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Abstract: Montado is an agro-forestry system occupying a large surface in countries of the
Mediterranean region. In this system, the natural dryland pasture is the principal source for animal
feed in extensive grazing. The climatic seasonality associated with the inter-annual irregularity
of precipitation greatly influences the development of pasture and its vegetative cycle. The end
of spring is a critical period in terms of animal feed due to the notable reduction in the nutritive
value of the plants. The objective of this work was to evaluate, through the correlation between
pasture quality indexes (Pasture Quality Degradation Index, PQDI and Normalized Difference
Vegetation Index, NDVI), two technological approaches for monitoring the evolution of the quality of
a biodiverse pasture in the period of greatest vegetative development (between February and June).
The technological approaches consisted of (i) proximal sensing (PS), with the use of an active optical
sensor; and (ii) remote sensing (RS), using images captured by a Sentinel-2 satellite. The results of
this study show strong and significant correlations between PQDI and NDVI (obtained by PS or RS).
These two techniques (PS or RS) can, therefore, be used in a complementary way to identify and
anticipate the food supplementation needs for animals and support farmers in decision making.

Keywords: pasture quality degradation index; normalized difference vegetation index; Sentinel;
optical active sensor; vegetative cycle

1. Introduction

Montado is the most widespread agro-forestry system in Europe, covering 3.5–4.0 Mha in Portugal
and Spain (where it is named “Dehesa”) and is commonly found in other Mediterranean regions such
as Algeria, Italy, Greece, and Morocco [1]. It represents 33% of the total Portuguese forest area [2] and
is usually associated with poor soils. Montado consists of natural or improved (by soil amendment
or fertilization) dryland pastures, mainly grazed by sheep, cattle, and pigs, under a sparse cover of
cork oak (Quercus suber L.) or of holm oak (Quercus ilex ssp. rotundifolia Lam.). These low maintenance
pastures fulfill an important function in rangeland ecology and are fundamental contributors to the
productivity and biodiversity of these ecosystems, while sustaining livestock in soils that otherwise
would have been considered unproductive [3,4]. Given the fragility of these soils, continued efforts
are needed to improve their quality and thus achieve sustained pasture production. At the same
time, improvement of pasture quality is an additional management concern because it is fundamental
for profitable animal production [5]. Given the seasonal variability in rainfall and temperatures
in the Mediterranean climate, pastures associated with montado are characterized by significant
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seasonal fluctuations in plant species composition and productivity [6]. Dry summers and irregular
winter rainfall affect the productivity and duration of the vegetative cycle of dryland pastures [7].
Therefore, vegetation resilience to water stress is an essential factor for the development of pasture in
these ecosystems [8].

The annual vegetative cycle begins in autumn, with the appearance of the first rains, and then goes
through a dormancy period in winter, due to the low temperatures. In the spring, the simultaneous
combination of temperature and precipitation creates conditions for a period of great vegetative
vigor. From autumn to spring, pasture is the main source of animal feed in extensive grazing systems;
however, starting in late spring or early summer, low precipitation and high temperatures accelerate the
final stages in the pasture vegetative cycle, clearly decreasing its nutritional value. In this critical period,
farmers need essential data on the spatial and temporal variability of pasture biomass availability
in order to safeguard a minimum supply of high quality feed throughout the year [5] and evaluate
possible feeding supplementation strategies for the animals, to cover at least their maintenance
needs. This information can assist farmers in site-specific soil, pasture, and animal management in
agro-silvo-pastoral systems [9]. Viable animal production under these conditions depends heavily on
well-informed pasture management and feed planning [3].

Pasture quality can be quantified by certain parameters, such as neutral detergent fiber (NDF)
and crude protein (CP) content [10]. It is known that high CP content and low NDF content indicate
higher quality pastures [11], which is usually the case when the plants are young. As the pasture
develops during the spring, the CP content tends to decrease while the NDF content tends to increase.
Serrano et al. [12,13] presented an index designated the pasture quality degradation index, (PQDI,
Equation (1)), which uses the NDF/CP ratio to quantify the progressive degradation of pasture quality
throughout the growth cycle.

PQDI =
NDF
CP

(1)

The conventional method for obtaining these indicators of pasture quality (CP and NDF) is
based on in-situ sampling and chemical analysis. However, this conventional methodology involves
intensive field work and lengthy laboratory analysis, which are relatively expensive and sometimes
belated, making them unpractical for day-to-day farm management [5,6,10,14].

Remote sensing is becoming an increasingly appealing technology [15], using the relationship
between satellite-derived indices and certain crop characteristics [6]. Nonetheless, the application
of RS technology in precision grassland management is still relatively limited due to the variability
in pastures species [16]. Over the past few years, important developments have been achieved in
sensor technology and analytical algorithms, enabling RS to supply comprehensive data for pastures
management [5]. These emerging technologies that facilitate the mapping and analysis of pasture
variability [17] are more and more crucial for sustainable animal production. Evaluation of variability is
both the first important step and a required condition in the implementation of “Precision Agriculture”
(PA) technologies. Current developments in PA, RS, and PS and geospatial analyses associated with
GPS provide expedite and non-destructive mapping techniques for portraying the spatial and temporal
variation of pasture properties with increasing spatial resolution [18].

The normalized difference vegetation index (NDVI, Equation (2)) is the most frequently used crop
index for the definition of management zones [6,14]. It can be obtained using a variety of RS mapping
platforms, as well as through PS sensors. This index is based on the measurement of radiation reflected
by the plant canopy at two wavelengths: red (RED) and near infrared (NIR).

NDVI =
NIR− RED
NIR + RED

(2)

Use of satellite data for RS purposes is very appealing due to the low cost of the images,
their geographic scale, and their availability [19]. The resolution of satellite images has improved
significantly over the past years, and “Landsat 8”, “Sentinel-1”, or “Sentinel-2” satellites can provide
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images with a 10 to 30 m resolution [20,21]. Sentinel-1 and Sentinel-2 satellites open new horizons
in monitoring pasture growth due to their five-day repeat cycle. According to Lumbierres et al. [6],
RS techniques may represent a key tool for the long-term monitoring and management of seasonal
ecosystems, as well as for the reconstruction of historical trends, using satellite image time series.
However, satellite images obtained on cloudy days can contain patches of highly unreliable values,
rendering them mostly unusable [3]. The major disadvantage of optical satellite imagery is thus the
requirement of a clear, cloud-free view of the object of interest, which is especially challenging in temperate
and rainy regions [22]. Remote sensing images used to study pastures in the montado ecosystem have
the added limitation of not accessing the pasture under the tree canopies. This limitation of RS images
reinforces the usefulness of PS in montado ecosystems and in any ecosystem where there is an interest in
monitoring the understory vegetation [14,23].

The recent evolution of sensor technologies, especially of PS such as “OptRx”, and tools for data
analysis and interpretation, provide farmers with easy access to high resolution imagery, allowing the
fine scale monitoring of the variability of pastures in montado ecosystems [15]. Complementing this data
with RS imagery provides full information on the parameters to support management decisions [18] both
under and outside the tree canopy [15].

The objective of this work was to evaluate, through the correlation between pasture quality
indexes (PQDI and NDVI), two technological approaches for monitoring the evolution of the quality
of a biodiverse pasture in the period of greatest vegetative development (between February and June).
The technological approaches consisted of (i) PS, with the use of an active optical sensor; and (ii) RS,
using images captured by a Sentinel-2 satellite.

2. Materials and Methods

2.1. Study Area

The area of the study, a paddock, with a size of 2.3 ha (Figure 1), is located in the South of Portugal
(38◦32.2′ N; 8◦01.1′W). A field of Quercus ilex ssp. rotundifolia Lam., with a tree density of approximately
10 trees ha−1, was maintained for more than two decades with bio-diverse permanent pastures (grasses,
legumes, and others) and used for sheep production. The most frequent botanical species present in
this ecosystem, in spring 2016, were Chamaemelum mixtum (family Asteraceae), Erodium moschatum
(family Geraniaceae), Leontodon taraxacoides (family Asteraceae), Trifolium resupinatum (family Fabaceae),
and Plantago coronopus (family Plantaginaceae). Taken together, these represented more than 60%
of total cover outside the tree canopy [24]. The main soil is a Cambisol with a granite origin [25].
Cambisols are characterized by slight or moderate weathering of parent material and by the absence
of appreciable quantities of illuviated clay, organic matter, aluminium, and/or iron compounds in the
top soil.

The Mediterranean climate which characterizes this region, a transition between temperate and
dry subtropical climates, normally presents dry summers, where rain is practically absent, and mild
or moderately cold winters, with a rather variable rainfall regime. Temperatures are between 8 ◦C
and 26 ◦C (monthly average), and the minimum temperatures are close to 0 ◦C in the winter time.
Annual rainfall varies between 400 and 600 mm and normally occurs between October and March.

Figure 2 shows the thermo-pluviometric diagram of the Mitra meteorological station between
September 2016 and June 2018, which directly affects the vegetative cycle of the dryland pastures
in Alentejo. The irregularity of inter-annual distribution of the monthly rainfall is clearly evident.
The accumulated rainfall between February and June was 249 mm in 2016, around half of that value in
2017 (125 mm), and practically double in 2018 (457 mm). The rainfall concentration in spring (April and
May) is important for the maintenance of pasture growth and the lengthening of the pasture vegetative
cycle. In June, the absence of rain and higher temperatures naturally reduces the productivity and the
quality of the pasture.
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Figure 1. Experimental field located at the Mitra farm in the summer of 2016.
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Figure 2. Thermo-pluviometric diagram of the Mitra meteorological station between September 2015
and June 2018.

2.2. Pasture Monitoring

Pasture growth was determined in 12 sampling areas without trees using Sentinel 10 m × 10 m
pixel (Figure 1) imagery, at each monitoring date of 2017 (coinciding with the dates of the satellite
imagery without cloud cover): at the end of winter (14 February and 16 March), and then each month
during spring (15 April, 25 May, and 14 June). Multispectral measurements with a proximal optical
sensor were carried out immediately before pasture sampling.

2.2.1. Vegetation Multispectral Measurements by Proximal Sensing

The multispectral bands were obtained with a commercial “OptRxTM” active optical sensor,
manufactured by Ag Leader (Ames, IA, USA). This sensor was associated with a Trimble GNSS
GeoExplorer 6000 series model 88951 (Trimble Navigation Limited, Raunheim, Germany), with sub-meter
precision. The sensor was transported by a mobile platform at an average speed of 5 km h−1, and was
positioned approximately 0.50 m above the pasture, with a field of view of about 0.3 m2. The sensor emits
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radiation in a modulated frequency and receives back the radiance in the different channels. With this
particular sensor, the following radiance bands were obtained: (i) RED (670 nm); (ii) RED EDGE (728 nm);
and (iii) NIR (775 nm). With the RED and the NIR bands, the NDVI was calculated using Equation (1).

In each of the 12 geo-referenced pixels, measurements were performed for a 2 min period.
On average, in each sampling date, 120 measurements were taken (one per second) in three
representative locations within each pixel area (10 m × 10 m) and from these, the mean, the standard
deviation (SD), the coefficient of variation (CV), and the NDVI range were calculated.

2.2.2. Vegetation Multispectral Measurements by Remote Sensing

Sentinel-2 is an earth observation mission, managed by the European Satellite Agency. The twin
optical satellites produce a frequency of revisit of five days at the Equator [26].

For this particular work, Sentinel-2 band 8 (NIR; 10 m spatial resolution; 842 nm) and band 4
(RED; 10 m spatial resolution; 665 nm), atmospherically corrected imagery [26], were downloaded from
Copernicus data hub and used to calculate NDVI (Equation (1)). Satellite vegetation index (NDVISAT)
data was extracted in the 12 geo-referenced pixels where the measurements with the active optical
sensor were performed between February and June 2017. In order to conduct the reconstruction of
historical NDVI trends, following the same procedure as formerly described, time series NDVI records
were retrieved for the spring of 2016, 2017, and 2018.

2.2.3. Pasture Sample Collection and Analysis

After proximal sensing data acquisition, a composite pasture sample was collected, taking into
consideration a 0.25 m2 area (0.50 m × 0.50 m) at three representative locations within each of the
12 pixels sampled. Inside each sampling point, pasture was: (i) harvested 1 to 2 cm above ground level;
(ii) freshly weighted; (iii) dehydrated (72 h at 65 ◦C); and (iv) dry weighted again, in order to establish
pasture productivity in terms of biomass (kg·ha−1). The dried samples were analysed (in % of dry
matter) [27] in order to determine CP and NDF content.

2.3. Statistical Analysis

The range, mean, SD, and CV were obtained for pasture (Biomass, CP, NDF, PQDI) and sensor
parameters (NDVI, obtained from PS and satellite) data.

In order to perform non-linear regression analysis (p < 0.05) between pasture and sensor variables,
‘MSTAT’ software (MSTAT-C, East Lansing, MI, USA) was used.

3. Results and Discussion

3.1. Evolution of Pasture Parameter Patterns throughout the Vegetative Cycle

Table 1 summarizes the results of descriptive statistics (mean, SD, CV, and interval of variation) of
pasture parameters, measured at the twelve sampling points of the studied field, for each sampling
date and for the total period considered (between February and June 2017).
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Table 1. Descriptive statistics of pasture parameters, measured at the twelve sampling points of the
studied field, for each sampling date and for the total period considered (between February and June
2017).

Pasture Parameters Mean ± SD CV (%) Range

Biomass (kg·ha−1)

February 6300 ± 3802 60.4 800–11,900
March 11,292 ± 6041 53.5 3200–25,000
April 14,567 ± 8440 57.9 7200–36,700
May 5767 ± 2178 37.8 2900–9800
June 1725 ± 763 44.2 1000–3900

February–June 7930 ± 6660 84 800–36,700

CP (%)

February 14.2 ± 3.5 24.6 8.6–18.7
March 14.8 ± 3.2 21.6 10.2–19.8
April 7.4 ± 1.3 17.8 5.6–10.3
May 7.7 ± 1.2 16 5.5–9.8
June 5.4 ± 0.8 14.5 4.4–6.9

February–June 9.9 ± 4.5 45.2 4.4–19.8

NDF (%)

February 51.2 ± 12.9 25.2 35.0–77.5
March 49.6 ± 7.8 15.7 36.9–64.6
April 60.4 ± 5.1 8.4 54.0–70.2
May 72.7 ± 3.7 5.1 65.6–79.6
June 78.1 ± 2.6 3.4 74.2–83.9

February–June 62.4 ± 13.5 21.6 35.0–83.9

PQDI

February 4.0 ± 2.1 51.8 2.0–9.0
March 3.5 ± 1.2 33.6 2.3–6.4
April 8.5 ± 1.9 22.9 5.4–12.5
May 9.7 ± 2.0 20.3 6.9–14.4
June 14.9 ± 2.5 17.1 11.1–18.8

February–June 8.1 ± 4.6 56.7 2.0–18.8

NDVIPS

February 0.748 ± 0.109 14.5 0.563–0.860
March 0.813 ± 0.053 6.5 0.680–0.890
April 0.554 ± 0.065 11.7 0.450–0.650
May 0.314 ± 0.077 24.5 0.240–0.450
June 0.173 ± 0.031 17.9 0.160–0.190

February–June 0.520 ± 0.257 49.4 0.160–0.890

NDVISAT

February 0.576 ± 0.059 10.2 0.475–0.649
March 0.640 ± 0.039 6.1 0.560–0.692
April 0.596 ± 0.051 8.5 0.516–0.686
May 0.340 ± 0.052 15.4 0.264–0.444
June 0.261 ± 0.048 18.3 0.201–0.345

February–June 0.460 ± 0.143 31.2 0.201–0.692

CP-Crude protein; NDF-Neutral detergent fiber; PQDI-Pasture quality degradation index; NDVIPS-Normalized
difference vegetation index determined by optical active sensor; NDVISAT-Normalized difference vegetation index
determined by satellite; SD-Standard deviation; CV-Coefficient of variation.

The characteristic seasonality of the Mediterranean climate is evident, showing the typical
evolution of parameters over the months, which will be discussed in detail in the following figures.
Another highlight is related to the great spatial variability, especially of biomass (CV above 30% at all
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evaluation periods), an aspect already described in other works related to the montado ecosystem [28].
This spatial variability is the starting point for a PA strategy [13].

Another salient aspect is related to the pasture quality parameters: CVs above 20% were observed
in February (24.6, 25.2, and 51.8, respectively, for CP, NDF, and PQDI), with a tendency for CV
to decrease during the vegetative cycle, reaching minimum values in June (14.5, 3.4, and 17.1,
respectively, for CP, NDF, and PQDI). This behavior reflects, in February, the variability resulting from
the heterogeneous development of the different plant species that are part of the biodiverse pasture.
On the other hand, at the end of the vegetative cycle of dryland annual pastures, the nutritive value of
the plants is generally low, as a result of lack of soil moisture, which can be more or less homogeneous.

Regarding NDVI, obtained by PS or RS, the CVs were lower than 15% during the months of
greater vegetative growth (February, March and April), but increased to values of around 15–25% in
the last months of the vegetative cycle (May and June), when the average values of NDVI decreased
below 0.350.

Figures 3 and 4 illustrate the evolution of mean values of pasture parameters (Biomass, CP, NDF,
PQDI, and NDVI) over the period considered (February–June 2017).

Figure 3 shows the discrepancy between the peak biomass production (in this case occurring
in April 2017) and the NDVI peak (which occurred in March 2017). This behaviour reflects the
principle on which NDVI measurement is based: the optical sensor detects high levels of chlorophyll
(photosynthetically active vegetation), which is abundant in green vegetation [29]. As pasture develops,
the fiber content increases, resulting in a proportional decrease in the chlorophyll content and leading
to a reduction in the NDVI, while the total pasture biomass continues to increase until full maturation
of the pasture [24].
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Figure 3. Evolution, between February and June 2017, of pasture productivity (Biomass) and vegetation
index obtained by proximal sensor (NDVIPS) and by satellite (NDVISAT). Data are average values of
the twelve sampling points.

The NDVI obtained between April and June from satellite images shows a similar trend to that
determined from PS, only with a smaller amplitude of variation, which can be justified by the sampling
area: while the measurements of the PS are restricted to small sampling areas (3 locations × 0.50 m ×
0.50 m), those obtained from satellite images involve a much larger area (10 m × 10 m pixel).

The typical pattern of quality decrease over the growth cycle of pasture under the montado
system is presented in Figure 4: as the end of spring approaches, a significant reduction in CP and
a sustained increase in NDF can be observed [12,30]. A critical moment for pasture management
and animal husbandry is when CP content decreases to below the animal maintenance requirement,
which is 9.4% for sheep [31]. In this study, feed supplementation was required from mid-April onwards,
which occurred earlier than usual given that 2017 was a relatively dry year (Figure 2), reinforcing the
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interest in tools that can quickly monitor the pasture and identify and anticipate these critical moments
in terms of management of animal feed supplementation.

The ratio between NDF and CP was presented in [12,13] as an index (PQDI) that reflects the
degradation of pasture quality: higher values of this index correspond to a higher fiber content and
lower CP content in the pasture. Figure 4 shows the continuous increase of this index between March
and June 2017, which is different from the pattern observed for NDVI. The arrows in this figure indicate
the correspondence between animal maintenance requirements in terms of CP, PQDI (7 in this case),
and NDVI (0.6 in this case, independently of the form of measurement, PS or RS). The evaluation of
the behaviour of NDVI (and, consequently, of PQDI and CP) may be important in order to understand
the critical moment at which animal feed supplementation should be introduced, which will continue
until the first rains at the beginning of autumn [12,13].

Published results [13] show strong correlations between NDVIPS and pasture quality indicators
(CP, NDF, PQDI) in tests conducted in the same field during spring 2016. Although all-terrain vehicle
transported PS associated with geo-referencing systems represents an expedited way of monitoring
pasture, it requires the participation of technicians in the field, entailing costs and time, which need to
be reduced through further research and technical developments.

3.2. NDVI Time Series Obtained from Satellite during Three Consecutive Springs (2016–2018)

Remote sensing techniques based on satellite images using time series are especially important
for the identification of stable recurring crop patterns [22], even though the practical application is
constrained by poor quality images on cloudy days [23], which can occur frequently during the spring.

Figure 5 shows the reconstruction of historical NDVI trends, time series records of NDVISAT,
retrieved between February and June of 2016, 2017, and 2018. Values are the mean of the 12 pixels
considered in this study. Red circles identify, in each year, the images affected by cloud cover. In 2018,
the shorter interval between successive satellite revisits (five-day temporal resolution) allowed a higher
frequency of image capture than in 2016 and 2017 (usually 10 days), which is an important advantage
when the cloud interference partially or totally affects the images [3].

Figure 6 shows the same trends, but without the records affected by the existence of clouds.
There is a trend, common to the three years, consisting of a rise in NDVI values at the beginning of
spring, reaching a maximum value between March and April, followed by a clear fall. This pattern
reflects the effect of the distribution of precipitation (Figure 7): while in 2017 (which may be considered
a relatively dry year, with only 120 mm of accumulated rainfall between February and April and
only 5 mm between May and June), the NDVI break occurs early in April (shortly after the day of
the year (DOY), 95); and in 2018 (which can be considered a relatively humid year, with 382 mm
of accumulated rainfall between February and April and 74 mm between May and June), the break
only occurs at the end of May (after DOY 135). However, in 2018, the tendency for an NDVI break
which should have occurred around DOY 95 (same as in a dry year, 2017), was inverted from DOY 110
onwards (mid-April) due to the greater availability of water to plants, associated with the increase in
the air temperature. This greater availability of water in the soil was due to the significant amount of
rainfall accumulated in April 2018 (104 mm), which inverted the tendency observed in the months of
March (72 mm) and May (49 mm) (Figure 7). In 2016 (which may be considered an intermediate year,
with 244 mm of accumulated rainfall between February and June and only 5 mm between May and
June), the NDVI break occurs in early May (after DOY 121). This pattern confirms that pasture biomass
production is strongly dependent on precipitation in dryland ecosystems [28]. Gao et al. [32] and
Jin et al. [33] also state that climatic factors such as precipitation and temperature are responsible for
inter-annual fluctuations of biomass. In Figure 6, arrows indicate the moment in which, in each year,
the abrupt fall of the NDVI below 0.6 occurs: the difference of about one month between the dry year
(2017, fall in mid-April) and the other years (2016 and 2018, mid and late May) highlights the interest
and importance of this approach in the dynamic management of animal grazing. Since this indicator
(NDVI = 0.6) identifies the moment when pasture CP content falls below the animal maintenance
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requirements, it allows adjusting the timing of supplementary feeding over a period of one month,
with important cost saving implications.
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Figure 4. Evolution, between February and June 2017, of pasture nutritive value parameters (crude
protein, CP; neutral detergent fiber, NDF; and pasture quality degradation index, PQDI) and vegetation
index (obtained from proximal sensor, NDVIPS; and from satellite, NDVISAT). Data are average values
of the twelve sampling points. The arrows indicate the sheep maintenance requirements in terms of CP
(9.4%) and their correspondence with PQDI (7 in this case) and with NDVI (0.6 in this case).
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Figure 5. Reconstruction of historical vegetation index trends using time series records of satellite
images (NDVISAT), retrieved between February and June 2016 (a), 2017 (b) and 2018 (c). Data are
average values of the twelve sampling points. Red circles identify, in each year, the images affected by
cloud cover over the study field. Note: Date format: Day/Month.
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Figure 6. Reconstruction of historical vegetation index trends using time series records of satellite
images (NDVISAT), retrieved between February and June 2016, 2017, and 2018, without the records
affected by the existence of clouds. Data are average values of the twelve sampling points. Arrows
indicate the moment in which, in each year, the abrupt fall of the NDVI below 0.6 occurs.

Figure 8 shows the trend line of NDVISAT observed between February and June over the three
years (2016–2018). The use of NDVI time series was proposed in study [6] to estimate the parameters
describing vegetation phenology, a technique which is very relevant in multiple domains, such as
productivity and the carbon cycle, climate change and its impacts on ecosystems, and crop and
pasture monitoring.

3.3. Correlation between Pasture Parameters and NDVI Obtained from Proximal and Remote Sensing

Figure 9 shows the correlation between NDVI values obtained by PS (NDVIPS) and those obtained
by the satellite (NDVISAT), in the set of monthly sampling dates (between February and June 2017).
The resulting significant and strong coefficient of determination (R2 = 0.8138, p < 0.01) shows the
close relationship between these indexes. The smaller amplitude of variation of NDVISAT is also
evident, as noted above. This “dilution effect” (NDVISAT > NDVIPS for values less than 0.5 and
NDVISAT < NDVIPS for NDVI values greater than 0.5) would be expected as a result of the different
scales of pasture sampling areas considered: while the sampling carried out with PS only covered
three small areas (0.25 m2 each), RS sampling covered the area of a satellite pixel (100 m2) and can
include the spatial details of the aboveground biomass across the entire area. “Scale effect” between
RS and PS data was also reported by Zhao et al. [34].
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Figure 7. Accumulate monthly rainfall and vegetation index time series obtained by satellite images
(NDVISAT) between February and June 2016 (a), 2017 (b), and 2018 (c).
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Figure 8. Trend line of vegetation index obtained by satellite (NDVISAT) between February and June
over three years (2016–2018). Data are average values of the twelve sampling points. DOY-Day of
the year.
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Figure 9. Correlation between vegetation index values obtained by proximal sensor (NDVIPS) and
those obtained by satellite (NDVISAT), in the set of monthly sampling dates (between February and
June 2017). The dotted line corresponds to the perfect correlation (R2 = 1).

Figures 10–13 show the correlations between NDVI (estimated from both PS and satellite images)
and biomass, CP, NDF, and PQDI. All these correlations are significant, although stronger in the case of
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NDVIPS than in the case of NDVISAT, which immediately reflects the sampling process: while NDVIPS

was obtained from PS measurements carried out directly on the pasture that was to be cut and subjected
to analytical determinations (biomass, CP, NDF, and PQDI), NDVISAT involved a considerably larger
sampling area, a factor particularly important due to the strong spatial and temporal heterogeneity
characteristics of biodiverse pastures [10]. According to these authors, this factor contributes to
non-linear relationships between NDVI and pasture parameters. Other key problem related to NDVI
images may be due to noise or errors, which can contribute to non-linear relationships between NDVI
and pasture parameters [5,6]. Although this article focuses on the monitoring of pasture quality
indicators, the correlation of NDVI (obtained from PS and satellite) with pasture productivity is
presented in Figure 10.
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Figure 10. Correlation between vegetation index values (obtained by proximal sensor, NDVIPS; and by
satellite, NDVISAT) and pasture biomass, in the set of monthly sampling dates (between February and
June 2017).

Several studies, based on advances in RS technology, have used higher-resolution images to
estimate grassland productivity and biomass [33,34]. The correlations obtained in this study are
significant, but the coefficients of determination are relatively low (R2 = 0.4686, p < 0.05 for NDVIPS

and R2 = 0.3801, p < 0.05 for NDVISAT) and are in line with other studies. Lumbierres et al. [6]
obtained coefficients of determination between 0.39 and 0.65 when estimating pasture biomass based
on NDVI. According to Pullanagari et al. [35], pastures have high diversity due to spatial and temporal
heterogeneity resulting from a number of confounding factors, including diverse species, morphology
and interactions between the grazing animals, the natural environmental conditions, and management
practices. Jin et al. [33] and Zhao et al. [34] state that the high spatial heterogeneity of grassland species
and, specifically in low-coverage grasslands, the significant influence of the soil background, can lead
to high errors of estimation. In addition, in high-coverage grasslands, the NDVI shows decreased
sensitivity, resulting in a decline in the accuracy of biomass estimates [34]. The saturation point is
dependent on the pasture species, chlorophyll content, and the morphology of the plants [36]. In this
grassland ecosystem, NDVI saturated at biomass values of approximately 15,000 kg·ha−1 (Figure 10).
Schmidt et al. [4], Lumbierres et al. [6], Trotter et al. [36], Schaefer and Lamb [37], and Serrano
et al. [38] also referenced the saturation of NDVI for pasture biomass. To overcome this problem,
Schaefer and Lamb [37] suggested the use of an index that associates spectral reflectance measurements
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(NDVI) with a vegetation property such as plant height, thus mitigating the saturation issue and
increasing the biomass range that can be estimated from NDVI. On the other hand, Serrano et al. [38]
developed calibration equations for a capacitance probe (“Grassmaster II”; Novel Ways Electronic,
Hamilton, New Zealand) and demonstrated the ability of this device to estimate the productivity of
typical Mediterranean pastures (grasses, vegetables, mixture and volunteer annual species) with a
very acceptable degree of precision at different phenological stages and pasture moisture contents,
suggesting that the quantitative information (pasture productivity) obtained by the capacitance probe
can complement qualitative information obtained by optical PS or RS (pasture quality).

Correlations of NDVI obtained from PS or RS with pasture quality parameters (CP and NDF,
Figures 11 and 12, respectively) were relatively strong and significant: with CP, R2 = 0.7537, p < 0.01
for NDVIPS and R2 = 0.503, p < 0.05 for NDVISAT; with NDF, R2 = 0.8335, p < 0.01 for NDVIPS and
R2 = 0.7633, p < 0.01 for NDVISAT. These values are within the order of magnitude of those obtained
by Serrano et al. [13] with PS (0.69 and 0.78, respectively, for CP and NDF) and of those obtained
by Zhao et al. [19] (0.61 and 0.58, respectively, for CP and NDF) with reflectance data obtained by
RS. Pullanagari et al. [35] and Albayrak [39] also found satisfactory relationships between spectral
measurements and pasture quality parameters, which can be attributed to the absorbance of visible
radiance by the existing chlorophyll in green vegetation.

Correlations of NDVI obtained from PS or RS with the pasture quality degradation index (PQDI,
Figure 13) were relatively strong and significant: R2 = 0.8346, p < 0.01 for NDVIPS and R2 = 0.6451,
p < 0.01 for NDVISAT. The synoptic and sequential coverage provided by RS imagery, supplemented
by ecological indicators and biophysical pasture properties, provides the necessary tools for integrated
data analysis and the development of predictive models for decision making at the farmer level.
The seasonality of pasture production and the typical inter-annual variability of the Mediterranean
climate accentuate the importance of developing monitoring and management systems and even
alarm systems for farmers based on the measurement of montado NDVI from satellite images (RS).
Proximal sensing can be used in a complementary way, helping to overcome the main difficulties
associated with satellite imagery, in particular those related to resolution, access under the tree canopy
and, especially, with cloud cover.

To summarize, in a context where the inter-annual variation in precipitation is a key climatic
driver for biomass production and quality, a site-specific approach is needed for implementing
smart pasture/animal management systems [6]. Mapping patterns of pasture yield and quality is an
important first step to support management strategies to prevent land degradation and biodiversity
loss. In this regard, the study of pasture management zones could be improved by correlating the
changes in vegetation biomass (quantity and quality) with rainfall distribution trends in order to
support decision-making at the levels of soil management, pasture intensification, or precision grazing.
Therefore, the grassland response to climate change is complex, and deserves more detailed and deeper
inquiry in future research [34].
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Figure 11. Correlation between vegetation index values (obtained by proximal sensor, NDVIPS; and by
satellite, NDVISAT) and pasture crude protein (CP), in the set of monthly sampling dates (between
February and June 2017).
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Figure 12. Correlation between vegetation index values (obtained by proximal sensor, NDVIPS; and by
satellite, NDVISAT) and pasture neutral detergent fiber (NDF), in the set of monthly sampling dates
(between February and June 2017).
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Figure 13. Correlation between NDVI values (obtained by proximal sensor, NDVIPS; and by satellite,
NDVISAT) and pasture quality degradation index (PQDI), in the set of monthly sampling dates
(between February and June 2017).

4. Conclusions

In a montado ecosystem, dryland pastures are the principal source of food for animals under
extensive grazing. Under these conditions, the climatic seasonality associated with the inter-annual
irregularity of precipitation, especially during spring, greatly determines the development of the
pasture vegetative cycle and the evolution of its nutritive value. At this stage, a critical period begins
for the farmer, who needs access to information on the evolution of PQDI in order to anticipate the
supplementation of the animals to ensure their maintenance needs. The results of this exploratory
and pioneer study in pastures in Portugal, show strong and significant correlations between PQDI
and NDVI, obtained by proximal sensing (PS) or remote sensing (RS). The vegetation index (NDVI)
below 0.6 (and PQDI above 7) indicated, in 2017, the need for animal supplementation starting in
mid-April. However, the historical recovery of vegetation indexes (VI) from time series obtained by
RS for 2016 and 2018 showed inter-annual variability of about one month for this threshold to be
achieved, which highlights the interest and importance of this approach in the dynamic management
of animal grazing. Although RS presents several operational advantages over PS, frequent spring
cloudiness may be an obstacle to the regular determination of VI, which can lead to longer periods of
time without information. This obstacle, together with the difficulty in evaluating VI under the tree
canopy, justifies the interest in using these two techniques in a complementary way as information
and alarm systems to support soil, pasture, and grazing management. Therefore, it is important to
disseminate the potential of these techniques and technologies and extend these studies to other type
of pastures/grasslands and production systems.
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