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Abstract: In order to overcome the problems in the parameter estimation of the Muskingum model,
this paper introduces a new swarm intelligence optimization algorithm—Wolf Pack Algorithm
(WPA). A new multi-objective function is designed by considering the weighted sum of absolute
difference (SAD) and determination coefficient of the flood process. The WPA, its solving steps of
calibration, and the model parameters are designed emphatically based on the basic principle of the
algorithm. The performance of this algorithm is compared to the Trial Algorithm (TA) and Particle
Swarm Optimization (PSO). Results of the application of these approaches with actual data from the
downstream of Ankang River in Hanjiang River indicate that the WPA has a higher precision than
other techniques and, thus, the WPA is an efficient alternative technique to estimate the parameters
of the Muskingum model. The research results provide a new method for the parameter estimation
of the Muskingum model, which is of great practical significance to improving the accuracy of river
channel flood routing.
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1. Introduction

In recent years, frequent floods have caused serious losses to people’s lives and property [1].
Therefore, it is urgent to identify the flood routing rules to reduce flood losses. As a classic solution
of flood routing, the Muskingum model continues to be a popular method for flood routing [2].
The Muskingum model was first developed by McCarthy [3]. In practical application, the key
problem for applying the Muskingum model is parameter estimation [4,5], which is a highly nonlinear
optimization problem. The studies on the Muskingum model mainly include the parameter estimation
method and model improvement.

Traditional parameter estimation methods mainly include the Trial Algorithm (TA), the moment
method, the least squares method, and the differential algorithm [5,6]. However, these methods are
limited by the optimal estimation of the channel storage curve, which has led to a significant error
between the calculated results and the observed data. In recent years, intelligence algorithms have
been widely used in solving the nonlinear problem accurately and efficiently [7]. Many researchers
have applied various techniques to estimate the parameters of the Muskingum model in recent
years. For example, Luo and Xie [4] applied the immune clonal selection algorithm to estimate
the parameters of the Muskingum model, getting a higher precision than the other techniques.
Mohon [8] proposed the genetic algorithm to estimate the parameters of two nonlinear Muskingum
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routing models. Chen and Yang [9] applied the Gray-encoded accelerating genetic algorithm in the
parameters optimization of the Muskingum model. Chu and Chang [10] used the Particle Swarm
Optimization (PSO) algorithm to estimate the Muskingum model parameters, which improves the
accuracy of the Muskingum model for flood routing. Barati [11] applied the parameter-setting-free
technique, interfaced with a harmony search algorithm to the parameter estimation of the Muskingum
model, and found good model parameter values. Zhang et al. [12] applied the Shuffle Complex
Evolution Algorithm (SCE-UA) to optimize and estimate the discharge proportion coefficient x
of the Muskingum equation and the number of streams subsections partitioned for mainstreams
and tributaries. Niazkar and Afzali [13] proposed a hybrid method, which combined the Modified
Honey Bee Mating Optimization and Generalized Reduced Gradient algorithms, reducing the sum
of the squared (SSQ) value for the double-peak case study. Ouyang et al. [14] applied the invasive
weed optimization (HIWO) algorithm to the parameter estimation of nonlinear Muskingum models.
Although various techniques were applied to estimate the parameters of the nonlinear Muskingum
flood routing model, the application of the model still suffers from a lack of an efficient method for
parameter estimation. An efficient method for parameter estimation in the Muskingum model is still
required to improve computational precision.

The improved Muskingum model mainly includes parameter setting and optimization
criteria [15,16], and studies on model improvement have had a significant breakthrough in recent years.
Zhang et al. and Vatankhah [17,18], for example, used a nonlinear Muskingum flood routing model
with variable exponent parameters, producing the most accurate fit for outflow data. Moghaddam
et al. [19] proposed a new Muskingum model with four parameters, the sum of the squared (SSQ)
or absolute (SAD) deviations between the observed and estimated outflows considered as objective
functions. Although the new Muskingum model becomes more complex, it improves the fit to observed
flow, especially in multiple-peak hydrographs. Luo et al. [20] proposed a multi-objective estimation
routine of the Muskingum model, involving single-peak, multi-peak, and non-smooth hydrographs,
proving that the multi-objective estimation procedure is consistent and effective in estimating the
parameters of the Muskingum model. Easa [21] pointed out models that adopt the outflow criterion
result in a poor fit to the observed storages, presenting a new approach that incorporates both criteria
in the estimation process and aids trade-off analysis.

This paper proposes a parameter estimation of the Muskingum model based on a new
intelligent algorithm—the Wolf Pack Algorithm (WPA). In this paper, several floods with different
magnitudes from river channels (Ankang hydropower station–Ankang city and Ankang hydropower
station–Shuhe) of the Hanjiang River were first selected to estimate their respective parameters.
Secondly, an improved multi-objective of the Muskingum model as well as that of the WPA and its
solving steps are proposed. Thirdly, the results from the different algorithms in terms of the weighted
sum of absolute difference and the coefficient of determination between the observed and routed
outflows are compared to verify the performance of the WPA. Finally, conclusions are drawn based on
the results.

2. Materials and Methods

2.1. Research Area

The Ankang to Shuhe section of Hanjiang River in China was chosen as the study area (Figure 1).
The length of the river section is 109.36 km, accounting for 7% of the total reach of the Han River,
with a drop of 61 m and an average gradient ratio of 0.06% of the river bed. Due to the steep slope of
the mountain basin, the poor permeability of the rock formation, and poor adjustment of the channel,
the flood process is very fast, the peak shape is thin, the inter-annual variability of the flood is larger,
and the flood variation coefficient is larger. The parameters of the river and flood data are shown in
Tables 1 and 2.
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Figure 1. Map of the Hanjiang River and the location of major reservoirs.

Table 1. Data of river section.

Reach Height Difference (m) River Length (km) Gradient (%)

Ankang Reservoir–Ankang city
(Reach 1) 11.24 18.31 0.06

Ankang Reservoir–Shuhe Reservoir
(Reach 2) 61.00 109.00 0.06

Table 2. Data of flood.

Reach Flood Event Flood Peak
(m3/s)

Total Amount of
Floods (108 m3) Flood Peak Time (h)

Ankang Reservoir–
Ankang city

20100821 7260 173 1
20120707 8420 241 1
20120901 7645 171 1

Ankang Reservoir–
Shuhe Reservoir

20130722 7178 44 7
20140909 7607 67 6
20140914 6637 52 7

2.2. Muskingum Model

2.2.1. Model Basic Principle

The Muskingum model is a traditional method for solving river flood routing, which is mainly
solved by the continuity equation and the dynamic equation [22]. In order to obtain the flood routing
equation, the water balance equation and storage equation are solved by:

Q2 = C0 I2 + C1 I1 + C2Q1 (1)
C0 = −Kx+0.5∆t

K−Kx+0.5∆t
C1 = Kx+0.5∆t

K−Kx+0.5∆t
C2 = K−Kx−0.5∆t

K−Kx+0.5∆t

(2)

where Q1 and Q2 are the outflow of the downstream section at the beginning and the end of the period,
respectively, I1 and I2 are the inflow of upstream section at the beginning and the end of the period,
K is channel storage coefficient, and x is specific gravity coefficient of flow. C0, C1, and C2 are the flow
routing coefficients.
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2.2.2. Design of Objective Function

The optional parameters of the Muskingum model can be x and K, or C0, C1, and C2. If K and
x are chosen as the optimization variables, it is necessary to ensure that the water storage capacity
of the river is a single linear relationship with the reservoir flow during the optimization process,
which is difficult to determine, given the range of variables. Meanwhile, there is no need to go deep
into the physical parameters of the model, because of the intelligent algorithm based on the black box
model [23]. Therefore, C0 and C1 are chosen as the optimization variables. The results of river flood
routing are mainly reflected in the flood process and the flood peak of the simulation.

The results of river flood flow evolution are mainly reflected in the degree of fitting of flood
process and flood peak to the actual flood. Some studies indicated that the success of a calibration
process is highly dependent on the objective function chosen as a calibration criterion [19]. The most
commonly used objective function for the calibration procedure is the SSQ errors between observed
and computed outflow [4,5,20,24], but some research has indicated that the SSQ is not necessarily
correct [16,25]. Considering the above reasons, the objective function established in this paper can be
described as follows:

Objective 1: Minimum weighted sum of absolute difference (SAD):

f1 = min
n

∑
i=2

[Q0(i)|C0 Ic(i) + C1 Ic(i− 1) + C2Q0(i− 1)−Q0(i)|] (3)

s.t. : C0 ∈ [−1, 1]
C1 ∈ [−1, 1]

C2 = 1− C0 − C1 ∈ [−1, 1]
(4)

where Q0(i) is the actual outflow of the downstream section at a time i, Ic(i − 1) and Ic(i) are the
simulated flow for the upstream section at time (i− 1) and i, respectively, Q0(i− 1) is the simulated
flow for the upstream section at time (i− 1), and n is the length of the time series used for calibration.
C0, C1, and C2 are the flow routing coefficients.

The SAD will give the minimum difference between observed and computed outflow [9,19,26].
Objective 1 is the SAD multiplying the corresponding weight taken from the observed flow at the
corresponding time, which will increase large flow influence on the parameter estimation, especially
on the flood peak. Thus, the weight can increase the simulation accuracy of the flood peak.

Objective 2: Maximum coefficient of determination Dc:

f2 = maxDc = max

1−

n
∑

i=1
(Qc(i)−Q0(i))

2

n
∑

i=1
(Q0(i)−Q0)

2

 (5)

where Dc is the coefficient of determination, Qc(i) is the computed value at time i, Q0(i) is the observed
value at time i, Q0 is the mean value of the observed flood process, and n is the number of time series
used for calibration [22].

The deterministic coefficient is an indicator to measure the consistency between the flood forecast
and the observed process. In this paper, the coefficient of determination as Objective 2 can ensure that
the simulated flow process is the closest to the observed values [27,28].

In order to reduce the multi-objective calculation and adaptation algorithm, the comprehensive
multi-objective function chosen in this paper is as follows:

f = max(φ1(− f1) + φ2 f2) (6)

where f is the comprehensive objective, f1 and f2 are Objective 1 and Objective 2, respectively, and φ1

and φ2 are the weight coefficient of different objectives, respectively.
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3. Methodology

3.1. Wolf Pack Algorithm (WPA)

The Wolf Pack Algorithm is a novel swarm intelligence algorithm with strong local search ability
and global convergence. It consists of the leading wolf, fierce wolves, and explore wolves, including
three kinds of intelligent behaviors: Scouting, summoning, and beleaguering. Simultaneously, with a
productive rule for the leading wolf, which is that the winner can dominate all, it is a renewable
mechanism, namely survival of the fittest, for a pack of wolves. It has been applied in the field of
mathematics, physics, and hydropower station optimization, achieving good calculation results [29–31].
In this paper, the WPA is used for the parameter estimation of the Muskingum model. Combining the
principle of the WPA with the objective function, we designed a WPA for solving Muskingum model
parameters. The procedure of our algorithm for parameter optimal estimation of the Muskingum
model is shown as follows:

Step 1: (Initial wolves) We must initially determine the size of the algorithm population n and the
number of iterations gen, the probe wolf scale factor a, the population regeneration factor b, the step
factor S, the distance determination factor W, and the maximum number of scouting Tmax. The Model
Parameter (C0, C1) is regarded as the position of the artificial wolf (x1, x2) in a two-dimensional
decision space. The position of the wolf pack is initialized in the range of C0 and C1, as shown in
Equation (7):

xi,j = 2× rand− 1 i = 1, 2, . . . , n; j = 1, 2 (7)

where xi,j is the initial position of the i-th wolf in the j-th decision space; rand is a uniformly distributed
random number in the interval [0,1].

Step 2: (Scouting) Choose the objective function f as the prey odor concentration Yt(i) and
calculate the prey odor concentration at the location of the artificial wolf. According to the Yt(i), sort all
artificial wolf positions in descending order, then select the first artificial wolf of the sorted population
as a head wolf, whose location is regarded as xlead and the prey odor concentration is Ylead. Choose the
second to S + 1 artificial wolves as the explore wolves that total S = Round(a ∗ n), and the remaining
artificial wolves as the fierce wolves. The explore wolves scout to conduct a fine search, until the
maximum number of walks is reached or the maximum global optimal solution is found.

Step 3: (Summoning) The fierce wolfs quickly approach the head wolf to achieve the global
convergence of solution, until the Euclidean distance dis(i) between all fierce wolves and the head
wolf is less than the judgment value of distance dnear or a contemporary global optimal solution is
found. The calculation formula of the distance judgment value is:

dnear =

D
∑

d=1

∣∣∣maxd −mind
∣∣∣

D ∗W
=

2
W

(8)

where dnear is the judgment value of distance; D is the spatial dimension; W is the distance determining
factor; maxd, mind are the upper and lower limits of the decision variable xi,j, respectively.

Step 4: (Sieging) Under the command of the head wolf, other artificial wolves further update the
location to achieve local fine optimization.

Step 5: (Competitive update) According to the population, update factor b, calculate the amount of
the population, update R and regenerate R artificial wolves, which can be alternated with the previous
generation of artificial wolves with a low fitness value to ensure the diversity of solutions and to avoid
falling into the local optimal.

Step 6: Determine whether the maximum number of iterations has been reached; if it has, output
the optimal global solution. If not, proceed to the next generation calculation and return to Step 2 until
the maximum number of iterations is reached.

The WPA flow chart for solving the Muskingum model parameters is shown in Figure 2.
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3.2. Parameter Sensitivity Analysis

The WPA involves a relatively large number of parameters; the main sensitivity parameters are the
distance determination factor W and the step factor S. Therefore, this paper focuses on the discussion
of parameters W and S on the algorithm. In order to determine the distance determination factor W
and the step factor S, the parameters were set as follow: Artificial wolf population size n = 20, explore
wolf proportion factor a = 4, population update factor b = 2, the maximum number of scouting
Tmax = 2, the number of iterations gen = 30. With the Muskingum principle, the algorithm is used
to solve D-dimensional space problem (D = 2), and the upper and lower limits of the variables are
maxd = 1 and mind = −1, respectively.

The WPA’s raid step:

stepd
b =

2(maxd −mind)

S
=

4
S

(9)

where stepd
b is the step size of the d-dimensional space; S is the step factor; maxd, mind are the upper

and lower limits of the decision variable xi,j, respectively.
In the summoning act, the condition of the artificial wolf raid termination is dis < dnear, so the

rapid step should meet the following formula:

D

∑
d=1

stepd
b < dnear (10)

where the parameters are the same as above.
From Formula (10):

S > 4W (11)

where the parameters are the same as above.
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From the above derivation, it can be seen that the normal operation of the algorithm can be
satisfied when the step factor S and the distance determination factor W satisfy the formula (11).

Fixed distance determination factor W = 20, set S = 100, 105, 110, 115, 120, and 130, respectively.
For each S, run the program code 20 times independently, select the evaluation index of the algorithm,
the absolute deviation of the flood process, and the observed and simulated flood peak deviation.
The absolute deviation of the flood process and the formula are as follow:

δ =
n

∑
i=1
|(Q0(i)−Qc(i))| (12)

where δ is the absolute deviation of the flood process, m3/s.
The flood peak deviation is:

f =
1
n

n

∑
i=1

∣∣∣(Qpeak
obs,i −Qpeak

sim,i)
∣∣∣ (13)

where f is the flood peak deviation; Qpeak
obs,i and Qpeak

sim,i are the observed and simulated maximum outflow
at peak flow event number i, respectively; n is the number of simulations times.

The evaluation index values are taken from the average of 20 independent runs. Taking the flood
event of 20100821 as an example, the results are shown in Table 3.

Table 3. Sensitivity analysis of step factor.

W S δ (m3/s) Flood Peak Deviation (m3/s)

20

100 7892.7 6.33
104 7892.4 6.31
110 7891.9 6.29
115 7891.7 6.29
120 7891.6 6.29
130 7891.6 6.29

As shown in Table 3:
(1) With the increase of the S value, δ decreases slightly from 7892.7 m3/s to 7891.6 m3/s,

which indicates that the larger the step size, the finer the search, and the closer the flood forecast results
are to the actual flood process.

(2) When W = 20, the variation range of δ and flood peak are not large, which indicates that the
step size of the WPA has little influence on the forecast results in a certain range.

Keeping in mind that the smaller the searching step, the more time consuming the process is,
the initial selection of S = 120, that is S = 6W. W = 20, 30, 40, 50, 60, and 70 are selected to simulate
the same flood, and the results are shown in Table 4.

As shown in Table 4:
(1) With the increase of W, δ decreases slightly, and the minimum value appears at W = 60.

The peak deviation is also minimized, and then the W value increases; the optimization effect has no
obvious change.

(2) The range of δ is not significant, and indicates that the parameter W of the wolves algorithm
on the two-dimensional nonlinear optimization problem has little influence on the algorithm, and the
algorithm is more applicable.
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Table 4. Sensitivity analysis of distance judgment factor.

W S δ (m3/s) Flood Peak Deviation (m3/s)

20 120 7891.6 6.29
30 180 7891.4 6.20
40 240 7891.2 6.20
50 300 7891.0 6.12
60 360 7890.8 6.12
70 420 7890.8 6.12

With the increase of W, the raid step will be smaller, and the optimization result is too fine,
which will cause the artificial wolf to turn from difficult to besieging. Thus, the algorithm has the
possibility of entering an infinite loop.

In order to further analyze the influence of different weight coefficients on the forecast results,
we set different weight coefficients using the same method. The results are shown in Table 5.

Table 5. Multi-objective weight coefficient analysis.

φ1 φ2 δ (m3/s) Flood Peak Deviation (m3/s)

0.9 0.1 7916.9 6.16
0.8 0.2 7914.8 6.16
0.7 0.3 7912.9 6.18
0.6 0.4 7906.1 6.19
0.5 0.5 7901.0 6.19
0.4 0.6 7896.6 6.19
0.3 0.7 7891.1 6.20
0.2 0.8 7891.7 6.22
0.1 0.9 7891.6 6.26

As shown in Table 5:
(1) With the decrease of φ1, peak deviation increased slightly, with an increase 0.1 m3/s only.

When φ1 is 0.8 or 0.9, the flood peak deviation takes the minimum, which indicated that the weight
factor of Objective 1 focuses on the minimum deviation of flood peak.

(2) With the increase of φ2, the absolute deviation of the flood process is gradually reduced from
7916.9 m3/s to 7891.6 m3/s, and reaches the minimum value when φ2 is 0.7, which indicated that the
weight factor of Objective 2 focuses on the total error of the entire flood process.

According to comprehensive analysis, the weight coefficient φ2 had a great influence on the fitting
effect of the whole flood process and φ1 had little effect on the flood peak simulation. Therefore,
φ1 = 0.3 and φ2 = 0.7 were selected for the multi-objective weight value.

4. Results and Discussion

In this paper, we took flood forecasting of Ankang hydropower station to Ankang city and Ankang
hydropower station to Shuhe hydropower Station as examples. Considering the length of the two
Reaches, the actual demand, and the characteristics of the inflow, the calculation time steps of Reach 1
and Reach 2 were 1 h and 6 h, respectively. The improved Muskingum method (WPA), Particle Swarm
Optimization (PSO), and Trial Algorithm (TA) were selected to compare to the observed outflow.
In the WPA, the values of distance determination (W) and the step (S) were both 100. The maximum
number of iterations was 50. The value of the artificial wolf population size (n) was 20. The values of
the explore wolf proportion (a) and population update (b) were 4 and 2, respectively. In the TA [22],
the parameters (k, x) of this algorithm are shown in Table 6. In the PSO algorithm, a population of
50 individuals was used. The maximum number of iterations in the program was 100. The values of
the acceleration constants c1 and c2 were both set to 0.2.
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The corresponding parameters estimated by the WPA, TA, and PSO are listed in Table 6. It can be
seen from Table 6 that the parameters obtained from the three methods are all technically reasonable,
but do show marked differences. The estimated value of the parameters differ very little between the
WPA and PSO, but the parameters of TA vary quite significantly with WPS and PSO.

Table 6. Parameter estimation results obtained from different methods.

Flood Event 20100821 20120707 20120901 20130722 20140909 20140914

TA
k 1.50 1.50 1.50 1.00 1.00 1.00
x 0.10 0.10 0.10 0.20 0.20 0.20

PSO
k 0.21 1.18 0.88 1.48 1.37 1.17
x −4.17 0.23 −0.43 0.23 −0.42 0.11

WPA
k 0.58 1.23 0.86 1.46 1.56 1.20
x −0.88 0.24 −0.42 0.22 −0.68 0.12

The comparison of the observed and simulation results of these three methods is presented in
Figures 3 and 4.

As shown in Figures 3 and 4:
(1) No matter the length of the river, the simulation results of the WPA and PSO compared to

those of the TA have a high fitting effect. It is embodied in the following aspects: The simulated peak
values are the same as the observed ones, and the simulation process of the backwater segment is
almost coincident with the observed process. However, the simulated values by the WPA and PSO in
the rising water segment are different from the observed ones. Compared with the observed values,
the deviation errors of the simulation values of the WPA are smaller than those of the PSO, and the
deviation errors of the simulation values of the TA are the biggest.

(2) The fitting degree of the flood process in short reach is higher than that of the long river section
by the WPA, PSO, and TA. Regardless of the length of the river, the error of the TA is the largest,
and the WPA simulation deviation is slightly lower than that of the PSO.

In order to visualize the fitting effect of the three methods, the 20140909 flood of Ankang Power
Station to Shuhe Power Station was selected as an example (Table 7), and the correlation diagram of
observed and simulated flow are drawn in Figure 5.

As shown in Figure 5:
(1) The flooding process of the WPA simulation has 4 points falling on the line, and the trend line

coefficient of WPA simulated flood process is 0.99, which is close to 1 compared to that of the PSO and
TA, which indicates that the WPA has a high precision in the simulation of the whole flood process.

(2) The simulated flood peeks of the WPA fall in the straight line y = x, which indicates that the
simulation value is equal to the observed. The peak values of the PSO and TA fall on the upper side of
the line y = x, which indicates that the WPA has better simulation effect on peak value.

In order to further assess the precision of the WPA on the flood process and flood peak
transmission time, the absolute deviation (δ) of flood process, flood peak deviation, and flood peak
transmission time error are selected as the evaluation indices. Tables 8 and 9 show the indices values
by the WPA, PAO, and TA of different floods.
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Figure 4. Simulation results of different floods in Reach 2.

As shown in Tables 8 and 9:
(1) The WPA and PSO simulation results have a significant advantage over the results of the TA.

Compared to that of the TA, the depreciation of absolute deviation cumulative value of flood process
calculated by the WPA and PSO are 53% and 52%, respectively. The depreciation of absolute deviation
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of flood peak calculated by the WPA and PSO are 99% and 77% based on the 20140909 flood of Ankang
power station–Shuhe hydropower station, respectively.

(2) The maximum deviations of the WPA, PSO, and TA are 9.5 m3/s, 197.1 m3/s and 865.8 m3/s,
respectively. Moreover, the minimum deviations are 0.3 m3/s, 15 m3/s, and 402 m3/s, respectively,
which indicate that the flood peak simulated by the WPA and PSO has obvious advantages over
that of the TA. In the 20140909 flood simulation, flood peak deviations are 9.5 m3/s by the WPA and
197.1 m3/s by the PSO, respectively. Flood peak deviation simulated by the WPA is much smaller than
that of the PSO, which indicates that the WPA can significantly improve peak forecast accuracy.

Table 7. 20140909 flood simulation of Ankang Power Station to Shuhe Power Station.

Time Inflow (m3/s)
Outflow (m3/s) Relative Error (100%)

Observed TA WPA PSO TA WPA PSO

0 1315 2405.47 1196.50 2405.47 2405.47 50.26% 0.00% 0.00%
6 3105 2682.43 1585.65 2956.10 2682.43 40.89% 10.20% 2.73%
12 4671 3783.79 3076.53 3784.10 3783.79 18.69% 0.01% 5.22%
18 4830 4351.65 4358.84 4141.88 4351.65 0.17% 4.82% 5.96%
24 4916 5026.62 4813.45 4400.83 5026.62 4.24% 12.45% 11.93%
30 5998 4813.56 4914.02 5102.37 4813.56 2.09% 6.00% 5.96%
36 6652 5010.76 5867.91 5709.84 5010.76 17.11% 13.95% 14.74%
42 8318 6846.56 6631.47 6836.78 6846.56 3.14% 0.14% 0.00%
48 8505 7217.19 8082.39 7395.13 7217.19 11.99% 2.47% 4.20%
54 8251 7607.34 8473.15 7616.87 7607.34 11.38% 0.13% 2.59%
60 6247 7101.53 8221.21 6816.21 7101.53 15.77% 4.02% 0.01%
66 6120 5917.64 6654.63 6574.14 5917.64 12.45% 11.09% 13.25%
72 5649 5839.00 6438.00 6196.58 5839.00 10.26% 6.12% 7.21%
78 3390 5446.03 5613.68 4897.68 5446.03 3.08% 10.07% 7.84%
84 2390 3789.75 3409.38 3925.44 3789.75 10.04% 3.58% 3.53%
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Table 8. Analysis of Ankang hydropower station–Ankang city simulation results.

Floods 20100821 20120707 20120901

Method TA PSO WPA TA PSO WPA TA PSO WPA

δ (m3/s) 13,960 7892 7865 11,404 10,606 10,607 197,269 5529 5528
Flood peak deviation (m3/s) 34.3 6.5 0.5 33 51.6 51.4 87.76 52.1 51.7

Flood peak time transmission error (h) 1 0 0 0 0 0 1 0 0
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Table 9. Analysis of Ankang hydropower station–Shuhe hydropower station simulation results.

Floods 20130722 20140909 20140914

Method TA PSO WPA TA PSO WPA TA PSO WPA

δ (m3/s) 4666 2221 2162 9141 4422 4278 4389 2697 2678
Flood peak deviation (m3/s) 402.0 19.5 0.3 865.8 197.1 9.5 409.0 15.0 8.6

Flood peak time transmission error (h) 0 0 0 0 0 0 0 0 0

5. Conclusions

In this paper, a new multi-objective Muskingum model was established and solved by a new
algorithm called the WPA, and its performance was verified by using the Ankang to Shuhe section of
Hanjing River datasets. The following work has been done:

(1) After a brief literature review, a novel parameter estimation approach based on the WPA
was proposed for parameter estimation of the nonlinear Muskingum flood, which considered two
calibration objectives in the calibration procedure: (1) The weighted sum of absolute difference between
the routed and observed outflows, and (2) the coefficient of determination between the routed and
observed outflows.

(2) The proposed approach is compared to the other methods (TA, PSO) for an example case from
the Hanjiang River, and the results demonstrate that the WPA can achieve a high degree of accuracy to
estimate the parameters and results in accurate predictions of outflow.

(3) In this study, however, the parameters of WPA, such as the distance judgment factor and
the step factor, have limited its application range. A possible reason is that different rivers have its
applicable parameters. In future research, more floods in different rivers basins will be used to expand
its range of applications.

Author Contributions: T.B. and Q.H. provided the ideas and supervised the study; W.Y. conceived and designed
the methods; T.B. and J.W. wrote the paper, and all the authors were responsible for data processing and
data analysis.

Funding: This study is supported by the National Key R&D Program of China (2017YFC0405900); Planning Project
of Science and Technology of Water Resources of Shaanxi (2017slkj-16, 2017slkj-27); the China Postdoctoral Science
Foundation (2017M623332XB); and the Basic Research Plan of Natural Science in Shaanxi Province (2018JQ5145).

Acknowledgments: The authors are grateful to the three reviewers who helped us to sustain high quality papers
in the review process. The above financial support is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kuriqi, A.; Ardiçlioglu, M.; Muceku, Y. Investigation of Seepage Effect on River Dike’s Stability under Steady
State and Transient Conditions. Pollack Period. 2016, 11, 87–104. [CrossRef]

2. Sajikumar, N.; Gyncy, I.; Sumam, K.S. Modelling of Nonlinear Muskingum Method using Control System
Concept. Aquat. Procedia 2015, 4, 979–985. [CrossRef]

3. Mccarthy, G. The unit hydrograph and flood routing. In Proceedings of the Conference of the North Atlantic
Division, U.S. Engineer Department, New London, CT, USA, 24 June 1938; pp. 608–609.

4. Luo, J.; Xie, J. Discussion of “Parameter Estimation for Nonlinear Muskingum Model Based on Immune
Clonal Selection Algorithm”. J. Hydrol. Eng. 2010, 15, 391–392. [CrossRef]

5. Xu, D.M.; Qiu, L.; Chen, S.Y. Estimation of Nonlinear Muskingum Model Parameter Using Differential
Evolution. J. Hydrol. Eng. 2012, 17, 348–353. [CrossRef]

6. Gill, M.A. Flood routing by the Muskingum method. J. Hydrol. 1978, 36, 353–363. [CrossRef]
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