity for the Manitoba HFC by 1) developing a
framework to evaluate the forecast skill of an ensemble of hydrologic models, and 2) developing a tool
to explore the use of four post-processing approaches for ensemble forecasting: Linear Regression (LR),
Quantile Mapping (QM), Quantile Model Averaging (QMA), and Bayesian Model Averaging (BMA).
Through the study, it is intended to answers these questions: What ensemble-generating mechanism
results in a better forecast? Moreover, how can post-processing schemes be used to improve the
reliability and accuracy of forecasts?

Although, ESP with post-processing techniques have been tested widely around the globe, the
novelty of this research lies in the methodological choices of testing different combinations of ESP and
statistical post-processing schemes. We further aim that this study is the first of its kind that utilizes
more than two semi-physically based distributed models with multiple post-processing techniques
in the Prairie Pothole Region, known for its complex hydrological landscape. This study falls under
Theme 3 of the Canadian Natural Science Engineering Research Centre (NSERC)-funded FloodNet
project that aims to enhance flood forecasting systems across Canada [25].
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2. Materials and Methods

2.1. Study Area

The study area selected for this study is the Upper Assiniboine River basin (UARB) at Kamsack,
Canada. The UARB at Kamsack is characterized by the presence of potholes that creates intermittent
flow, the existence of numerous lakes, and the dynamics of the wetlands. Located at the border of
Saskatchewan and Manitoba, the UARB at Kamsack has a total area of 13,000 km2 and is monitored
by five streamflow gauging stations (Figure 1). The basin is of significant importance as flow
generated in the basin enters the Lake of the Prairies (Shellmouth Reservoir), which was constructed
as a multipurpose water control structure and is located approximately 45 km downstream of the
watershed outlet.
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Prairie Pothole Region (PPR).

The climate of the UARB is continental sub-humid characterized by long, cold winter and short
summer seasons where the mean annual temperature and potential evapotranspiration are about 1 ◦C
and 850 mm, respectively [26]. The average annual precipitation is 450 mm, with approximately 26%
of the precipitation falling as snow [27]. Spring freshet occurs from April to June, accounting for 82%,
on average, of total mean annual streamflow volume [27] (Figure 2).

2.2. Hydrological Model

This study utilized two hydrological models to generate ESPs. The WATFLOOD model,
a semi-physically based distributed model; and SWAT, a physically based, semi-distributed hydrologic
model. The WATFLOOD model is currently used as an operational forecasting tool for reservoir inflow
forecasting at the Manitoba HFC while the SWAT model has been developed as a research tool at
the University of Manitoba. A brief overview of each model including its calibration protocol is
presented in subsequent sections. To provide accurate feedback to the HFC on the current state of their
operational models, we purposely did not re-calibrate the operationally used model (WATFLOOD),
utilizing in-house model setup and calibration.

2.2.1. WATFLOOD Model

WATFLOOD is a partially physically based and fully distributed hydrological model that is
used in operation at the Manitoba HFC for flood forecasting. The model uses conceptualization of
some physical processes in order to maintain high computational efficiencies [28] and operates on
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a grouped response units (GRUs), which are hydrologic computational units that are expected to
respond similarly to meteorological conditions [29,30]. Groups are formed based on hydrological
similarity generally defined by land cover types. WATFLOOD relies on the assumption that similar
land covers exist in regions of similar soil types and topographic conditions. Response in each GRU of
a grid is summed to give a total hydrologic response to the grid. The grids combine together to form
the watershed basin where the upstream gridded responses are routed to downstream grids.
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Figure 2. Stream flow versus precipitation at the UARB at Kamsack (WSC ID: 05MD004)
over 1981–2010.

2.2.2. SWAT Model

The SWAT model is a continuous-time, processes-based, semi-distributed watershed-scale model
that can be employed to assess the effect of land management practices on water resources in large river
basins [31,32]. The hydrology, erosion, weather, plant growth, nutrients, pesticides, land management,
channel, and reservoir routing are the major hydrological component of the SWAT model.

A watershed in SWAT is first divided spatially into subbasins, which are further subdivided
hydrological response units (HRUs). HRUs in SWAT are the smallest computational unit, consisting
of land use, digital elevation model (DEM), and soil map of the area, having similar landscape
characteristics. A daily hydrological balance for each HRU is simulated that includes partitioning of
precipitation, snowmelt water, redistribution of water within the soil profile, evapotranspiration and
return flow [32,33]. Streamflow in SWAT is simulated as the combined runoff from all HRUs in the
subwatershed routed through the stream network using either the variable rate storage method [34] or
the Muskingum method [32].

In this study, a modified version of the SWAT model was used that has enhanced representation
of pothole wetlands [35,36] which are unique to the Prairie Pothole Region. The reader is referred
to [35] for more detail on the modified concept of pothole wetlands representation in SWAT.

2.3. Statistical Post-Processing

A straightforward method of statistical post-processing of model output is the arithmetic mean,
also known as simple model averaging (SMA). It is based on the assumption that all ensemble members
have equal likelihood of occurrence, and that the ensemble size is irrelevant. That is, the MM hydrologic
predictions are formed by merging the individual runoff forecasts with equal weightings [37]. Although
the method has been shown to be more reliable than deterministic model predictions in some cases [38,39],
studies suggest that SMA does not make full use of all the information available to the ensemble
members [40]. This is mainly because the SMA treats the good and bad simulations equally, thus yielding
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an intermediate solution. Consequently, the SMA does not guarantee an improved estimate, and in some
cases, estimates may even be worse than individual model simulations. Techniques such as LR [41],
BMA [42], and QMA [43] are developed to overcome the limitations of SMA.

We present a brief overview of the statistical post-processing techniques used in this study;
the reader is referred to [44] for further detail. The LR method developed by [41] uses the mean of
ESP with observations to generate the conditional forecast mean and spread to improve upon the
traditional ESP forecast. The method, however, may not be of great help during extreme events such
as flood warnings, as parameters are trained using the mean rather than the extreme, due to the
rarity of the extreme events. The QM method adjusts the cumulative distribution function (CDF)
of the forecast according to the CDF of the observations, thus mapping the forecast value to the
corresponding quantile in the observed CDF [41,45]. A noted weakness of the method is that it
does not preserve the connection between each pair of forecast and observations value, leading to
unsatisfactory results [22]. Furthermore, the LR and QM are mostly applied in cases when ESP is
generated using single hydrological models. Consequently, post-processing techniques, such as BMA
and QMA, are developed to overcome this limitation and to merge ESPs from multiple hydrologic
models, while appreciating individual model performance. The BMA method [42] is one of the most
popular MM post-processing methods, where each member of the ensemble forecast is associated
with a conditional probability distribution function (PDF). A weight for each member of the ensemble
forecast is computed based on the performance of the model during the training period, such that all
weights sum to 1. QMA, on the other hand, is the weighted average of forecast quantiles from all the
models [43]. A noted difference between BMA and QMA is that BMA produces bimodal outputs while
QMA produces smooth and unimodal distributions [43]. All mentioned post-processing techniques
have been extensively used to reduce uncertainty in hydrologic predictions that arise from different
sources, including atmospheric forcing and prediction, model initial states, model parameters, model
structure, and assumptions, among others [20,46,47].

2.4. Forecast Generation

We utilized historical observations from 1994 to 2014 to generate probabilistic (ensemble)
streamflow hindcasts, using 1994 as a spin-up period. Each model was repeatedly forced with the
observed meteorological input of Environment and Climate Change Canada (ECCC) gauging stations
up until the time of the hindcast initialization, leading to a sample size of 20 (i.e., one hydrologic
sequence per year used for 20 years, based on previous meteorological conditions). Following the
Manitoba HFCs methodology, the year of interest (i.e., hindcast year) was withdrawn during ESP
generation; thus, the total number of ensemble members generated for the ESP (per hydrologic
model) was 19. In Manitoba, spring streamflow outlooks are issued twice a year: at the end of
February and at the end of March while runoff conditions are monitored throughout the year. The
most important runoff period for the UARB is April–July, which generates more than 80% of annual
streamflow volume [27]. The study thus focused on April-to-July runoff volume. A schematic outlining
the procedure we used to generate the ensembles is presented in Figure 3. Scheme-1 results in 19
ensembles per model, while Scheme-2 combines all ensemble members (regardless of the model
used to generate it), resulting in 38 members. Hindcasts for each scheme were issued and were then
post-processed using the LR, QM, BMA, and QMA techniques.
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2.5. Performance Metrics

To evaluate the quality of the hindcasts, percent bias (PBIAS), Root Mean Square Error (RMSE),
Coefficient of determination (R2), and the Continuous Ranked Probability Skill Score (CRPSS) were
used. The percent bias computes the average tendency of the simulated variable to be larger or smaller
than the observed variable and can be expressed using Equation (1):

PBIAS = 100 × ∑n
1 (Qo − Qs)i

∑n
1 Qo

(1)

where Q is a variable (e.g., discharge), and o and s stand for the observed and simulated variable,
respectively. The optimum value is 0; however, values between –25 and 25 are considered
satisfactory [48]. Values above zero mean the model is underpredicting, while PBIAS below 0 indicates
the models are overpredicting.

RMSE measures the difference between observed and simulated values. Individual differences
are also called residuals, and the RMSE serves to aggregate them into a single measure of predictive
power. The RMSE is expressed in Equation (2):

RMSE =

√
∑n

1 (Qo − Qs)
2

i
n

(2)

The threshold for RMSE is difficult to establish; however, RMSEs of >0.5 are often related to a
model with decreasing predictive power [49].

The R2 is an index that measures the degree of linear relationship between observed and simulated
values and can be computed using Equation (3):

R2 =
∑n

1
[(

Qo − Qo
)
×
(
Qs − Qs

)]2
∑n

1
(
Qo − Q0

)2 ×
(
Qs − Qs

)2 (3)
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where bars represent average variables over a given time period. R2 ranges between −1 and 1, with 1
being perfectly positive and −1 as the perfectly negative relationship. When R2 is 0, it implies that
there is no connection between observed and simulated variables.

The CRPSS (Equation (4)) is a widely utilized performance metric that assesses the overall quality
of the probabilistic forecast (or hindcast) in reference to the climatology-based ensemble, which, in
most cases, is the reference forecast (or hindcast) [50,51]:

CRPSS = 1 − CRPS
CRPSref

(4)

where

CRPS =

∞∫
−∞

[F(y)− F0(y)]
2dy

and

F0(y) =

{
0, y < Observed value
1, y ≥ Observed value

F(y) is a stepwise CDF of the ESP for each considered forecast (hindcast). CRPSS ranges from –∞
to 1, where 1 indicates a perfect forecast (hindcast), and positive values indicate high skill over the
reference period.

3. Results and Discussion

3.1. Hydrologic Model Evaluation

Daily average annual hydrographs using two hydrologic models (WATFLOOD and SWAT)
were hindcast from 1994 to 2004 and compared to observed streamflow (Figure 4). In general, both
hydrologic models followed the trend of observed streamflow and were able to capture the timing of the
spring runoff; however, there are inconsistencies in capturing the correct magnitude of runoff for both
models. This could be a result of the model’s individual calibrations, but can also, in part, be explained
by the developed philosophy behind each model. For example, SWAT is an agricultural model, which
is developed to most accurately predict the impacts of best management practices (BMPs) on water,
sediments, and nutrient loading across large spatial scales and over long periods of time. This results
in SWAT being able to provide reasonable simulations of long-term, average-to-low-flow conditions
for the watershed (Figure 4). Whereas WATFLOOD was developed for operational flood forecasting
in an agriculturally dominated landscape [52], where physically based routing assists the model in
predicting peak flows more accurately. Furthermore, wetlands play an important role in correctly
attenuating streamflow in the UARB, as do the dynamic contributing areas which are internally drained
and only contribute to streamflow after reaching their maximum storage capacity [53]. Structurally, the
two models differ substantially in how they simulate these crucial hydrological storages and dynamic
connectivity within the channel network. The version of SWAT used in this study [35] has an enhanced
spatial representation of the Prairie Pothole wetlands that is dynamic and modifies the wetland-channel
routing network. In WATFLOOD, the wetland area is defined using a (constant) threshold value that
splits wetlands into coupled wetland-channel region (i.e., riparian areas) and uncoupled (disconnected
from the channel) regions. While uncoupled wetland area does not contribute to channel flow, the
coupled wetlands have a dynamic interaction with the channel based on the Dupis–Forecheimer
formulation (Kouwen, 2018). This wetland routing scheme is robust and computationally efficient;
however, it does not recognize the dynamic spatial relationship between isolated wetlands and the
channel that is determined by annual antecedent conditions. Results are similar to those found in [54],
where models are criticized for their inconsistency in correctly capturing the magnitude of runoff
in the UARB due to their structural differences. We further assessed the performance of the models
using the Nash–Sutcliffe model efficiency coefficients (NSEs) and R2 for WATFLOOD (0.57, and 0.67,
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respectively) and SWAT (0.60, and 0.73, respectively). As per [49,55,56], both models performed
satisfactorily in this study based on NSE values of >0.5 and R2 of >0.5.
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Figure 4. Daily average annual streamflow hydrograph from 1994 to 2004 at the catchment outlet (WSC
ID: 05MD004) using two hydrologic models. The NSE and R2 are computed using daily observed
simulated data over the entire period. The markings on the x-axis indicate the midpoint of each month.

3.2. Deterministic Evaluation of the Benchmark and Post-Processed ESPs

The two schemes proposed for assessing the various post-processing approaches (Figure 3) were
compared to the observed April-to-July runoff period using the mean volume at the outlet of the UARB
at Kamsack (WSC ID: 045MD004). The flow generated in the UARB at Kamsack enters Lake of the
Prairies (the Shellmouth Reservoir), which was solely constructed to regulate flow and mitigate floods.
Thus, it is of critical importance to determine the volume of inflow generated in the upstream basin for
reservoir optimization and flood forecasting operations. The LR and QM post-processing techniques
are applicable when ensembles are generated from a single model. Both techniques can also be applied
when a multi-model (MM) ensemble is placed together to increase ensemble size (i.e., considering
the ensembles of the two hydrologic models as a single forecast product), whereas QMA and BMA
techniques are applicable when weights are used for each model based on their relative performance.

In our experiment, Scheme-1 represented the application of LR and QM post-processing
techniques on the ensemble of each of hydrological model (Figure 5), while in Scheme-2,
all post-processing techniques were applied to the MM ensemble (Figure 6). WATFLOOD indicated
better correlation (R2 closer to 1) and lower RMSE relative to the observed streamflow in comparison to
SWAT (Figure 5). SWAT, however, reflected a lower standard deviation dispersion, indicating it more
often captured the mean simulations. Post-processing the ensembles in Scheme-1 does not appear to
improve the predictability of observed streamflow for both hydrologic models, and it appears that the
benchmark ensemble (raw ESPs) in fact provides the best hindcast (Figure 5).

Scheme-2 combines the two hydrologic models and evaluates the LR, QM, BMA, and QMA
post-processing techniques (Figure 6). Both BMA and QMA improved the predictability of observed
streamflow volume the most, given their improved correlation (positive R2) and lower RMSE in
comparison to the benchmark MM ensemble. Linear Regression (LR) and Quantile Mapping (QM)
techniques have lower correlation and higher RMSE, in comparison. There are a number of reasons
why the application of various post-processing techniques did not more significantly improve the
predictability of seasonal runoff volume. For seasonal lead times (as opposed to hourly or daily), the
accurate determination of IHCs is of critical importance and would exert a dominant influence on
the hydrologic forecast [55–57]. The Prairie Pothole Region is a hydrologically diverse and complex
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landscape that makes accurately defining the IHCs prior to the time of hindcast difficult at best.
Post-processing would be expected to have a more pronounced impact (on improving predictability) if
IHCs during the time of the hindcast were sufficiently represented [44].
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Figure 6. Taylor diagram of observed streamflow volume relative to the mean of multi-model
benchmark ESP performance (1994–2004) for two hydrologic models (combined in linear fashion)
and all post-processing techniques. MM indicates the benchmark ESP formed using both WATFLOOD
and SWAT models; subscript LR stands for Linear Regression, QM stands for Quantile Mapping, BMA
stands for Bayesian Model Averaging, and QMA stands for Quantile Model Averaging.
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Furthermore, the suitability of post-processing techniques is highly dependent on the sufficiency
of a hindcast time series, and consistency of retrospective model runs, used to train the post-processing
methods [20,58]. In a study by [21] a sample size of 23 ESP members are used to train the model.
However, another recent study by [44] outlined that three years of daily short-range forecasts would
provide a nominal sample size of over 1000 records for training the post-processing method parameters
to account for different hydrologic regimes. A 30-year hindcast for seasonal prediction offers a sample
size of 30 members, thus making it difficult to estimate the optimum parameter value in a statistical
post-processing model. It is likely that the low impact of the various post-processing approaches tested
on the seasonal runoff hindcast resulted from the limited sample size used in this study.

3.3. Probabilistic Evaluation of the Benchmark and Post-Processed ESPs

The benchmark ESPs from both the WATFLOOD and SWAT hydrologic models are presented
in Figure 7. The benchmark ESP from WATFLOOD appears to better capture peak flow events in
comparison to the benchmark ESP from SWAT.
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Although all hydrological models were built to approximate physical processes that occur across
catchment scales, the two models differ in structure, and likely therefore accuracy in simulating the
UARB hydrological landscape (as was discussed in Section 3.1). For example, the WATFLOOD ESP was
able to capture the extreme runoff volumes observed in 1995, 2011 and 2014 (Figure 7a), while the SWAT
ESP failed to do so (Figure 7b) as SWAT was not designed to simulate single, extreme flood events [32].
This is why SWAT is not often recommended for flood forecasting applications [59,60]. The SWAT
ensemble, however, is better able to replicate low-flow years with lower uncertainty (Figure 7b) and
had slightly better skill (CRPSS of 0.22) in comparison to WATFLOOD (CRPSS of 0.20). Given the
higher frequency of lower runoff (as opposed to peak runoff), this results in the SWAT model having
more skill in simulating “average” hydrologic conditions, or low-flow events. Given the enhanced
dynamic contributing area module embedded in this version of SWAT, this points to the strength of
this version of the SWAT model for simulating the low runoff threshold where effective drainage areas
are less than actual reported drainage area [61].
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The PBIAS and CRPSS for Scheme-1 using the LR post-processing technique are shown in
Figure 8. Results of the post-processed ensembles under Scheme-1 for WATFLOOD and SWAT models
are displayed in Figure 8a,b, respectively. Post-processing did not improve WATFLOOD’s skill, while a
near 20% increase in the SWAT CRPSS was observed. The LR post-processing technique operates on
the ensemble mean and generates adjusted mean and spread statistics [41]. Since SWAT is more capable
of predicting low-to-median flow, it is very likely that the model benefits more from post-processing,
resulting in higher overall skill. However, it should be noted, given the importance of peak flow
prediction in operational forecasting, that post-processing reduced the skill of SWAT in predicting
the 2011 peak runoff event (Figure 8b). In general, the post-processed MM ensemble (Figure 8c)
showed improved skill (CRPSS of 0.23) in comparison to the predictive skill of individual hydrologic
models (CRPSSs of 0.20, and 0.22 for WATFLOOD and SWAT models, respectively). The results also
highlight how MM approaches compensate for the individual error among the models. As noted
above, the post-processed WATFLOOD ESP over predicted low-flow events (Figure 8a), while the
SWAT ESP underpredicted peak runoff events (Figure 8b). When post-processing was applied to
the MM ensemble, however, we observed improved skill and lower bias. These results agree with
those from other researchers who found that the forecast errors from individual models can “cancel
out” [9,62,63]. This is why MM ensemble means are often regarded as more skillful predictions than
the results from individual models [64].

Figure 9 represents the post-processed ESPs for WATFLOOD and SWAT using QM. The QM
post-processing technique does not improve the predictability of WATFLOOD runoff volume
(Figure 9a); however, a modest improvement was observed for SWAT (Figure 9b), with the CRPSS
improving from 0.20 to 0.24. QM similarly does not produce noticeable improvement in the forecast
accuracy for the MM ensemble (Figure 9c). The QM approach is simple: the CDF of the forecast
is adjusted to make the observed CDF. QM does not preserve the connection between each pair of
forecast and observed values; thus, QM may sometimes adjust the raw forecast in the wrong direction,
producing less satisfactory results [65,66]. This is why more advanced post-processing techniques may
be preferable.Water 2018, 10, x FOR PEER REVIEW  12 of 19 
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3.4. Evaluation of Weighted MM ESPs

In Scheme-1, we presented results when post-processing techniques (LR and QM only) were
applied on individual model ESPs, as well as an MM ESP when ensembles are combined in a
linear fashion (i.e., without assigning weight to models based on their performance). Merging MM
ensembles without considering the performance of individual models, however, is considered to be
of less value [67]; hence, there are a number of schemes developed to appreciate individual model
performance [20,22,44].

Scheme-2 represents the application of the BMA and QMA post-processing techniques to the
merged ensemble formed from the two hydrological models, or the MM ESP. Initial weights for the
two models were computed using RMSE to appreciate individual model performance. Based on
the simulation performance, SWAT receives a RMSE of 0.53 while WATFLOOD has a RMSE of 0.47.
The benchmark MM ESP (Figure 10a) appears to have captured most observed events; however, there
are instances, particularly peak-flow events (i.e., 1995, 2011, and 2014) where the benchmark ensemble
did not perform as well. The post-processed MM ESP using BMA (Figure 10b) appears to improve the
predictability of these peak events that were missed by the benchmark ensemble; however, the overall
PBIAS and CRPSS did not improve. Various studies suggest that the performance of BMA can be
further improved if climatology is used as one of the candidate models [23,44,68,69]. In fact, the use
of climatology would help in reducing the overconfidence of individual model forecasts [70]. QMA
post-processing (Figure 10c) showed a slightly improved overall hindcast, with better skill (0.20)
and lower bias (−2.7). The QMA hindcast is a weighted average of quantiles from all models [43]
which not only corrects the CDF of the forecast with respect to observations but places weights on the
hydrological model output based on their performance. In their recent experiment [43], nearly identical
skill can be obtained using BMA and QMA, which is a confirmation of results in our experiment using
the two techniques. The slight improvement (lower bias) in QMA could be due to the CDF correction,
which is an added step as compared to BMA.
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3.5. Post-Processing Effectiveness for Operational Prediction

In general, we find the post-processing techniques in many cases have improved the streamflow
hindcasts; however, the improvement is not as significant as expected. There could be many
reasons for this result. Probabilistic forecasts were verified against observations in this study (to
evaluate CRPSS and PBIAS). As models are only abstracts of the reality, and given the complex
and highly non-linear response of UARB hydrology, there will be bias introduced into hindcasting
due to the models’ not fully replicating reality. Comparing the model ESP to post-processed ESPs
statistically would result in improved skill scores for the post-processing techniques. For example,
in Figures 5 and 6, the benchmark ESPs are centrally located between post-processed ESPs, and thus
the skill of post-processed ESPs would be much stronger relative to the benchmarks (as compared
to the observations). Results are similar to those obtained by [71] where the application of various
post-processing techniques did not necessarily improve predictability.

Another possible explanation could be that our study focused on hindcast verification at a
single, seasonal time step using the three-month lead time. It is possible that the forecast skill and
the application of various statistical post-processing techniques would be more notable at multiple,
and shorter lead times. For example, a number of post-processing techniques for seasonal flow
volume for a singular hydrologic model were evaluated by [20]. In their work, improvement in
forecast accuracy at three-month lead time is low to nil. Though many studies have reported the
benefit of using MM ESP approaches, it is often far from a trivial challenge to select a suite of models
and a method for combining their output. The impact of design choice on the performance of MM
forecast configurations, which included decisions about forecast quality attributes, weighting methods,
and the number of models, had a significant impact on the identification of an optimal approach [72].
Other studies also highlight the importance of design choices, including the number of hydrological
models to be used [73–76]. Most of the above studies recommended using at least five hydrologic
models. Moreover, post-processing of any type of hydrological forecast is based on the assumption
of stationarity in climate, weather patterns, and hydrologic response [20,22,44]. This means that the
statistical correlation between observations and forecasts during the training and verification periods
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should remain constant, which is not always valid in hydrology [77], and arguably may not have
been the case over this study period for the UARB with two >130-year return period floods (i.e., 2011,
and 2014) [78,79]. Such assumptions can introduce errors into the post-processed forecast, leading to
greater uncertainty than is expected [44].

As the CRPSS scores of all the post-processing techniques are quite similar, the two-sample
Kolmogorov–Smirnov (KS) test was used to test the significance of the change to the simulated
distributions after post-processing was conducted.

The KS test results return a decision for the null hypothesis that the data of the two samples
are from the same continuous distribution. The alternative hypothesis is that the two samples are
from different continuous distributions. H is 1 if the test rejects the null hypothesis at the 5%
significance level, and 0 otherwise. The p-value indicates the significance of the test result (Table 1).
Here, the null hypothesis was rejected in the case of WATFLOOD under Scheme-1, indicating there
is no significant change in the distribution of simulated flows after post-processing. Both the SWAT
and MM ESP, however, indicate weak but statistically significant changes in simulated distributions
(p-value was close to the critical rejection threshold) with the application of QM. This result is perhaps
not surprising given QM explicitly targets distribution quantiles and adjusts them to be closer to
the desired distribution of values. Given WATFLOOD reasonably replicated peak volumes before
post-processing, it is likely that, given the small sample of the ESP, post-processing had a lower impact.
The MM ESP under Scheme-1 showed weak but significant changes in the distribution of flow volume.
For Scheme-2, the BMA shows a significant impact on the simulated distribution of simulated flows
produced from the MM ensemble; however QMA failed to alter the distribution of peak runoff with
any significance.

Table 1. Two-sample Kolmogorov–Smirnov (KS) test for resulting significance of the post-processing
techniques relative to the raw ensembles.

WATFLOOD
(CRPSS)

Stat. Sig:
H(p)

SWAT
(CRPSS)

Stat. Sig:
H(p)

Multi-Model
(CRPSS)

Stat. Sig:
H(p)

Scheme-1
LR 0.20 1 (0.0232) 0.24 1 (0.0082) 0.23 0 (0.4973)
QM 0.19 1 (0.0026) 0.24 0 (0.4973) 0.20 0 (0.0591)

Scheme-2
BMA 0.19 1 (0.0232)
QMA 0.20 0 (0.7710)

4. Conclusions

ESP is a key component of operational, long-lead streamflow prediction, which is currently
utilized by HFCs in the US, UK, Australia, and other countries. In Canada, its application to date has
been limited. In this study, we evaluated the value of ESP in operational forecasting and compared four
statistical post-processing techniques for their abilities to improve seasonal flow (volume) prediction.
We found that using an ensemble over a deterministic forecast would likely enhance operational
decision-making capacity as it reduced uncertainty while providing an envelope of realistic, possible
future scenarios. Furthermore, the use of the MM ESP helped to compensate for errors interjected
into the forecast by selection of any hydrological model, likely due to structural differences impacting
predictive capacity for high and low flow volume differently, and error trade-off.

In most cases, statistical post-processing slightly improved forecast accuracy; however, there were
instances where the benchmark ensembles better represented the observed streamflow. Both simpler
(i.e., LR and QM) and more complex (BMA and QMA) methods were tested to evaluate the incremental
benefits of more complex (parameter-intensive) techniques. While the QMA approach appears to be
promising, this study cannot yet confidently recommend any particular post-processing technique due
to limitations imposed by the number of models used, the ensemble sample size, basin complexity,
and the time period used for analysis. Based on this analysis, we can recommend that testing the
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performance of the statistical post-processing techniques in the future should be conducted across
multiple (smaller) basins, and lead times, using more hydrological models, and larger sample sizes.
Care should be taken to select a relatively stationary hydrologic period, without multiple extreme
events so as not to violate the stationarity assumption required for model training.
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