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Abstract: Accurate classification of drought-severity is one of the most challenging issues in
designing regional monitoring and control plans, especially in developing countries, where
resources are scarce and must be carefully optimized to maximize social benefit. Typically,
drought assessment is performed using drought indices which enable the interpretation of complex
climatic information series for operational purposes. Frequency analyses are also useful for
estimating future occurrence probabilities, even on regional scales. This study generated regional
Severity-Duration-Frequency (SDF) curves for two Colombian catchments (Sumapaz and Lebrija
River Basins), and 7 index-calculation procedures. First, the relationships between the two catchments
were analyzed to obtain differences between drought indices. Second, the consistency among the
indices that identified the same drought types for each region was evaluated. Finally, historical
regional drought occurrences were selected, characterized, and located in local SDF curves to
determine their gravity. It was concluded that (i) curves for the same indices displayed similar
behavior, when comparing the two case studies; (ii) a certain degree of consistency existed in
regional curves, which identify the same drought types (meteorological and agricultural droughts
being the most coherent); (iii) meteorological drought regional events, identified through different
drought-indices methodologies, were the most common for both case studies, followed by agricultural
droughts and hydrological droughts; (iv) when analyzing occurrences with higher return periods,
there is coherence when using different methodologies; and (v) identified historical events, which are
located on larger return period zones of SDF curves (around 10, 25, and 50 years), had large impacts
on regional socio-economic issues. Hence, it was possible to confirm that regional SDF curves could
become potentially useful tools for the prioritization of drought-vulnerable zones.
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1. Introduction

Drought is one of the most serious and complex threats that humankind must deal with.
According to the Food and Agriculture Organizatio (FAO) (2018) [1], for the 2005–2015 period, drought
was the most expensive disaster in Latin America and the Caribbean. The associated losses for that
lapse of time reached US $13 billion and were related with crop and livestock affectations. South
and Central American economies rely significantly on rain-dependent crops, i.e., about 80% of total
regional agricultural yield production is related to rain-fed crops [2]. Moreover, a large percentage of
the GDP of these countries is associated with agriculture [2], and the zone produces and exports almost
11% of the global food supply [3]. Particularly vulnerable areas include north and central regions of
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Chile, the northern region of Mexico, and the northeast region of Brazil [4]. In the first case, the 1968
drought event caused an approximated loss of 1 billion dollars, as well as a national decrease of 45%
in cattle mass and 40% in irrigated surface, apart from an increase of 250,000 unemployed people [4].
Specifically, in Colombia, the 2015–2016 drought episode, related to El Niño South Oscillation (ENSO)
large-scale climate anomalies, generated reductions of 50%, 44%, and 27% in barley, corn, and wheat
yields, respectively. In addition, the energy spot price increased by about 900%, 38,000 animals died in
the husbandry industry, and there was drinking water rationing in Medellin and Cali, the two larger
cities of the country after the capital Bogotá [5].

Despite the significant socioeconomic effects of drought, its characterization is challenging for
two key reasons. First, each drought event has an important and independent spatial and temporal
variability [6–11]; hence, it is possible to consider that every occurrence is different from others, and
it is challenging to determine its starting and ending dates, and its spatial extension. Second, there
is no unique technical definition of drought, and therefore it is easier to describe it in terms of its
associated impacts [12,13]. Drought monitoring is also challenging because there are diverse methods
to characterize, track, and enclose the spatial expansion of these events.

Frequently, drought is defined in terms of its influence on different hydrological and
socioeconomic parameters. The most usual classification divides droughts into four types:
(i) Meteorological drought [14–24], (ii) Hydrological drought [13,14,25–31], (iii) Agricultural
drought [7,13,25,32–38], and (iv) Socio-economic drought [13].

Typically, drought is quantified and studied using drought indices. These are simply indirect
indicators based on climatic data (usually rainfall and temperature), which allow the objective
and quantitative evaluation of drought gravity [39], as well as the definition of different drought
parameters like severity, duration, and intensity [13]. The most common indices include the
Percent of Normal Precipitation Index (PN) [40], the Standardized Precipitation Index (SPI) [41],
the Palmer Drought Severity Index (PDSI), the Moisture Anomaly Index (Z), the Palmer Hydrological
Drought Index (PHDI) [42], the Reconnaissance Drought Index (RDI) [43,44], the Standardized
Precipitation-Evapotranspiration Index (SPEI) [45], and the Streamflow Drought Index (SDI) [46],
among others. To rigorously assess droughts, a new set of Non-Parametric Indices (NPI), which
account for non-stationarity of hydrological series and are calculated using daily information, were
developed by Onyutha [47].

Hydrologic frequency analysis aims to study historic data to estimate future probabilities of
occurrence [48,49]. However, frequency of occurrence alone, when analyzing droughts, may be
inadequate unless it is quantitatively related to other specific characteristics, such as duration, severity,
intensity, or areal extent [50,51]. In other words, droughts are dynamic and have different characteristics
that should be simultaneously considered when evaluating their associated risk [51]. In view of this,
numerous multivariate tools for drought research have been developed and applied extensively. These
analysis methods include Severity-Area-Frequency (SAF) curves, Severity-Duration-Frequency (SDF)
curves, and Severity-Area-Duration (SAD) curves [50–54]. For a particular drought index, SDF curves
indicate the severity value for a specific drought duration and a given return period [50,51,55,56].

In the application of SDF curves on a regional basis, various studies have mapped drought
iso-severity contours, using point SDF information. These studies include maps for Greece [50],
Iran [55], Italy [51], and climatologic homogenous regions of the U.S. [19]. Additionally, other
spatially distributed applications of drought indices are studies from Bonaccorso et al. (2003) [26],
Vicente-Serrano (2006) [57], Raziei et al. (2009) [8], Santos et al. (2010) [9], Martins et al. (2012) [10],
Paparrizos et al. (2016) [15], Wang et al. (2015) [11], Zhu et al. (2016) [58], Ayantobo et al. (2017) [59],
Dabanlı et al. (2017) [16], and Kaluba et al. (2017) [17].

However, the aforementioned cases do not end up in specific values of drought severity associated
to a given duration and return period for the entire study area. There is a strong chance that, if
regional values among catchments are compared and results for indices that identify same type
of drought are contrasted, it allows the setting up of a stronger study case-comparison for same
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type-droughts. Regional SDF curves could help to classify historic regional drought events according
to their frequency, being more accurate than using arbitrary intensity-based classification for different
drought indexes [41,42].

To achieve the above aims, this study compares two basins in Colombia. Monthly historic data
from available hydro-meteorological stations was used to calculate the selected drought indices time
series and construct point SDF curves, for subsequent regionalization and comparison between the
two basins. Consistency among indices was evaluated for the same types of drought (meteorological,
agricultural, and hydrological). For both basins, historical regional drought occurrences were selected
and identified in the corresponding SDF curves to determine their gravity. Results of this study could
contribute to regional monitoring and assessment of different types of droughts.

2. Materials and Methods

2.1. Study Areas and Datasets

The Sumapaz and Lebrija Rivers are two tributaries of the most important river in Colombia, the
Magdalena River. When streamflows are analyzed, National hydrological boundaries [60], defined by
the Colombian National Institute of Hydrology, Meteorology and Environmental Studies (IDEAM),
locate study areas in different hydrological zones (see Figure 1a). In terms of rainfall, IDEAM has
performed principal components analysis for stationarity of monthly mean rainfall, and has divided
the country into 12 zones with homogenous rainfall patterns [61] (see Figure 2a). It could be noted that,
despite both case studies pertaining to zones with bimodal rainfall regimes, they cannot be assumed
as homogeneous, as will be described later.

In this research, monthly datasets were employed because their number of available stations and
the number of missing values, for climatic and meteorological parameters, were respectively higher
and lower than the ones found in daily data.

Monthly datasets were completed for missing or incomplete values using different procedures,
depending on the type of data and lengths of consecutive missing months, as follows:

• For rainfall: A weighted average of the four closest surrounding stations was used. The method
used was to weight the inverse of the square of the distances between stations.

• For temperature: Two methods were employed, depending on the number of missing values.

# If the number of missing consecutive registers were between one and six, data was
calculated as a simple average for previous seven months.

# Alternatively, a multiple-regression technique was used when the number or consecutive
missing registers was seven or more. In this method, only regressions with coefficients of
determination of 0.5 or bigger were accepted.

• For streamflow: Two options were evaluated. First, the use of ratings curves for hydrometric
stations was tested. If stage data was unavailable for the required period, the same two techniques
employed in temperature were used.

Completed datasets were analyzed for consistency using double-mass curves analysis, combined
with the Pettit test applied to annually accumulated series. Corrections were applied were needed to
accomplish consistency for both tests. The Pettit test was performed as indicated by Bates et al. [62],
Salarijazi [63], Vezzoli et al. [64], and Yerdelen [65].

A brief description of each basin characteristics is presented below, along with a summary of the
hydro-climatologic data available.

2.1.1. Sumapaz River Basin

The Sumapaz River basin (SRB) is part of the Upper Magdalena River, with an area of
approximately 3085 km2 (Figure 1c). Its altitudinal variation ranges between 200 and 4050 m a.s.l. It is
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a vulnerable basin in terms of the potential effects on water quality from uncontrolled wastewater
discharges by several municipalities [66], and the supply of drinking water to six of these ranges have
an aggregate population of about 88,000 people.

Rainfall and streamflow patterns are bimodal with maximum values in April–May and
October–November. Average annual rainfall varies between 1520 and 2200 mm in the western part of
the basin, and between 800 and 1520 mm in the eastern part. Higher values of monthly temperature
are observed in the western zone (annual average temperature of about 26 ◦C), followed by the central
area (23.7 ◦C), whereas in the north and south zones average temperatures are lower (20.5 and 16.5 ◦C).

Specifically, the basin is divided into two different rainfall homogeneous zones (see Figure 2c):
Bimodal 3 (Bm3), which contains 33% of the basin total area, and Bimodal 6 (Bm6), with the remaining
67%. Annually, both zones present two dry and wet seasons; however, the durations and the differences
between extreme values vary between them. Bm3 displays a longer first dry season, with higher
deficit than the second one. Wet seasons in this zone tend to behave similarly. On the other hand,
Bm6 regime is characterized by a more intense second dry season than the first one, and as in the Bm3
pattern, comparable wet seasons. Figure 3a,b shows histograms of monthly mean rainfall depth for
SRB stations located in Bm3 and Bm6 zones, respectively.

Observed monthly temperature, rainfall, and streamflow data of 4 weather stations, 15 rain
gauges, and 5 hydrometric gaging stations located inside the basin (Figure 1c and Table 1), were
available with heterogeneous record lengths.

2.1.2. Lebrija River Basin

The Lebrija River basin (LRB) is a tributary of the Middle Magdalena River, with an area of
approximately 7185 km2 (Figure 1b), and elevations varying between 3050 and 70 m a.s.l. This is
the fifth most stressed basin in the country, in terms of water uses and wastewater discharges [66],
supplying drinking water to 4 municipalities with an aggregate population of about 603,000.

Rainfall and streamflow patterns are similar to the SRB; however, in this case, the entire basin
area is contained in the Bm3 rainfall homogeneous zone (with the same features described for SRB).
Figure 3c shows histograms of monthly mean rainfall depth for a typical LRB station.

In the western part of the basin, average annual rainfall ranges between 2000 and 2763 mm, and
between 930 and 2000 mm in the eastern area with average annual temperature values of about 27 and
17 ◦C, respectively. Data of monthly temperature, rainfall, and streamflow from 7 weather stations,
34 rain gauges, and 4 streamflow stations inside the LRB were available (Figure 1b and Table 2), with
different record lengths.

2.2. Drought Characterization

Droughts are frequently characterized using ‘run theory’ proposed by Yevjevich (1967) [67]. This
approach enables the identification and quantification of drought characteristics, such as duration,
severity, and intensity [68]. A ‘run’ is defined as a period of time in which a drought index remains
over or below a threshold value (depending on the meaning of the specific index). Therefore, the
principal drought characteristics that can be identified (Figure 4) are as follows:

• Start time (ts): beginning of the drought event, equivalent to the time at which the index value
crosses the threshold value.

• Finish time (tf): time at which the index value returns to a normal level.
• Duration (D): period between the start and finish times. During this period, the drought index is

above or below the corresponding threshold value.
• Severity (S): cumulative deficiency of drought index during the duration. It is calculated as the

sum of drought index values throughout the drought duration.
• Intensity (I): average index value over the drought duration, calculated as the severity and

duration ratio.
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Figure 1. Study basins’ locations within Colombia (a) and the Lebrija River basin (LRB) (b) and the 
Sumapaz River basin (SRB) (c) with their hydrometric (LG and LM), meteorological (CO), and rainfall 
(PM) stations. The Digital Elevation Model (DEM) used here to describe the basins topography was 
obtained from HidroSHEDS data, produced by the US Geological Service [69]. 

Figure 1. Study basins’ locations within Colombia (a) and the Lebrija River basin (LRB) (b) and the
Sumapaz River basin (SRB) (c) with their hydrometric (LG and LM), meteorological (CO), and rainfall
(PM) stations. The Digital Elevation Model (DEM) used here to describe the basins topography was
obtained from HidroSHEDS data, produced by the US Geological Service [69].
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Figure 2. (a) Study basins’ locations within Colombia´ Homogeneous Rainfall zones, as defined by 
the Colombian National Institute of Hydrology, Meteorology and Environmental Studies (IDEAM) 
[61]. (b) Regions for LRB and (c) SRB. Bm indicates a bimodal and Mn a unimodal rainfall pattern. Se 
indicates zones without a defined dry season. 

Figure 2. (a) Study basins’ locations within Colombia’ Homogeneous Rainfall zones, as defined by the
Colombian National Institute of Hydrology, Meteorology and Environmental Studies (IDEAM) [61].
(b) Regions for LRB and (c) SRB. Bm indicates a bimodal and Mn a unimodal rainfall pattern.
Se indicates zones without a defined dry season.
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2.3. Drought Indices (DI)

There are several drought indices, such as those proposed by Palmer (1965) [42], Gibbs & Maher
(1967) [70], McKee et al. (1993) [41], Tsakiris & Vangelis (2005) [43], Tsakiris et al. (2007) [44], and
Nalbantis & Tsakiris (2009) [46], among others. Some methods are based only on precipitation analysis,
whilst others use different climatic series and/or rely on simplified water balances approaches [71].
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Table 1. Station information for SRB. The table includes name, code, type of station (CO: climatological, PM: pluviometric, LM: limnimetric and LG: limnigraphic),
location, measured parameter with an X (R.: rainfall, T.: temperature and S.: streamflow), coefficient of variation, and skewness for each parameter.

No. Station Name Code Type
Measured Parameters Period Statistics

R. T. S. From To CV R. Skewness R. CV T. Skewness T. CV S. Skewness S.

1 BASE AEREA MELGAR 21195080 CO X X - 03–73 12–11 0.7093 0.9385 0.1020 −0.4878 - -
2 PANDI 21195060 CO X X - 07–89 12–15 0.6648 1.0294 0.0360 0.4917 - -
3 PENAS BLANCAS 21195110 CO X X - 01–81 10–15 0.5857 0.8475 0.0398 −0.9395 - -
4 ITA VALSALICE 21195120 CO X X - 04–80 03–16 0.6459 0.8629 0.0387 0.5289 - -
5 SALERO EL 21190300 PM X - - 11–71 04–12 0.8425 1.4193 - - - -
6 CARMEN DE APICALA 21190290 PM X - - 02–72 09–15 0.6728 0.7414 - - - -
7 GRANJA LA HDA 21190410 PM X - - 01–83 09–15 0.6933 0.8530 - - - -
8 PLAYA LA 21190080 PM X - - 06–55 05–71 0.7230 1.0027 - - - -
9 OSPINA PEREZ 21190240 PM X - - 02–72 05–16 0.6032 1.1078 - - - -
10 CABRERA 21190090 PM X - - 10–58 04–16 0.6599 1.5539 - - - -
11 BATAN 21190460 PM X - - 01–98 04–16 0.6040 1.2519 - - - -
12 TULCAN EL 21190350 PM X - - 03–81 04–16 0.7704 1.6815 - - - -
13 PINAR EL 21190310 PM X - - 08–80 06–16 0.6399 1.0388 - - - -
14 SAN JUAN 21190270 PM X - - 01–81 04–16 0.7041 1.2771 - - - -
15 QUEBRADA NEGRA 21190340 PM X - - 01–81 07–88 0.6357 1.1452 - - - -
16 NILO 21190210 PM X - - 02–72 10–15 0.8584 2.5707 - - - -
17 NUNEZ 21190330 PM X - - 01–81 04–16 0.5425 1.2244 - - - -
18 TIBACUY 21190250 PM X - - 01–52 04–89 0.7110 1.1264 - - - -
19 ITUC 21195130 PM X - - 10–89 01–93 0.7825 1.3351 - - - -
20 PROFUNDO EL AUTOMATICA 21197010 LM - - X 01–59 12–13 - - - - 0.6568 1.0209
21 MELGAR 21197100 LG - - X 01–73 12–84 - - - - 0.6742 1.0134
22 PLAYA LA 21197030 LG - - X 01–59 12–14 - - - - 0.6219 1.1115
23 LIMONAR EL 21197150 LG - - X 01–65 12–14 - - - - 0.7106 1.6598
24 DOS MIL 21197090 LM - - X 01–59 12–01 - - - - 0.6734 1.0219

Table 2. Station information for LRB. The table includes name, code, type of station, location, measured parameter, coefficient of variation, and skewness for
each parameter.

No. Station Name Code Type
Measured Parameters Period Statistics

R. T. S. From To CV R. Skewness R. CV T. Skewness T. CV S. Skewness S.

1 VIVERO SURATA 23195090 CO X X - 09–68 07–16 0.7767 0.9615 0.0331 0.7549 - -
2 LLANO GRANDE 23195110 CO X X - 07–71 07–16 0.6388 1.2136 0.0341 −0.3363 - -
3 ESC AGR CACHIRA 23195180 CO X X - 04–72 08–16 0.8049 1.0455 0.0477 0.1358 - -
4 CACHIRI 23195200 CO X X - 06–71 05–16 0.8896 1.1363 0.0417 0.0543 - -
5 SABANA DE TORRES 23195120 CO X X - 08–66 12–70 0.5556 0.2137 0.0197 0.7474 - -
6 PROVINCIA 23195170 CO X X - 02–77 04–16 0.6563 0.5378 0.0265 0.4871 - -
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Table 2. Cont.

No. Station Name Code Type
Measured Parameters Period Statistics

R. T. S. From To CV R. Skewness R. CV T. Skewness T. CV S. Skewness S.

7 URBINA LA 23195080 CO X X - 05–68 12–79 0.6310 0.7100 0.0421 0.1230 - -
8 URBINA LA 23197030 LG - - X 01–73 12–79 - - - - 0.5842 1.4227
9 CAFE MADRID 23197290 LG - - X 01–65 05–10 - - - - 0.5213 1.5926
10 ANGOSTURAS 23197400 LG - - X 01–65 08–10 - - - - 0.4969 1.5857
11 SAN RAFAEL 23197370 LM - - X 01–65 12–14 - - - - 0.5282 1.3820
12 LIBANO EL 23190110 PM X - - 01–77 03–16 0.6582 0.7326 - - - -
13 MATANZA 23190120 PM X - - 06–58 09–71 0.7654 1.0145 - - - -
14 PLAYON EL 23190140 PM X - - 06–58 08–16 0.5857 1.0952 - - - -
15 VETAS 23190160 PM X - - 08–58 07–72 0.7889 1.0108 - - - -
16 MAGARA 23190210 PM X - - 12–89 04–16 0.7003 0.4784 - - - -
17 CAMPOHERMOSO 23190250 PM X - - 11–65 11–77 0.6226 0.4080 - - - -
18 LIMONCITO 23190270 PM X - - 06–67 08–73 0.4956 0.9217 - - - -
19 PICACHO EL 23190300 PM X - - 07–67 07–16 0.7411 0.8850 - - - -
20 MATAJIRA 23190340 PM X - - 11–67 07–16 0.7442 1.6528 - - - -
21 PORTACHUELO 23190360 PM X - - 11–67 07–16 0.5547 1.0397 - - - -
22 GALVICIA LA 23190400 PM X - - 01–68 04–16 0.5413 0.8942 - - - -
23 NORMA LA 23190420 PM X - - 11–74 03–88 0.7503 0.7900 - - - -
24 NARANJO EL 23190440 PM X - - 05–71 07–16 0.7525 1.6759 - - - -
25 VETAS-EL POZO 23190450 PM X - - 05–71 07–16 0.8456 1.1779 - - - -
26 PAPAYAL 23190460 PM X - - 06–71 09–02 0.7121 0.5574 - - - -
27 PALMERAS HDA 23190470 PM X - - 06–71 07–78 0.7166 0.9898 - - - -
28 SAN ALBERTO 23190500 PM X - - 07–71 03–16 0.6553 0.6490 - - - -
29 CAOBO EL 23190510 PM X - - 01–73 03–16 0.6496 0.9153 - - - -
30 DORADA LA 23190520 PM X - - 11–71 03–16 0.7367 1.3824 - - - -
31 COOPERATIVA LA 23190530 PM X - - 01–74 01–99 0.6849 0.7337 - - - -
32 VEGA LA 23190540 PM X - - 08–76 05–16 0.7716 1.3418 - - - -
33 SAN RAFAEL 23190560 PM X - - 12–76 04–16 0.6870 0.5405 - - - -
34 PANTANO EL 23190600 PM X - - 11–67 07–16 0.6660 0.9824 - - - -
35 BARRANCA LEBRIJA 23190710 PM X - - 10–83 03–16 0.8512 0.7684 - - - -
36 PLANES LOS 23190810 PM X - - 12–84 03–16 0.5779 0.7746 - - - -
37 PLANTA ELECTRICA 23190100 PM X - - 06–58 08–71 0.5710 0.8036 - - - -
38 TONA 23190130 PM X - - 06–58 07–16 0.9170 1.6652 - - - -
39 ESC AGROPECUARIA 23190150 PM X - - 06–58 11–72 0.8724 1.3314 - - - -
40 CACHIRI 23190200 PM X - - 11–59 07–72 0.9190 1.3245 - - - -
41 LAGUNA LA 23190260 PM X - - 06–67 07–16 0.6253 1.0003 - - - -
42 PALO GORDO 23190280 PM X - - 06–67 07–16 0.6971 1.2884 - - - -
43 SAN IGNACIO 23190310 PM X - - 09–67 09–71 0.4838 0.2398 - - - -
44 LLANO DE PALMAS 23190350 PM X - - 11–67 07–16 0.6477 1.2548 - - - -
45 PALMAS 23190380 PM X - - 11–67 07–16 0.7315 1.9992 - - - -
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Figure 1a,b display the location of stations in case studies and it is noted that most of the available
data, for both study areas, came from rain gauges. As will be shown later, the regionalization
procedures are highly influenced by station spatial distribution. For regional analyses, more reliability
is obtained when a higher number of stations are employed [7]. For study areas, rainfall series
were the most common ones, and for that reason, when selecting drought indices methods, those
indices calculated using precipitation data were preferred. In this respect, the Percent of Normal
Precipitation index (PN) and Standardized Precipitation Index (SPI) were selected. Moreover, it was
desired to assess drought employing indices that account for water balance, despite unavailability of
meteorological stations. For that reason, the Palmer indices and Reconnaissance Drought Index (RDI)
were chosen. Finally, the Streamflow Drought Index (SDI) was selected to compare results obtained
for hydrological drought using methods that only considered meteorological information, with a
procedure that employed streamflow data.

A brief description of selected drought indices calculation procedures is given below.

2.3.1. Percent of Normal Precipitation Index (PN)

This index is one of the simplest methods of rainfall evaluation for a given location [72–76].
Generally, analyses using this index are useful when applied to a single region or season. The index,
for a certain time period, is calculated as the quotient between actual and mean precipitation, the latter
is estimated using a long historic dataset (over 30 years). In this study, this index was calculated for
every weather and pluviometric station.

2.3.2. Standardized Precipitation Index (SPI)

This is probably the most frequently used tool for drought monitoring worldwide, especially at
national-scales [77–82]. In 2009, the World Meteorological Organization (WMO) recommended SPI as
the procedure that countries should use to track drought advance [49]. This index was calculated for
all weather and pluviometric stations.

The index involves the adjustment of rainfall data to a probability distribution (generally a
Gamma or Log-normal), which is transformed into a normal distribution. Therefore, index values
over zero indicate rainfall depths larger than the historic median, and values below zero express the
opposite. It is possible to compute this index for different time-scales, when trying to examine the
effects of different drought types [57,83–88]. This index was calculated for temporal scales of 1, 3, 6,
and 9 months (SPI1, SPI3, SPI6, and SPI9).

2.3.3. Moisture Anomaly Index (Z)

This index is an intermediate product in the Palmer Drought Severity Index (PDSI) calculation.
One of its principal features is that it reacts almost immediately to rainfall changes [89–91], and its
values indicate the deviation of soil moisture status from normal conditions. Research has shown that
the behavior of this index is highly correlated to the SPI calculated for one month (SPI1). Data
requirements, as well as the indices associated with it (PDSI and PHDI), include precipitation,
temperature, geographic location, and soil field capacity. These indices were calculated only for
climatic stations.

2.3.4. Palmer Drought Severity Index (PDSI)

This index is computed using an empirical expression formulated by Palmer (1965), after
proposing a serial water-balance. It is calculated based on temperature and precipitation data, as well
as soil water-holding capacity. The calculation procedure considers different moisture stages, including
received (rainfall), stored (soil moisture), and loss (due to temperature influence) stages [92–99].
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2.3.5. Reconnaissance Drought Index (RDI)

Data requirements for this method include rainfall and temperature time series, thus it was
estimated only for climatic stations. Its calculation procedure considers a simplified water balance
equation, where precipitation is the input and the out is potential evapotranspiration. The index
accounts for the quotient between accumulated input and output values. Using a similar procedure
to the one employed for the SPI index, standardized RDI is computed after normalizing the
quotient dataset, which was previously adjusted to a Gamma or Log-normal distribution [44,100–102].
Typically, potential evapotranspiration is estimated using conventional methods, such as Penman
or Thornthwaite. In this case, the second method was employed. It has been proved that the
potential evapotranspiration estimation method does not have a particular influence on RDI obtained
values [101].

2.3.6. Palmer Hydrological Drought Index (PHDI)

Based on the original PDSI, the PHDI includes some modifications to consider longer-term effects,
related to hydrological droughts (effects to water storage, streamflow, and groundwater levels). Both
Z and PHDI are computed within the calculations of PDSI.

2.3.7. Streamflow Drought Index (SDI)

This index is calculated using the same procedure as the SPI. However, instead of using rainfall, it
requires streamflow data. Interpretation of SDI values is the same as for SPI [103–106]. This index was
estimated using only streamflow gauging stations.

2.3.8. Drought Indices and Drought Types

As explained before, droughts can be classified depending on their impacts. Additionally,
particular DI provide identification of specific drought classes. Table 3 shows the previously described
calculation methodologies in relation to the drought category used for diagnosis in this study.

Table 3. Drought Indices Calculation Methodologies employed for different classes of event.

Drought Indices

Meteorological Drought PN, SPI1, SPI3, Z
Agricultural Drought SPI6, PDSI, RDI
Hydrological Drought SPI9, PHDI, SDI

2.4. Point SDF Curves Construction

For both basins, frequency analyses were performed in each station for all drought indices. First,
for a given index, same-duration events were identified according to Section 2.2, and annual maximum
severity series for each possible duration was determined. Second, frequency analyses of these annual
iso-duration severity series were performed using HYFRAN [107–116].

HYFRAN (a demo version of the software can be downloaded from https://www.wrpllc.com/
books/HyfranPlus/indexhyfranplus3.html) is a software designed for hydrological frequency analysis,
particularly for extreme values analysis. The software was developed at the National Institute
of Scientific Research at the University of Québec. Its development received funding from the
Hydro-Québec and the Natural Sciences and Engineering Research Council (NSERC). The program
can be used for fitting a statistical distribution to a time series, where the observations obey the
independence and identical temporal distribution hypotheses.

Parameters were estimated using the maximum-likelihood method, and goodness-of-fit was
evaluated using the Chi-square test, with a significance level of 1% (implemented in HYFRAN).
Gumbel, Normal, and Generalized Extreme Value (GEV) distributions adjusted relatively well to all
the severity series. Frequency analyses were only performed for durations for which the number

https://www.wrpllc.com/books/HyfranPlus/indexhyfranplus3.html
https://www.wrpllc.com/books/HyfranPlus/indexhyfranplus3.html
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of identified events were sufficient to carry out robust adjustments, i.e., 5 or more identified events
for a certain duration. Finally, the independence of the analyzed series was tested by means of
the Wald-Wolfowitz test of independence, with a significance level of 5%. The last test was also
implemented in HYFRAN.

2.5. SDF Curves Regionalization

Two regionalization procedures of SDF curves were employed depending on the drought index.
The first procedure was applied to all indices computed from climatic information (precipitation and
temperature), whereas the second was applied to the SDI, the only index calculated from streamflow
data [46].

For different combinations of duration and return periods, the first procedure consisted of
determining the corresponding severity value from the point SDF for each station. Then, these
severity values were spatially interpolated using the Inverse Distance Weighting method (IDW) [117]
implemented in ArcMap 10.4.1 (ESRI, Redlands, CA, USA) (see Figure 5), and a mean value for the
whole study area was calculated. The regional SDF curve was constructed by plotting severity values
in the function of the duration and return period (see Figure 6).
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The second procedure considered that streamflow-based indices like SDI should be related to the
tributary area. The index was calculated as a tributary-area weighted average of severities. Similar to
the first procedure, computed regional severity values were plotted on regional SDF curves according
to the associated duration and return period.
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3. Results and Discussion

3.1. Regional SDF Curves

The regional SDF curves for the two case studies were compared to assess the consistency of
different drought-index methods to classify the seriousness of the drought events, according to their
type. As mentioned before, for the majority of DI, regionalization process was carried out by spatial
interpolation of severity values obtained from point frequency analyses. In this sense, iso-severity
maps constructed for maximum possible durations and return period (50 years) are displayed in
Figure 5. It is notable that the location of more severe areas varies between DI methodologies. This
feature is related to two relevant factors of the stations and datasets employed: (i) Variability in the
length of climatic-parameters series between catchments, and between same-catchment-stations; and
(ii) Differences in the spatial distribution of measuring-stations density in both case studies. The
first consideration is associated with the available data for event identification and the reliability of
performed frequency analysis, as well as with the regionalization of useful stations, given that each
presents a diverse group of durations (according to the number of recognized drought events), and
the spatial interpolation process requires a majority of stations to have a certain common duration
value. The second issue is linked to the quality of the spatial interpolation procedure, which is clearly
influenced by stations-proximity and catchment extent.

Additionally, it is important to mention that, as can be seen in Figure 5a, the most severe drought
occurrences are concentrated on the southern and eastern regions of the LRB, except for SPI3 and SPI6,
which showed higher magnitudes for stations located on the western zone of the catchment. In the SRB
case study (see Figure 5b), severity spatial distribution showed lower consistency among the DI than in
the LRB. Therefore, it was impossible to define a specific basin zone for which severities were shown to
be larger in the SRB case study. The discrepancies described above could be fundamentally attributed
to the fact that the analyzed basins were located in different hydrological zones, which implied that the
particular features of the dry spells that affected them also varied. In addition, the previously-described
stations and dataset characteristics, strongly influenced the spatial interpolation results.

Regional SDF curves for the two study areas are depicted in Figure 6, showing that for any
drought index, the regional SDF curves show similar behavior for both catchments. This fact supports
the conclusion that frequency analyses maintained a distinctive relationship between severity and
duration, for all drought indices. As expected, magnitudes of severities and durations for a given return
period differed between catchments, which could be acceptable given that the specific hydrological
attributes of both case studies (i.e., spatial distribution of stations, rainfall and temperature magnitudes,
regularity of extreme event occurrences, etc.) affected the results, as mentioned before.

Specifically it was found that, for the same return period, PN, Z, and PHDI exhibited duration
dependency. The first two methodologies consistently identified that the LRB presented larger gravities
than the SRB for short durations (i.e., 1 to 4 months), whilst this behavior was reversed for higher
durations (i.e., 5 months onward). PHDI showed that for durations between 1 and 4 months, the
LRB presented larger severity values, whilst for durations of 5 months or more, the SRB surpassed it.
Additionally, the LRB presented more serious occurrences identified through SPI6, SPI9, PDSI, RDI,
and SDI. Remaining methodologies (SPI1 and SPI3) showed that the SRB drought events displayed
larger magnitudes.

The results shown revealed the existence of a certain degree of consistency in regional-SDF curves.
In this regard, PN and Z showed agreement on the identification of the study-area that displayed the
most serious drought-events. Furthermore, in that particular case, concordance was reached even when
differentiating outcomes depended on duration. Concurrence on the detection of the zone with the
most severe same-type droughts was achieved for three more cases: (i) SPI1 and SPI3 (meteorological
drought); (ii) SPI6, PDSI, and RDI (agricultural drought); and (iii) SPI9 and SDI (hydrological drought).
Finally, the PHDI comparison was ambiguous given that it derived from duration–reliance results that
showed no coherence with any other methodology.
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According with specific DI outcomes, it was possible to define four groups of indices in terms of
their compatibility between catchments: (i) PN and Z; (ii) SPI1 and SPI3; (iii) SPI6, PDSI, and RDI; and
(iv) SPI9 and SDI. PHDI could not be included in any of the categories because of its lack of complete
agreement with other indices that identify hydrological droughts. This grouping was useful because
it facilitated the identification of DI methodologies that led to consistent results, and thus, in terms
of regional planning and operation, allowed those indices with simpler calculation procedures and
fewer information requirements to be selected as monitoring tools, optimizing work and resources.
With this in mind, for each of the defined categories, the most appropriate operational DI would be:
(i) PN; (ii) the calculation method that remains the same, so that any of the indices might be used;
(iii) given that calculation methodology remains the same, data requirements were lower in SPI6 than
they were in PDSI; and (iv) depending on available data (rainfall or streamflow), any of the options
could be adopted.

3.2. Location of Regional Drought-Events on Regional SDF Curves

Once regional SDF curves were constructed and interactions between them were explored, the
next step consisted of locating historical drought-regional events, derived from datasets built from
drought-indices. To identify time periods for which a significant number of stations showed drought,
these occurrences were pinpointed. Once identified, spatial interpolation of drought-severities and
durations was carried out, employing the same methods as SDF curves regionalization. In this way, the
specific location of events over regional SDF curves were defined and their associated return period
determined. Table 4 summarizes some important statistics for identified regional drought events,
which were later located over constructed SDF curves. Apart from including statistics for severity and
duration parameters, regional intensity measures were also included.

The results of event-location on SDF curves are presented in Figure 7a (LRB) and Figure 7b
(SRB). Table 5 contains a summary of Pearson linear correlation coefficients, computed to compare the
consistency of different DI methodologies to identify regional occurrences. In this respect, the SPI3
case was notable given that it could be considered as transitional between the meteorological and
agricultural drought types, and for that reason, it was compared to the DI of both categories. Figure 6
displays the box-whisker diagrams constructed to compare the behavior of regional event durations
and return periods among different DI, for the same drought type.

Table 4 and Figure 7 identify the drought-type that displayed the highest number of regional
occurrences. It was observed that meteorological drought was the most common type for both case
studies (28 to 73 events in the SRB and 34 to 81 events in the LRB); agricultural drought was the second
most frequent type, varying from 12 to 16 events in the SRB and from 13 to 20 events in the LRB, and
the most infrequent drought type was the hydrological, with 13 to 22 episodes in the SRB and 10 to 12
in the LRB. These results were expected given the longer duration of hydrological droughts, which
make them less likely to occur than the agricultural or meteorological droughts. Additionally, as will
be reinforced with the results outlined below, it was found that the majority of analyzed regional
events displayed return periods between 2 and 5 years, which in general terms can be considered
as low.

Table 5 presents computed results after comparing duration and return period series obtained
through studied DI methodologies. The main goal of this analysis was to assess the consistency of the
results for different calculation procedures, with respect to the specific parameters of duration and
return period series. In this sense, high values of correlation would indicate that DI methodologies
could single out similar drought events, at least for duration and occurrence frequency.
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Table 4. Summary statistics for different drought categories for historical identified events, using
different DI methodologies.

SRB LRB

DI Statistic S (-) D
(Months)

I
(-/Month) S (-) D

(Months)
I

(-/Month)

Meteorological
Drought

PN
Count 73 81
Mean 1.4039 2.3135 0.6215 1.3001 2.2197 0.5933

Variance 0.4065 1.3550 0.0144 0.2371 0.7549 0.0080

SPI1
Count 72 80
Mean –1.7762 2.0319 –0.8372 –1.7694 1.9900 –0.8704

Variance 1.4105 1.0076 0.0551 0.7253 0.5793 0.0278

Z
Count 58 67
Mean –3.4410 2.4220 –1.3680 –3.3505 2.2947 –1.4666

Variance 6.7808 2.0277 0.2192 4.5467 1.4179 0.2550

SPI3
Count 28 34
Mean –3.7076 6.0000 –0.5533 –3.3767 5.8534 –0.5343

Variance 7.9020 4.2672 0.0483 3.8572 2.4011 0.0366

Agricultural
Drought

SPI6
Count 16 20
Mean –7.6286 12.8942 –0.5294 –6.0016 11.7824 –0.4602

Variance 34.2660 18.2327 0.0421 18.2894 11.1559 0.0360

PDSI
Count 12 13
Mean –32.5682 15.5806 –1.8325 –18.3403 10.9669 –1.4075

Variance 471.3502 80.4588 0.4572 302.2755 64.1268 0.2605

RDI
Count 16 14
Mean –10.4930 17.8989 –0.5512 –7.4902 12.9890 –0.5266

Variance 32.3437 48.9207 0.0309 23.9745 21.3541 0.0521

Hydrological
Drought

SPI9
Count 15 12
Mean –9.0822 18.3530 –0.4405 –9.7558 18.7969 –0.4862

Variance 34.6455 28.3518 0.0412 33.2412 22.6491 0.0232

PHDI
Count 13 11
Mean –40.0915 17.7421 –2.2259 –24.5365 12.8220 –1.8297

Variance 349.5370 55.9322 0.1382 240.9521 44.4920 0.1201

SDI
Count 22 10
Mean –11.7482 20.4533 –0.4688 22.1519 –11.9025 –0.4161

Variance 129.4397 73.4869 0.0952 164.2914 201.1271 0.0567

Table 5. Pearson linear correlation coefficients among different DI methodologies. Comparison results
for duration series are displayed vertically and return period horizontally.

Durations

PN SPI1 Z SPI3 SPI6 PDSI RDI SPI9 PHDI SDI

Return
Periods

PN
SRB 0.8869 0.7053 0.4666
LRB 0.5940 0.1738 0.5050

SPI1
SRB 0.6032 0.6215 0.5746
LRB 0.2064 0.3349 0.5245

Z
SRB 0.3839 0.2098 0.4710
LRB −0.1194 0.1844 0.4975

SPI3
SRB −0.0057 0.5109 −0.0134 0.3159 0.1755 0.1799
LRB 0.1454 0.4177 0.0046 0.5641 0.1554 0.2982

SPI6
SRB 0.3607 0.8154 0.8214
LRB 0.1247 0.1824 0.2630

PDSI
SRB 0.2345 −0.0600 0.6755
LRB 0.0996 0.0700 0.1875

RDI
SRB 0.5346 0.1305 −0.03513
LRB 0.8483 0.7020 −0.1170

SPI9
SRB 0.6345 0.7419
LRB 0.2175 −0.0873

PHDI
SRB 0.3526 0.2286
LRB −0.0992 0.6454

SDI
SRB 0.6691 0.4839
LRB −0.1734 −0.0844
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Firstly, correlation values concluded that among methodologies, for both study catchments,
duration series tended to be more consistent than return period series. This conclusion arose from
the fact that a higher number of significant correlations were found on the duration side of Table 5
(13 of 30 evaluated correlations), than on return period side (7 of 30 evaluated correlations). Significant
values were defined as those higher than 0.5, and they are shown in bold on Table 5. Secondly, it
was found that higher correlations were present for the SRB than for the LRB. In the case of duration
series, the SRB displayed 8 of the 13 significant correlations, whilst for frequency series, it had 5 of
7. Thirdly, it was observed that correlation coefficients for durations were significantly higher than
those obtained for return periods. These results supported the conclusion that frequencies obtained
through SDF regional curves, unlike durations, were highly influenced by the regionalization process.
Fourthly, when analyzing relationships connected to drought type (see Table 6), the analysis found
that correlations among durations tended to be higher for meteorological and hydrological droughts,
than they were for agricultural droughts. In the case of frequency, the behavior was less clear, with
SRB reacting in the same way as duration. Meanwhile, LRB showed larger coefficients for hydrological
drought, followed by agricultural, and then meteorological. Finally, almost all of the correlation
coefficients displayed a positive figure (50 of 60 evaluated correlations), which implied that for both
studied parameters, correlations tended to be direct among different DI methodologies.

Table 6. Average Pearson linear correlation coefficients obtained for drought type DI methodologies.
Results are presented individually for each analyzed catchment, as well as combined by drought type.

Duration Frequency

SRB LRB SRB LRB

Meteorological
Drought

0.6210 0.4383 0.2815 0.1398
0.5296 0.2107

Agricultural
Drought

0.4973 0.2751 0.1942 0.2879
0.3862 0.2410

Hydrological
Drought

0.5350 0.2586 0.5019 −0.1190
0.3968 0.1914

An analysis of the distribution of duration and return period data, obtained through different
DI methodologies was carried out by means of box-and-whisker diagrams. These were constructed
independently for LRB (Figure 8a) and SRB (Figure 8b). This procedure sought to evaluate consistency
in duration and return period results for regional events, after characterizing both of these using
regional SDF curves. For that reason, DI were grouped by drought type and each group was
compared independently.

Firstly, as was previously mentioned, Box plots (Figure 8) showed that most of the identified
regional events, through all the studied methodologies, displayed low return periods (between 0 and
10 years for all the DI). This could be related to the length of record employed to build the point DI
series, as well as with the consistency of the identification of occurrences between stations, which
classified an event as regional or not. Therefore, the importance of using datasets with a relatively
long length emerged as one of the key conditions for obtaining more accurate regional analysis and
identifying more high-frequency occurrences, which may be useful in the study of convenience for
generated SDF areal curves.
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Secondly, contrasting with the results from the Pearson correlation coefficients (Table 6), the same
regional events displayed as notched box plots allowed different DI calculation procedures that were
consistent with each other to be observed, with regards to duration and frequency data distribution.
The box notch shows the confidence interval around the data median. Although not a formal test,
if two box notches do not overlap, it is possible to consider that there is strong evidence with a 95%
confidence level, that the medians of the two datasets are different. In this case, it was found that
the notches corresponding to boxes of DI methodologies that identified the same type of drought
tended to overlap, except for the SPI3 case which showed its transitional nature by not adjusting to the
behavior of either meteorological or agricultural droughts. Moreover, it was observed that duration
data distribution was more compact than frequency grouping; in other words, duration data displayed
lower variability than the return period. Higher differences among DI arose from whisker length, box
width, and the number and magnitude of observations outside of the whisker (i.e., possible outliers).
All the mentioned discrepancies could be related with individual procedure features which determine
particular data distribution, as well as with the sensitivity that durations and frequencies displayed to
the regionalization process.
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Finally, a relative consistency for the identification of serious events was found for both case
studies using different methodologies, i.e., occurrences identified as ‘outliers’ tended to be persistent
amongst calculation procedures, for both duration and frequency. Furthermore, it was found that the
most severe occurrences tended to greatly impact socio-economic regional issues. For example, the
previously described late 2015 and early 2016 dry period in the SRB was identified as an event with
a significantly high return period by SPI3, SPI6, PDSI, and PHDI. This was not exactly an atypical
value for all DI distributions, but certainly one of the higher return period values found. These
results allowed this occurrence to be considered an agricultural drought for this catchment, due
to the majority of methodologies that recognized it, and so it led to this conclusion. However, this
drought-classification may not be taken as absolute since it also could be considered as a meteorological
or hydrological-type drought, because of the SPI3 and PHDI results. The same drought episode in
the LRB case study was cataloged as severe by PN, SPI3, SPI6, SPI9, and RDI. Therefore, in that case,
the analyzed event could be considered transitional between a meteorological and an agricultural
drought, and it also could be concluded that the occurrence was more serious than the one in the SRB,
because of the number of indices that identified it. These results reaffirmed the spatial differences
that the droughts exhibited when comparing distant catchments, and it confirmed that the particular
characteristics of study areas defined the presence and impacts of a dry spell.
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4. Conclusions

The above results, apart from classifying events according to their frequency of occurrence,
facilitated the monitoring of droughts for study-regions because they supported the comparative
determination of the most serious drought episodes, using not only a value of an index, but also a
duration and return period associated with it. Specifically, conclusions that arose from the specific
procedures applied included:

1. The SDF curves regionalization procedure was clearly influenced by measuring station density
inside the study areas, as well as by the parameter’s spatial distribution. Hydrologic and
soil-specific features of basins also determined the presence of drought events. Particular attention
must be given to the rainfall, temperature, and streamflow series employed for the generation of
DI datasets to have long enough records to generate robust point frequency analyses and accurate
regional approximations.

2. When comparing both catchments generated by regional SDF curves, consistent results are found.
This fact supports the supposition that distinctive correlations between severity and duration
for all drought indices were conserved during the regionalization procedure. Undoubtedly,
magnitudes differed between catchments because specific hydrological attributes also varied, i.e.,
spatial distribution of stations, rainfall and temperature magnitudes, regularity of extreme event
occurrences, etc. However, it is possible to group DI methodologies that lead to consistent results
for the same drought type. This is useful in terms of regional planning and operation, because it
allows indices with simpler calculation procedures and fewer information requirements to be
selected as monitoring tools. It is not intended to imply that one drought index methodology can
be considered better than another. However, in terms of regional planning and operation, it is
possible to consider that there are some methods than can be more easily applied than others.
Given that the purpose of this research was the trial of procedures useful for operational purposes
in Colombia, simplicity should be accomplished. The Colombian regional environmental agencies,
which are in charge of designing and implementing drought response plans, do not always
possess sufficient data resolution and the technical capacity to carry out complex operations.
For that reason, this research was focused on simple and well-known methods, which could be
easily used, despite data availability and/or specialized capabilities.

3. Regarding the location of specific historical events on regional SDF curves, the incidence of
meteorological droughts was greater than the other drought types for both case studies. The
duration and gravity associated with agricultural and hydrological droughts made them less
frequent than those associated with rainfall reductions only. In addition, when the length of the
record employed on frequency analyses was consistent, most of the identified regional events
displayed low return periods. The importance of the length of the dataset used during this kind
of assessment is considered as one of the decisive factors for obtaining an accurate diagnosis of
regional historical occurrences.

4. When verifying the consistency of different DI methodologies regarding the identification of
historical regional drought events, the obtained values of linear correlations between series of
durations and frequencies affirmed that consistency tends to increase when analyzing durations
instead of frequencies, for the two study-basins. This result indicated, to some extent, that the
regionalization process increased variability between methodologies for frequencies, whilst for
durations, its impact was not very significant (in agreement with conclusion 2). Secondly, it
can be noted that consistency among DI methodologies was greater in the SRB than in the LRB.
It implied that the particular features of the study region, including climatic factors, spatial
density of measuring stations, and length of available datasets, influenced the coherence of
calculation procedures.
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5. A certain degree of consistency was found when comparing different DI methodologies, for
specific drought types, for both duration and frequency parameters. It was possible to observe
that medians for DIs that identify the same drought type tended to overlap with a 95% confidence
level, and that occurrences identified as ‘outliers’ tended to be persistent among calculation
procedures, for both of the analyzed criterion: Duration and frequency.
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