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Abstract: Flash-flood forecasting has emerged worldwide due to the catastrophic socio-economic
impacts this hazard might cause and the expected increase of its frequency in the future. In mountain
catchments, precipitation-runoff forecasts are limited by the intrinsic complexity of the processes
involved, particularly its high rainfall variability. While process-based models are hard to implement,
there is a potential to use the random forest algorithm due to its simplicity, robustness and
capacity to deal with complex data structures. Here a step-wise methodology is proposed to derive
parsimonious models accounting for both hydrological functioning of the catchment (e.g., input data,
representation of antecedent moisture conditions) and random forest procedures (e.g., sensitivity
analyses, dimension reduction, optimal input composition). The methodology was applied to
develop short-term prediction models of varying time duration (4, 8, 12, 18 and 24 h) for a catchment
representative of the Ecuadorian Andes. Results show that the derived parsimonious models can
reach validation efficiencies (Nash-Sutcliffe coefficient) from 0.761 (4-h) to 0.384 (24-h) for optimal
inputs composed only by features accounting for 80% of the model’s outcome variance. Improvement
in the prediction of extreme peak flows was demonstrated (extreme value analysis) by including
precipitation information in contrast to the use of pure autoregressive models.
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1. Introduction

Flooding is nowadays the most common natural disaster worldwide [1]. Its occurrence is expected
to further intensify during coming years due to the increase in the frequency of extreme precipitation
events [2]. As a result, during last decades, real-time flood forecasting has become an emerging field
of research for water management and risk analysis [3]. In highland catchments, extreme flash flood
events have the potential to cause serious damage to downstream infrastructure and produce large
socio-economic impacts. In the Andean region of Ecuador, flash-flood events cause human losses
and perturb the everyday life of people (e.g., interruption in the water supply service, damage in
transportation network) [4]. According to a report of the Andean community for the period 1970–2007
(see http://www.comunidadandina.org), 263 flash-floods events and 357 landslides (as a side effect,
mostly reported in the city of Cuenca) have caused 429 human deaths as well as partial and complete
destruction of 1568 and 581 houses, respectively.
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The flash-flood hydrological response is highly non-linear since stream flow processes are
complex phenomena exhibiting high spatial and temporal variability [5–8]. The main flash-flood
driving forces are spatial and temporal precipitation variability, topography and soil humidity
characteristics [8,9]. Nevertheless, in the Andean region, flash-flood forecasting is challenging
considering that information other than precipitation and discharge is not commonly available due
to budget constraints, the remoteness of the study areas and more importantly due to the extreme
variability of the main driving forces previously mentioned. As a result, a simple, yet useful, approach
is the development of precipitation-runoff forecasting models. Regional and local topography together
with climatic influences are responsible for the spatio-temporal variation of precipitation, which is
more prominent in mountainous areas. Specifically, in the Andean region, precipitation experiences
extreme variability [10–12], and its characteristics are different for the eastern and western slopes of
the Andean cordillera [13,14].

For predictive modeling, the use of machine learning (ML) techniques has recently and remarkably
increased [15]. ML models rely on data-driven black-box processes aimed to infer from observations
the stochastic dependency between the past and future [15]. These models are characterized by a
more compact representation and high predictive potential, with considerably fewer parameters and
variables when compared to fully distributed models [7].

Several ML methods have been developed: artificial neural networks (ANNs), support vector
machines (SVMs), and decision trees (DTs), among others. Nevertheless, these methods exhibit some
weaknesses such as overfitting for ANNs [16], the complexity of mathematical functions for SVMs [17]
and the considerable effort needed to pre-process data for DTs [18]. In addition, unlike DTs, ANNs and
SVMs are not able to estimate the relative importance of the features used in the model’s input [19].
Random forest (RF) is a multiple DT-based algorithm (see [20]) characterized for its high predictive
accuracy and its ability to perform a feature sensitivity analysis [21–23]. The RF algorithm can be
used for classification and regression applications. However, although promising, RF (specially for
regression) has been rarely used and evaluated in water resources studies [22].

For classification purposes, the study of Wang et al. [19] proposes a holistic approach for regional
flood hazard risk assessment based on spatial information inducing flooding. Likewise, accurate
results in flood mapping were obtained for small urban areas ([24]), large cities ([25]) and even for very
large regions (entire mountainous area of China, [26]). However, for regression applications, studies
focusing on flood forecasting are hardly documented. Albers et al. [27], for instance, determined the
relative importance of contributing upstream discharges to the main river during flood events rather
than focusing on a numerically forecasting of flash-flood events.

Determination of the size of the forecast horizon (lead time) is critical in time series prediction [15].
The predictive ability decreases as the number of time steps to forecast increases as result of error
accumulation, accuracy reduction and lack of information [20,28]. On the other hand, identification of
the regressor size (number of previous time steps from precipitation and discharge time series) aims to
avoid the addition of irrelevant features that add extra noise to the training process. However, the loss
of relevant features might, in some instances, also reduce prediction success [20].

In the pursuit of model parsimony, a further step is the optimization of the input composition
through a feature reduction process. It can be done through a feature selection technique (sensitivity
analysis) aimed to assure high accuracy, speed, robustness, efficiency and interpretability [29,30].
This technique consists of an educated retention of the most relevant features (predictors) that
will reduce the model input dimension, improving its computation time without compromising
its effectiveness.

The aim of this study is to develop a step-wise input data selection strategy together with a
sensitivity analysis for building up an optimal forecast hydrological model based on the RF algorithm,
applied to a mountain catchment. The catchment of study is representative of the Andean region
of Ecuador.
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2. Study Area and Dataset

The study area is the Tomebamba catchment towards its outlet at the Matadero-Sayausí station,
which corresponds mainly to a páramo ecosystem located in the south-eastern flank of the Andean
cordillera of Ecuador (Figure 1). The Tomebamba catchment is part of the Cajas National Park, which
was declared by UNESCO as a World Biosphere Reserve in 2013. Elevation of the study area ranges
from 2800 to 4100 m above the sea level (m.a.s.l.), and covers an approximate area of 300 km2. It drains
to the upper part of the Tomebamba river (area of the catchment ≈ 332 km2), and lately to the Amazon
river towards the Atlantic Ocean. The importance of the catchment is related to its water supplier role
for domestic, agricultural and industrial purposes for the city of Cuenca (third largest city in Ecuador
with more than 580,000 inhabitants), and even for hydro-power generation in the region.

Ecuador

Figure 1. Location of the Tomebamba catchment at Matadero-Sayausí outlet in the Andean cordillera
of Ecuador, South America (UTM coordinates).

Climate at the Tomebamba catchment is governed by continental air masses from the Amazon
river basin, by the seasonal shift of the Inter Tropical Convergence Zone (ITCZ), and by the cold water
upwelling of the Humboldt ocean current. As a result, convective and orographic cloud formations
occurs [31]. Although precipitation (in terms of volume) mainly falls as drizzle (≈1 mm/h), higher
intensity events are also experienced in the catchment (up to 140 mm/h) [32,33].
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According to the classification system of the Food and Agriculture Organization (FAO) of the
United Nations [34], the prevailing soil types in the Tomebamba catchment are andosol and histosols.
Furthermore, studies by [35,36] in a comparable Andean micro-catchment have revealed the dominance
of interflow as the major contributor to runoff generation. This is due to the inner soil properties
of water storage (andosols) and organic matter content (histosols) together with the presence of
wetlands and the slope of the catchment. As a result, flash-flood events are not exclusively caused by
extreme precipitation events. Non-extreme precipitation events can trigger flash-floods when the soil is
saturated due to the high retention capacity of the catchment. High flows are explained by the presence
of histosols, whereas in contrast, low flows generation is controlled by the slope of the catchment.

Lack of spatial information describing the main flash-flood driving forces in the region limited the
variables to be used as inputs to punctual measurements (time series) of precipitation and discharge.
Data comprises precipitation and runoff hourly time series for a period of 2.5 years (from January
2015 to July 2017). To account for the variability of precipitation in the catchment, precipitation
time series were obtained from 3 tipping-bucket rain gauge stations (Toreadora at 3955, Virgen at
3626 and Chirimachay at 3298 m.a.s.l.), which were installed within the catchment and along its
altitudinal gradient. On the other hand, discharge time series were obtained for the outlet of the study
catchment, at the Matadero-Sayausí station (2693 m.a.s.l.), for which the corresponding drainage area
was delineated (Figure 1).

The length of the study period was further divided for training (from January 2015 to July 2016)
and validation (from July 2016 to July 2017) purposes. Mean annual precipitation volumes for the study
period were 1109, 1021 and 909 mm for Chirimachay, Toreadora and Virgen stations, respectively.

Figure 2 shows the precipitation (average of 3 stations) and the discharge hourly time series for
the study period. An analysis of historical discharge extreme high events in the Tomebamba catchment
(from 1997 to 2017) together with local media reports from the last decade served to determine a
threshold value of 50 m3/s as an indicator of a dangerous event affecting the everyday life of the
community and usually leading to a flood event in the catchment. This reference value has a return
period of 4 months (calculated with WETSPRO, using peak-over-threshold values, see [37]). For the
study period, 12 independent events were above this threshold value.
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Figure 2. Precipitation (averaged for Toreadora, Virgen and Chirimachay stations) and discharge
hourly time series for the study period (January 2015 to July 2017). Note the horizontal red dashed line
at a discharge of 50 m3/s (historical indicator of a flood event).
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3. RF Technique

RF is a supervised ML algorithm that ensembles multiple decorrelated DTs [20]. A decision tree is
a stochastic model that relates a response/outcome to explanatory variables or features. Each decision
tree can be seen as a set of conditions, hierarchically organized, and successively applied to a dataset.
Decorrelation among trees is assured by growing trees from different randomly resampled training
sets (bagging technique) from the original dataset [22]. For regression applications, multiple DTs
provide independent numerical predictions of the phenomenon of interest (i.e., discharge), contrary
to class labels for classification. At the end, the outcome corresponds to the mean prediction of all
individual trees.

Starting from the root (parent) node of a tree, and at every node, data is recursively partitioned
into two self-similar child nodes by following simple rules related to the data and until a specified
stop condition is reached [38]. To split a node, a random selection of features is used by the RF
algorithm (instead of using all features). For this, a random component is used to resample and to
select the optimal successive directions (features) for splitting the data with the purpose to obtain
purer nodes than the parent. By minimizing node impurity, the collection of outcomes of a tree is the
most homogeneous possible. Every terminal node comprises a simple regression model that applies in
that node only. A detailed description of the method can be found in [20].

Strengths of the RF algorithm are related to its simplicity due the few parameters that need
to be tuned, higher accuracy when compared to other ML techniques, and robustness as result of
a bagging process [20]. It is capable of dealing with small size samples, high-dimensional spaces,
and complex data structures [23]. The RF algorithm was used by means of the scikit-learn package
for ML in Python R© [39]. The main functions, attributes and methods employed can be found in
http://scikit-learn.org.

3.1. Algorithm

The RF algorithm for regression applications is as follows:

(i) Construct each one of the decision tree models based on a random selection of a number of
bootstrap samples (n_ estimators parameter) drawn with (or without) replacement from the
training dataset. Each bootstrap is composed by a different subset (roughly two-thirds) of the
dataset, in a process known as out-of-bag (OOB) [19]. The OBB technique aims to get unbiased
estimates of the regression as well as to get estimates of the importance of the variables used for
the tree construction process [40].

(ii) Determine a number of features (max_ features parameter) to perform the best split decision from
the total number of predictor variables of the dataset (n_ features). The condition max_ features
< n_ features ensures the nonexistence of duplicated DTs in the forest. Consequently, by
assuring variety, the problem of over-fitting is avoided. Ref. [20] recommends max_ f eatures =√

n_ features, for regression problems.
(iii) Split each node of each decision tree into two descendant nodes by using the best split criteria.

The calculation of the best splits are chosen based on the mean squared error (MSE) for regression
problems. The minimum number of samples required to split a node is controlled by the
min_ samples_ split parameter.

(iv) Grow n_ trees as much as possible (largest extent) by repeating steps 1 to 3 until a number of nodes
have been reached. The optimal number of trees is reached when the OOBerror stops decreasing.
The depth of each tree is controlled by the max_ depth and the min_ samples_ leaf parameters;
where min_ samples_ leaf is the minimum number of samples required to be at a leaf node. This is
aimed to reduce the structural complexity of the models in what is called pruning criteria [22].

(v) Determine the prediction as the mean response from all regression trees [20].

http://scikit-learn.org
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3.2. Determination of Model Hyper-Parameters

Before using the RF algorithm, its model hyper-parameters, which basically control the structure
and level of randomness of the forest [41], must be defined. For this, a random grid-search procedure
was implemented to determine the optimal hyper-parameters for each model that will be built
up. It consists on the assessment of the model residual mean for different combinations of the
hyper-parameters on the training dataset. For this, a 3-fold cross-validation was performed to avoid
overfitting. The training data was split into 3 folds; the model was iteratively fitted on the 2 folds and
evaluated on the third one. Table 1 shows the ranges of the different values of the most important
hyper-parameters (according to [39]) that were evaluated. From those hyper-parameters, n_estimators
and max_ f eatures are generally agreed as the most important ones during calibration (significant
impact on error rate) [19,27].

Table 1. Grid of the hyper-parameters used for a 3-fold cross-validation.

Hyper-Parameter Values

n_estimators * 50–700
max_features ’auto’, ‘sqrt’ and ‘log2’

min_samples_split 2, 5 and 10
min_samples_leaf 1, 2 and 4

max_depth * 10–700

* Increment of 10 units.

3.3. Input Data Composition

The determination of the optimal model input plays a key role in model performance since it
provides the basic information about the system [29]. For a precipitation-runoff forecasting model,
the input coming from precipitation at the current time alone is not sufficient for the model to perform
adequately. Therefore, additional information can be derived from previous time steps of precipitation
and discharge. Nevertheless, an autoregressive exogenous analysis is necessary to determine the
number of lags (features) of precipitation and discharge that have a significant influence on the
predicted flow.

Physically, the addition of precipitation lags aims to mimic the antecedent soil moisture conditions
of the catchment, which might play a key role in flash-flood forecasting (humid regions). It accounts
for the fact that during dry periods, the soil is below field capacity, and therefore, it needs additional
rain water first to reach field capacity and then to generate discharge. Conversely, during wet periods,
the soil is at or above field capacity and needs less water to generate discharge. As a result, simulations
of runoff for dry and wet periods are characterized by underestimation and overestimation of discharge,
respectively [42].

To determine the number of lags to be used, [43] proposed a qualitative analysis that relies on
statistical properties such as cross-, auto- and partial-auto-correlation of the data series. This method
avoids a long trial-and-error-procedure when identifying the optimal composition of the input.
For discharge, the autocorrelation function (ACF) and the partial autocorrelation function (PACF)
with 95% confidence levels can suggest the influencing antecedent flow patterns in the discharge at a
given time [6,43,44].

For precipitation, the number of regressors can be determined either through a Pearson cross-correlation
applied to the data series [43], or according to the concentration time of the catchment [44]. The above
input selection procedure relies on the linear relationship between the variables; however, the effect of
an additional variable is not assessed.
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4. Model Evaluation

Model performance or efficiency was determined by comparing the model outputs and the
observed time series. For this, goodness-of-fit statistics and graphical interpretation techniques
were applied together since both approaches complement each other. The shortcoming of applying
only goodness-of-fit statistics is that they restrict the model assessment by representing the mean
performance of the model without considering the unbalanced influence of outliers and/or extreme
high (floods) or low (droughts) values [37].

4.1. Goodness-of-Fit Statistics

Model residual mean (ME) measures the average systematic difference between simulated and
observed values. In contrast, the model residual variance (S2

EQ) measures the average random
differences. For high number of observations, the MSE equals approximately the sum of the squared
model residual mean and the model residual variance. As a result, the MSE comprises a systematic
(bias in the model) and random component (after bias correction) [37].

The disadvantage of using MSE, S2
EQ and ME is their high dependence on the magnitude of

variable of interest (i.e., discharge). Thus, the coefficient of efficiency also named the Nash-Sutcliffe
model efficiency (NSE), which is less sensitive to high extreme values [45], was applied to measure the
overall model accuracy. The NSE is a dimensionless and scaled version of the MSE; it is the fraction of
variability in the observations explained by the model, and it can be calculated as follows:

NSE =

[
1− ∑n

i=1
(
Qm(i)−Qo(i)

)2

∑n
i=1
(
Qo(i)−Qo

)2

]
=

[
1− MSE

S2
Qo

]
(1)

where Qo is the mean observations value. The NSE ranges between −∞ and 1.0, being NSE = 1 the
optimal value.

The systematic error, which is the objective function, can be minimized through calibration.
On the contrary, the random component cannot be removed since it is related to the inherent stochastic
nature of the inputs.

Although ideal, the use of target functions designed for extreme high flows such as the mean
peak difference (see [46]) was not possible due to the relatively small dataset available for the study
catchment. The reason is the poor training of the trees in the forest when the objective function if
specialized in extreme high values. Therefore, to use target functions larger datasets are required
to capture a more complete spectrum of extreme events. Nonetheless, a solution to this issue relied
in training the model for all flows, enriching the input of the model with additional information
specifically aimed to improve the prediction of extreme high flows, and then assessing the efficiency of
the model via means of graphical analyses focused on extreme high values (floods).

Graphical Analysis

The need to perform a more complete evaluation of model performance (analysis of extreme
high values) is related to the fact that model residuals (ME and S2

EQ
) increase with higher flows. For this,

a Box-Cox transformation of discharges was applied; it was calculated with the following equation:

Box− Cox(q) =
qλ − 1

λ
(2)

where q is discharge and the parameter λ can be calibrated graphically until reaching homoscedasticity
in the residuals (constant standard deviation). However, according to [37], a value of lambda = 0.25 is
commonly used for runoff, and thus it was adopted for this study.
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Another issue related to model residuals is their common serial dependence on scales (time step)
and flow magnitudes—it will be higher for shorter time steps [37]. For peak flows (floods), the serial
dependence is strong for short time steps (i.e., hourly scales or smaller than the recession constant of
the quickest sub-flow component). The evaluation of flows occurring at all time steps will imply a
higher representativeness for low flows; therefore, the selection of nearly independent observations is
necessary. Independent events were obtained by splitting the discharge time series in events and using
one value per event (technique developed by [37]).

Finally, the assessment of a model under extreme conditions relied on an indirect indicator, the
flow frequency distribution for extreme high values. The analysis focused on the behavior of the
distribution towards the tail (i.e., higher values for peak frequency distribution). A comparison of
discharge values with a visual inspection of the shape of the tail for both historical observations and
simulations was applied to conclude whether model performance is acceptable for extreme conditions.

4.2. Feature Selection Analysis

Model parsimony was approached via a reduction of the input dimension using a procedure
known as feature selection. It is aimed to shorten computation times by determining the relative
importance of each of the features of the input and trimming off the less important ones. In some cases,
feature selection even improves model accuracy [47]. Different techniques for feature selection are
available; e.g., based on a variance sensitivity analysis, based on univariate statistical tests, recursive
elimination, among others.

For this study, the variance sensitivity analysis was applied by following a simple procedure
introduced by [48]. It measures the variance of the output produced by a single feature without
considering interactions between features. The selection criteria rely on the fact that a relevant feature
to the model will produce a higher output variance. The variance (Vk) produced by a single feature,
and therefore, its relative importance (Rk) can be calculated as follows:

Vk =
∑L

j=1(ŷt−k(j)− ŷt−k(j))2

L− 1
(3)

Rk =
Vk

∑m
i=1 Vi

× 100 (4)

where, ŷt−k is the model output obtained by holding all m input features at their average values except
ŷt−k, which varies according to the sample or time step, along the interval j ∈ {1, ..., L}.

Finally, based on the Rk-values obtained, the selection principle was to retain a number of features
accounting for at least 80 % of the total relative importance. The remaining features can be considered
unimportant and therefore removed.

5. Step-Wise Methodology

The step-wise methodology proposed in this study (Figure 3) consists in setting up several RF
models to forecast discharge for a specified forecast horizon until finding the optimal or parsimonious
one in terms of model efficiency. Special attention is given to the forecast of extreme high values
(floods) via an analysis of their flow frequency distribution. At every step, a new model is composed
by a particular input data (time series) based on the information of precipitation and discharge, and
according to a lag analysis aimed to include only relevant information.

For this purpose, an autoregressive model, whose input is merely composed by discharge lags,
was defined as the base model. The dimension of the input of the base model is then gradually
increased by adding extra information such as precipitation observations at the current time and lags
(to mimic soil moisture conditions in the catchment). Model hyper-parameters are tuned for every
new model (input data composition scenario).
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The outcome of the RF model is the prediction of discharge at a certain time, which lately forms
a discharge time series for the specified forecast horizon. The last step, whose objective is to derive
parsimonious models, is to reduce the dimension of the input based on a sensitivity analysis that
determines the most relevant precipitation features accounting for the 80% of the output’s variance.
The step-wise approach proposed in this study is firstly used for building up a 4-h discharge forecasting
model, and later on, the arising results will serve to develop models with longer forecast horizons of
varying time (8, 12, 18 and 24 h).

Autoregressive
model

Discharge
time series

Precipitation
time series

Lag analysis

Lag analysis

Input

RF models

Forecast discharge
time series

Feature
selection

Accuracy and
extreme value

assessment

Figure 3. Scheme of the step-wise methodology for developing precipitation-runoff forecasting models.

6. Results and Discussion

The following subsections, unless specifically mentioned, correspond to a 4-h discharge
forecasting model.

6.1. Determination of the Number of Discharge and Precipitation Lags

Figure 4 shows the ACF and PACF plots, respectively, from which the number of discharge lags
were determined. The ACF and the corresponding 95% confidence band was estimated from lag
1 to lag 400 (h), and the highest autocorrelation occurred at the first lag. A significant correlation
was revealed up to lag 300 (around 13 days). Thereafter, the correlation fell within the confidence
band (Figure 4a). The systematic ACF decay demonstrated the presence of a dominant autoregressive
process. Similarly, the PACF and its 95% confidence levels were estimated from lag 1 to 25. The PACF
revealed a significant correlation up to lag 8. The dominance of the autoregressive process over the
moving-average is proved by the rapid decay of the PACF (Figure 4b). As a result, it seemed reasonable
to include discharges up to 8 lags (h) as additional inputs.
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Figure 4. (a) Autocorrelation function (ACF) and (b) Partial autocorrelation function (PACF) of the
Matadero-Sayausí discharge series. Gray hatch indicates the 95% confidence band.

Figure 5 illustrates the Pearson’s cross-correlation between each precipitation station and the
discharge time series to determine the number of precipitation lags to be used. Results revealed the
highest correlation, for all stations, at lag 4 (maximum correlation of 0.3323 for Toreadora). In contrast,
the concentration time of the catchment was estimated in 2.3, 3.4, 5.2 and 5.9 h according to the
equations of Kirpich, Giandotti, Ven Te Chow and Temez, respectively (a summary of the equations
can be found in [49]). The average concentration time (4.3 h), according to the mentioned equations,
matches with the number of lags determined by the cross-correlation analysis.
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Figure 5. Pearson cross-correlation comparison between the Toreadora (3955 m.a.s.l.), Virgen
(3626 m.a.s.l.) and Chirimachay (3298 m.a.s.l.) precipitation stations and the Matadero-Sayausí
(2693 m.a.s.l.) discharge station. Note the horizontal line at a cross-correlation of 0.20.

6.2. Base Model: Discharge Lags as the Sole Input

The use of 8 discharge lags as the input of the base model (model A) was confirmed by a sequential
process that gradually added one lag at the time until the NSE-values calculated for the training period
stopped significantly (0.005) improving. Although the addition of more than 8 lags resulted in a slight
increase of the NSE-values in the training period, the NSE-values in the validation period started
deteriorating (as a result of overfitting).

Model efficiencies of the base model, whose input consisted of 8 features, obtained NSE-values
of 0.880 and 0.652 for the training and validation periods, respectively. Moreover, according to the
sensitivity analysis, the relative importance of each of the discharge lags decreased slightly and
proportionally from 13.6 % (lag−1) to 11.6% (lag−8).
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6.3. Precipitation Lags as Additional Inputs

To improve the base model, its input was enriched with precipitation information coming from
three stations (Toreadora, Virgen and Chirimachay) from which data were available. The number of lags
was determined according to the cross-correlation between each precipitation station and the discharge
time series. For this, similar to [29,43], a cross-correlation threshold of 0.2 was selected, indicating that
24, 10 and 15 lags should be used for Toreadora, Virgen and Chirimachay stations, respectively.

The input of this new model (model B) was composed by precipitation information at the current
time from 3 stations, their corresponding lags and discharge lags (60 features in total). Results indicated
NSE-values of 0.954 and 0.758 for the training and validation periods, respectively.

6.4. Feature Selection

Figure 6 shows the relative importance of each of the features of model B. Results clearly show
the predominance of the discharge information over precipitation. The total relative importance of
the precipitation information was 44.8%. Based on the sensitivity analysis, the contribution of the
three rainfall stations was 26.9, 13.5 and 14.8% for Toreadora, Virgen and Chirimachay, respectively.
No relation was found between the relative importance of the precipitation station and its altitude nor
distance to the outlet.
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Figure 6. Feature relative importance of the 4-h discharge forecasting model B. Darkest bars indicate
the features selected for a reduced version of the input (model C).

As a final stage, precipitation at the current time and 9 lags for all stations (from lag−1 to lag−9)
were selected since they accounted for the 80.36 % of the total relative importance of model B. As a
result, 38 features in total were used as inputs of model C (see darkest bars in Figure 6). Efficiency of
model C slighted improved (0.018) when compared to model B. Results indicated NSE-values of 0.972
and 0.761 for the training and validation periods, respectively. Figure 7 presents the model results for
both the training and validation periods. Moreover, a comparison between the results of models B and
C showed a correlation coefficient (R2) of 0.996. Both the slight change of model efficiencies and the
comparison of results suggested that 36.7 % of the features were successfully trimmed off, achieving a
parsimonious model.

In contrast, to study the usefulness of the addition of precipitation information, the lags of each
station were gradually and simultaneously included in the input until reaching the best NSE-values for
the training period. Results proved that only 4 lags per station were enough to achieve the best model
performance (0.973). Results obtained NSE-values of 0.973 and 0.764 for the training and validation
periods, respectively. Only an improvement of 0.001 of efficiency (training period) was obtained when



Water 2018, 10, 1519 12 of 18

compared to model C. Thus, the criteria of including precipitation information until reaching the 80%
of the relative importance was confirmed.
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Figure 7. Model results of the parsimonious 4-h discharge forecasting (model C) (a) Training period,
from January-2015 to July-2016. (b). Validation period, from July-2016 to July-2017.

6.5. Graphical Analysis

To complement goodness-of-fit statistics, Figure 8a shows the empirical extreme value distribution
of peak flows for both observations and simulations (models A and C). The use of a pure autoregressive
process (model A) underestimated systematically, to a greater degree, peak flows for 0.3-year return
period onwards when compared to model C.

Additionally, Figure 8b shows the correlation between the predictions of models A and C
(vertical axis) and the observed flows (horizontal axis) for high flows. The mean error and the standard
deviation correspond to the results of model C. Model residuals are represented by the horizontal
and vertical differences between each point and the bisector line. The dependence of the standard
deviation on the flow magnitude was disrupted (constant standard deviation) after applying the
Box-Cox transformation with a λ-value of 0.25. Predictions of model A indicate higher scatter (higher
standard deviation of peak flow deviations from the bisector line) and higher bias (systematically
lower mean peak flows) when compared to model C. Consequently, peak flows were systematically
more underestimated by model A than model C. The improvement in the prediction of peak flows
when precipitation data were included as additional inputs is therefore evident—it is considerably
more significant for extreme high values. For instance, the 4-h forecast of a particular peak discharge
of 69 m3/s was improved from 39 (model A) to 61 m3/s (model C).

Overall assessment of the 4-h forecasting model indicates a good match between observations
and simulations for flows up to 60 m3/s (being 7.1 m3/s the mean discharge of the time series).
This confirms the validity of the derived model for the forecasting of discharges historically indicating
floods in the catchment (threshold value of 50 m3/s). The fact that flows above this threshold were
correctly simulated determined the sufficiency of 2.5 years for calibration/validation when the objective
is to provide an alarm indicating a flood risk in the catchment.
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Figure 8. (a) Empirical extreme value distribution of peak flows; (b) Comparison of nearly independent
peak flow maxima.

6.6. Forecasting Models of 8, 12, 18 and 24 h

The step-wise methodology applied for building up a 4-h forecasting model was further tested
for longer prediction horizons of 8, 12, 18 and 24 h. Table 2 resumes their corresponding input
compositions, which show that the input dimension of the best model increased (precipitation lags)
accordingly to the increase of the forecast horizon analyzed. More than 8 discharge lags were only
needed for the 24-h forecasting model.

Table 2. Input data composition and model efficiencies for forecasting models and their parsimonious
versions for prediction horizons of 4, 8, 12, 18 and 24 h.

Forecast Horizon Discharge Toreadora Virgen Chirimachay Total NSE NSE
[h] Lags Lags Lags Lags Features Training Validation

4 8 24 10 15 60 0.954 0.758
4 * 8 9 9 9 38 0.972 0.761

8 8 32 19 23 85 0.868 0.581
8 * 8 15 15 15 56 0.867 0.580

12 8 36 23 27 98 0.828 0.506
12 * 8 18 18 18 65 0.829 0.503

18 8 42 29 33 115 0.772 0.442
18 * 8 21 21 21 74 0.771 0.439

24 15 48 35 39 140 0.772 0.385
24 * 15 21 21 21 81 0.767 0.384

* Parsimonious version.

Feature selection based on the variance analysis was successfully performed for all forecasting
models when a fixed cross-correlation threshold of 0.2 and a target of cumulative 80 % of relative
importance were used for all forecast horizons. The percentage of reduction of features without
compromising model performance were 36.7, 34.1, 33.7, 35.7 and 42.1% for forecasting models of 4, 8,
12, 18 and 24 h, respectively. Additionally, a comparison between model results of the full and optimal
models showed correlation coefficients (R2) of 0.985, 0.996, 0.996, and 0.997 for forecast horizons of
8, 12, 18 and 24 h.

Model efficiencies in terms of NSE-values for the training and validation periods are shown
in Table 2. Results proved that the ability of a model to forecast discharge decreases as the forecast
horizon increases. Regarding the effectiveness of the feature selection analysis, only a slight change
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(maximum 0.003) was observed in the NSE-values for the validation period; in some cases feature
selection improved model efficiencies.

Figure 9a compares the empirical peak flow extreme value distribution of all forecast horizons
(4, 8, 12, 18 and 24 h) for both observations and simulations. Only the optimal models were used for
this analysis. The underestimation of extreme values towards the upper tail of the distribution became
stronger as the forecast horizon increased. The lower bias of shorter forecast horizons in the empirical
distribution is also reflected in the cumulative hydrograph volume (Figure 9b).
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Figure 9. (a) Empirical extreme value distribution of peak flows, and (b) Comparison of cumulative
flow volumes for forecasting models of 4, 8, 12, 18 and 24 h.

Similarly, Figure 10 shows higher scatter and bias for longer forecast horizons, which resulted
in higher forecast errors when the forecast horizon increased. Strong discharge underestimations
(up to 300% for the 24-h forecasting model) are explained by the simplicity of precipitation-runoff
forecasting models, which lack of relevant information describing the flash-flood generation process
in mountainous areas. Particularly, in páramo ecosystems, disregard of directly measured soil
moisture information limits the forecasting of extreme high and low flows. As a result, the problem
of underestimation of low flows and overestimation of high flows was observed in the peak flow
empirical extreme value distribution.
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Another factor that compromises the forecasting of extreme high flows is the insufficient
representation of the spatial variability of precipitation in the catchment with only three rain gauges
stations. Precipitation events might occur in areas out of the coverage of rain gauges, specifically, rain
formation processes that are driven by local topography.

Besides the lack of relevant information feeding the models, the use of a relatively small dataset
(2.5 years) for training and validation might also reduce the ability of the RF models to forecast
discharge. This is due to the incomplete spectrum of discharge magnitudes captured by a small dataset,
specially when extreme high flows are of interest. As a result, the RF models will not perform well for
data points beyond the scope of the training dataset due to the average of the results of each tree in the
forest and as well as the rules established for partitioning data during the training process. Results of
the combined effect of the lack of relevant information and the dataset limitation can be also seen in
Figure 9a, where higher errors were found for longer forecast horizons.

7. Conclusions

The development of an adequate runoff and flash-flood forecasting model is needed due to the
susceptibility of lowland areas to the catastrophic socio-economic impacts of flash-floods. However,
the development of such model is a complex procedure that deals with non-linear stream flow
generation processes. Specifically, the use of precipitation-runoff forecasting models is targeted, as an
efficient solution, for regions with lack of key-spatial information explaining the flash-flood generation
process. When a model is approached through ML techniques, small datasets, high dimensionality
and the difficulty to identify the importance of input features limit the proper construction of a model,
and consequently, model performance optimization. Hence, to account for this issues, the use of
RF models was proposed in this study to assess short-term discharge forecasting models of varying
duration time (4, 8, 12, 18 and 24 h) for a mountainous region with data limitation issues.

The methodology proposed in this study have improved the current knowledge of the
precipitation-runoff relations in terms of prediction over a catchment located at a high altitude.
The RF ability to predict extreme values decreased as the forecast horizon increased according to
goodness-of-fit statistics together with graphical analysis. Additionally, an extreme value analysis
served to prove the improvement in the prediction of extreme peak values as a result of the addition of
precipitation information to pure autoregressive models.

Input dimensionality reduction, applied through a feature selection method based on a sensitivity
analysis, was performed for all forecasting scenarios by retaining the features accounting for 80% of
the model’s variance. Significant correlation coefficients between the model results of the full and
its parsimonious version, and a slight difference in NSE-values proved that the selection of the most
important features was successfully achieved. Feature selection aimed to reduce the complexity of the
model and to identify the processes involved in discharge prediction. At the same time, computation
times were optimized.

The approach hereby proposed have the potential to be applied in different catchments sizes;
however, a maximum extension of around 1000 km2 is suggested. This value intends to cover
all the catchments associated with an Andean community. For larger catchments, the use of
spatial information is encouraged since other relevant factors to the flash-flood generation process
(e.g., topography, soil types and land uses) can be correctly represented by the most common remote
sensing products. This is not the case for the Andean region, where only exceptionally fine detail,
which is not feasible to obtain, would improve the model performance of RF models.

Emerging advances in ML techniques, specifically the use of the RF algorithm, have shown
to serve as a powerful tool in short-term runoff forecasting. However, the use of the RF technique
has been hardly documented on flood hazard assessment and particularly flash-flood forecasting.
Further exploration of this technique for flash flood forecasting is therefore encouraged. Expansion of
the rain gauge network or the inclusion of remote sensing imagery together with ground validation
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is suggested to improve the representativeness of precipitation in mountain catchments. Likewise,
addition of soil moisture measurements is proposed for enriching the model to further evaluation.
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