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Abstract: Sustainable water resources management is facing a rigorous challenge due to global
climate change. Nowadays, improving streamflow predictions based on uneven precipitation is
an important task. The main purpose of this study is to integrate the ensemble technique concept
into artificial neural networks for reducing model uncertainty in hourly streamflow predictions.
The ensemble streamflow predictions are built following two steps: (1) Generating the ensemble
members through disturbance of initial weights, data resampling, and alteration of model structure;
(2) consolidating the model outputs through the arithmetic average, stacking, and Bayesian model
average. This study investigates various ensemble strategies on two study sites, where the watershed
size and hydrological conditions are different. The results help to realize whether the ensemble
methods are sensitive to hydrological or physiographical conditions. Additionally, the applicability
and availability of the ensemble strategies can be easily evaluated in this study. Among various
ensemble strategies, the best ESP is produced by the combination of boosting (data resampling)
and Bayesian model average. The results demonstrate that the ensemble neural networks greatly
improved the accuracy of streamflow predictions as compared to a single neural network, and the
improvement made by the ensemble neural network is about 19–37% and 20–30% in Longquan
Creek and Jinhua River watersheds, respectively, for 1–3 h ahead streamflow prediction. Moreover,
the results obtained from different ensemble strategies are quite consistent in both watersheds,
indicating that the ensemble strategies are insensitive to hydrological and physiographical factors.
Finally, the output intervals of ensemble streamflow prediction may also reflect the possible peak
flow, which is valuable information for flood prevention.
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1. Introduction

The frequency and intensity of extreme rainfall events have significantly increased due to climate
change in past years. Heavy rainfall is the major cause of flood disasters; therefore, there is an
urgent need to construct reliable flood prediction models. Due to special geographical and climatic
conditions, the Zhejiang province, China, has always been a flood disaster-prone area. Thus, strategies
to effectively deal with flood threats have become a priority. Since the influence of global climate
change has become increasingly significant, the former balance of rainfall–runoff mechanisms is failing.
The occurrence and intensity of extreme hydrological events are more frequent than those in previous
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years. To reduce the impact of flood hazards, the development of hydrological prediction models is
necessary and urgently required.

Artificial neural networks (ANNs) have been widely used in solving a wide range of hydrological
problems, such as rainfall–runoff modeling [1,2], regional flood frequency analysis [3], groundwater
modeling [4–7], hydrological time series modeling, and reservoir operation [8,9]. Hydrological
prediction models based on ANNs can effectively identify the relationship between the input and
output in hydrological systems, which can overcome the weaknesses of the conventional method
of parameterized modeling. For complex rainfall–runoff modeling, ANNs can also produce reliable
outputs through historical data learning. Thus, ANNs have become popular and are generally applied
in streamflow predictions over the past decade to lessen flood-induced damage.

However, the uncertainty of ANNs comes from several factors, such as the selection of input
variables, model structures, initial weights, and calibration data [10,11]. One way to reduce the ANNs’
uncertainty is to integrate the ensemble technique into ANN models. Research in the field of ensemble
streamflow predictions (ESP) has been remarkably increasing in order to avoid model errors due
to single deterministic results of hydrological prediction [12,13]. Nowadays, ensemble prediction
has developed into multimode, multianalysis prediction techniques, which consider the models’
uncertainty at the initial state and from mode architecture [14]. Because of the flexible geometry of
ANNs, they have been recognized as feasible models for ensemble techniques [15].

Tiwari and Chatterjee [16] developed hourly water level forecasting models using bootstrap based
ANNs (BANN). Their results indicated that BANN-hydrologic forecasting models with confidence
bounds can improve their reliability for flood forecasts. Kasiviswanathan et al. [17] constructed a
prediction interval for ANN rainfall runoff models based on ensemble simulations, which showed
that generated ensembles predict the peak flow with less error, and most of their observed flows
fall within the constructed prediction interval. To forecast urban water demand, a new hybrid
wavelet–bootstrap-neural network model was built and performed more accurate forecasting than
the traditional neural network, bootstrap-based neural networks, ARIMA (autoregressive integrated
moving average), and ARIMAX (autoregressive integrated moving average model with exogenous
input variables) models [18]. Ensemble neural network models have also been successfully applied in
potential evapotranspiration prediction [19], probabilistic prediction of local precipitation [20], and
short-term forecasting of groundwater levels [21].

While many studies have applied ensemble techniques to the hydrologic field, there is still
a shortage of studies about the sensitivity of ESP. In this paper, the main objective is to integrate
the ensemble technique concept into ANNs, hereafter termed ensemble neural networks (ENNs),
for reducing the uncertainty in streamflow predictions. ENNs are then applied to two watersheds
with different area and hydrological conditions to discuss the sensitivity on ESP. Four methods are
used for generating the ensemble members, and three methods are selected to combine the outputs
of ensemble members. A total of twelve ensemble strategies are built separately in two different
watersheds to validate if the best ESP is consistent and if the best ensemble combination is sensitive to
hydrological and physiographical changes. The methodologies of the artificial neural network and
two resampling techniques, stacking average, and Bayesian model average, are briefly described in the
following section. The study area and hydrological data are provided in Section 3. Section 4 shows the
results and comparison of twelve ESP models and the sensitivity analysis of two watersheds. Finally,
the conclusions are given in Section 5.

2. Methodology

This study aims at integrating the ensemble technique concept into ANNs for constructing
accurate ensemble streamflow prediction models and identifying both spatial and hydrological
sensitivity of ensemble strategies at two distinct watersheds. The related methods are presented
as follow.



Water 2018, 10, 1341 3 of 18

2.1. Back Propagation Neural Network

The basic concept of artificial neural networks is to simulate the information processing system
of biological neural networks by imitating the human nervous system with computer hardware and
software. ANNs are composed of many nonlinear operation units, neurons, and links located between
the arithmetic units, which usually compute in parallel and dispersedly. The ANNs can be trained
through information (data) importing. In this study, the back-propagation neural network (BPNN) [22]
is used to construct the streamflow prediction model. The model architecture is shown in Figure 1.
The hyperbolic tangent sigmoid transfer function (‘tansig’ in Matlab) and linear transfer function
(‘purelin’ in Matlab) are used as the activation functions in hidden and output layers, respectively.
The number of neurons in the hidden layer is four, which was determined by trial and error. The rainfall
and streamflow at the current and previous time step are used as input variables, and the predicted
streamflow is the model output. The BPNN applies the steepest descent method to adjust the
weights for minimizing the output error. In the learning process, the weights are adjusted by an
error convergence technique to obtain the desired output for a given input dataset.
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Figure 1. The architecture of the streamflow prediction model.

2.2. Ensemble Neural Network

The ENN is introduced by integrating the ensemble technique concept into neural networks.
The principle of the ensemble method is to construct several specific groups with different model
outputs (i.e., a collection of members) to predict a certain target (streamflow in this study), and the
difference of each model output provides the probability distribution information of the prediction
target. As mentioned above, previous research on artificial neural networks showed that the uncertainty
can be classified into three parts: Uncertainties of data, uncertainties of initial values, and uncertainties
of the model structure (including the parameters of the model). The ensemble technique has been
developed to consider the uncertainties of several sources to avoid network error existing in a single
predicted result.

In general, the construction of ENNs can be divided into two steps: Generating ensemble members
and integrating the outputs obtained from ensemble members. Methods to generate ensemble members
in this study include the disturbance of the initial value, the resampling of the training dataset (Bagging
resampling and Boosting resampling), and the alteration of model structure (number of neurons in
the hidden layer). The methods selected for combining the outputs of ensemble members include
arithmetic averaging, the Bayesian model averaging [15,23], and stack averaging. Another important
issue is related to the number of ensemble members. According to Chiang et al. [24], the suggested
number of ensemble members used for hydrological forecasting is twenty, which is based on a
compromise between output accuracy and computational time. Their recommendation holds for
different model types and model structures (i.e., conceptual models and neural networks). Thus,
twenty ensemble members were used in this study.
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2.3. Generating Ensemble Members

As mentioned, the model uncertainty mainly comes from initial values, model structures, and
data. Thus, ensemble member generation focuses on reducing these uncertainties. First, a single neural
network (SNN), which only uses a calibrated single back-propagation neural network, is generally
given random initial values when calibrating the model structure and model parameters. However,
ENN in this study starts from a plurality of random initial weights, computes the local optimum
value, and extracts useful information to increase the probability of accurate predictions. Subjected to
the influence of random initial values, the results obtained may vary in each calibration. Therefore,
each network model is trained several times to minimize error of the objective function, which can be
regarded as a local optimization. This procedure is repeated 20 times to obtain 20 ensemble members
with different initial weights.

Uncertainty from the ANN model structure mainly comes from the number of hidden neurons,
since the input and output dimension was fixed in this study. Because the number of ensemble member
is 20, the number of hidden neurons from 1 to 20 is assigned to the 20 ensemble members in sequence
by using the model structure alternating strategy (ENN4, ENN8, and ENN 12 in Table 1). For example,
the hidden neuron for ensemble member 1 is 1, the hidden neuron for ensemble member 2 is 2, and
so on. The remaining two strategies of generating members used the best number of hidden neuron,
which is the same as the single BPNN (four neurons).

As for the uncertainty of training data, a common method to eliminate its influence is the
resampling technique, in which the samples are selected from the original amount of data according to
certain rules for enhancing the amount of training sample. The resampling methods applied in this
study are the bagging resampling algorithm and boosting resampling algorithm.

The bagging method is proposed for obtaining an aggregated predictor from multiple generated
datasets of individual predictors [25]. The assumption of this method is that, given a standard training
dataset T of size N, the distribution probability of each element of the training data is uniform, that is, 1/N.
Then, the training dataset of a member network, TB, is generated by sampling by replacing N times from
the original training dataset T using these probabilities. This process is repeated, and each member of a
neural network is generated with a different random sampling, assigned from the original training set.

The boosting algorithm is a method for reducing bias and variance in machine learning and can
improve model performance by producing a series of predictors trained with a different distribution of
the original training data. The algorithm trains the first member of the neural network with the original
training set, and the training dataset of a new member of the neural networks is assigned based on
the performance of the previous member of the ensemble. The learning processes in which predicted
values produced by the previous member differ significantly from their observations are adjusted with
higher probability of being sampled. In this case, these data will have a higher chance to exist in the
new training dataset than those correctly predicted, and therefore different members of ensemble are
specialized in different parts of the observation space. There are many boosting algorithms, and the
procedure of the second version of ADABoost was used in this study [26].

2.4. Integrating Ensemble Members

2.4.1. Arithmetic Averaging

Arithmetic averaging is the simplest averaging method and a popular method for the ensemble
technique to combine the models’ outputs. Generally, combination using single averaging is defined as:

y =
1
K

K

∑
k=1

yk
i , i = 1, 2, . . . , N (1)

where K represents the number of ensemble members, y represents output, and N represents the total
number of data points.
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2.4.2. Stack Averaging

In general, stacking is not a specific algorithm but a generic name [27]. It means that, when
training on part of the training dataset, the performance of the learning machine on the training
dataset was not part of the training set for that particular machine giving additional information [28].
The main procedure of stacking is to combine the networks by tuning their weights over the feature
space. The outputs obtained from a set of level 0 generalizers (ensemble members) are fed to level 1
generalizer, which is trained to produce appropriate output. The stacking algorithm was developed by
Breiman [29], who suggested minimizing the following function:

W =
m

∑
i=1

[xi −
N

∑
k=1

ck x̂k
i ], ck > 0 (2)

The stacked average produces estimates for the coefficients c1, c2, . . . , ck, which are used to
construct the ensemble prediction:

x̂i =
N

∑
k=1

ck x̂k
i , i = 1, 2, . . . , m (3)

Equation (3) minimizes squared absolute differences between observations and predictions.
This process could be dominated by those patterns with large errors when it is used to calculate the
coefficients. A better choice, as adopted in this study, is to minimize the squared relative difference:

H =
m

∑
i=1

(

xi −
N
∑

k=1
ck x̂k

i

xi
)2, ck > 0 (4)

2.4.3. Bayesian Model Average

The Bayesian model average (BMA) is capable of obtaining reliable overall predictive values
through calculating different weights for all selected models [30–32]. The probability density function
of prediction y based on BMA is as follows:

p(y|D) =
K

∑
k=1

p( fk|D) · pk(y| fk, D) (5)

where p( fk|D) represents the posterior probability of the k-th neural network model prediction trained
by observed data D. In fact, p( fk|D) is equal to the k-th model fk corresponding to weights wk, which

is larger when the model performance is better, and
K
∑

k=1
wk = 1, wk > 0. pk(y| fk, D) represents the

posterior distribution of prediction y in neural network model fk and data D. The posterior distribution
of the mean and variance BMA analogic variables can be expressed as:

E(y|D) =
K

∑
k=1

p( fk|D) · E[pk(y| fk, D)] =
K

∑
k=1

wk fk (6)

Var(y|D) =
K

∑
k=1

wk

(
fk −

K

∑
k=1

wk fk

)2

+
K

∑
k=1

wkσ2
k (7)

where σ2
k is the variance of analogic variables under the conditions of observed data D and

model fk. Essentially, BMA is the weight of the k-th neural network model’s weighted average.
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The variance of analogic variables includes error between models and within models. In Equation (7),
K
∑

k=1

(
fk −

K
∑

k=1
wk fk

)2

is the error between models, and
K
∑

k=1
wkσ2

k is the error within models.

3. Applications

The BPNN was used in building the single and ensemble forecasting models. As for the ensemble
scenario, there were a total of twelve ENN models that are implemented for ESP, and these ENN
models were derived from the combinations of four generating methods and three combination skills.
Detailed information is displayed in Table 1.

Table 1. Combinations of ensemble neural networks.

Integrating Member

Arithmetic
Average

Bayesian Model
Average

Stacking
Average

Generating
member

Disturbance of initial value ENN1 ENN5 ENN9
Bagging resampling skill ENN2 ENN6 ENN10
Boosting resampling skill ENN3 ENN7 ENN11

Alteration of model structure ENN4 ENN8 ENN12

3.1. Study Area and Data Description

Longquan Creek is the source of the Oujiang River, which is the second largest river in the
Zhejiang province in China (Figure 2). In Figure 2, the triangle represents the watershed outlet and
the circles represent the rain gauge locations. Longquan Creek flows to the East sea of China, with
a drainage area of 1440 km2 and length of 160 km. The watershed receives an annual rainfall of
about 1807 mm, and more than 80% of rainfall comes from the monsoon period (from April to June).
The hydrological features of Longquan Creek are rapid streamflow and short period of flood peak, due
to uneven distribution of rainfall and mountainous topography. This results in the Longquan Creek
watershed being a flood-prone area.Water 2018, 7, x FOR PEER REVIEW  7 of 18 

 

 
Figure 2. Study area of Longquan Creek and the Jinhua River watersheds and the locations of gauges. 

These two watersheds were selected in this study to determine if the ensemble strategies are 
sensitive to hydrological and physiographical factors. The differences between Longquan Creek and 
the Jinhua River watershed can be summarized as follow: (1) The watersheds have different shapes 
and sizes; (2) the rainfall type is monsoon and typhoon rainfall, respectively, and (3) Longquan Creek 
is located in a mountainous area (upstream) and the Jinhua River is located in a midstream, flat area. 
Two types of data, hourly streamflow (Q) and average hourly rainfall (P), were used as input 
variables to build ensemble streamflow predictions in this study. This study used the Pearson 
correlation coefficient [33] to find the high correlation input variables. The time-dependent variables 
Q(t), Q(t − 1), Q(t − 2), and P(t − 3), where t is the current time, were selected in the Longquan Creek 
basin, and Q(t), Q(t − 1), Q(t − 2) and P(t − 10) were selected in the Jinhua River basin.  

A total of 37 flood events occurred in Longquan Creek, and 70 flood events occurred in the 
Jinhua River during the collection period of 1994 to 2013. Even though the number of events is 
different, the sample sizes are sufficient to train the neural networks in both watersheds. The 
arrangement of data in training, validation, and testing phases follows the ratio of 3:1:1. Table 2 shows 
the statistics of streamflow measurements in three independent datasets. The statistics includes 
maximum, minimum, mean, and standard deviation (STD) of streamflow. 

Table 2. The statistics of streamflow in three datasets (m3/s). 

Statistic 
Longquan Creek Jinhua River 

Training Validation Testing Training Validation Testing 
Max. 3040 2430 2640 4200 3810 3640 
Min. 13 7 11 2 6 3 
Mean 248 216 202 514 575 510 
STD 323 318 256 550 628 528 

3.2. Evaluation Criteria 

The coefficient of determination (R2), root mean square error (RMSE), and Gbench index (Gbench) 
were used in this study to evaluate the accuracy of a single neural network and ensemble neural 
network.  

Figure 2. Study area of Longquan Creek and the Jinhua River watersheds and the locations of gauges.



Water 2018, 10, 1341 7 of 18

The Jinhua River is the largest tributary of the Qiantang River, which is the largest river in the
Zhejiang province (Figure 2). The Jinhua River flows to the East sea of China, with a drainage area
of approximately 6781 km2 and length of 200 km. Jinhua River watershed is located in a subtropical
climate zone. The rainwater of this watershed mainly comes from typhoons. The watershed receives
an annual rainfall of approximately 1450 mm. Due to the characteristics of typhoon rainfall (high
intensity in a short duration), Jinhua River watershed is also a flood-prone area.

These two watersheds were selected in this study to determine if the ensemble strategies are
sensitive to hydrological and physiographical factors. The differences between Longquan Creek and
the Jinhua River watershed can be summarized as follow: (1) The watersheds have different shapes
and sizes; (2) the rainfall type is monsoon and typhoon rainfall, respectively, and (3) Longquan Creek
is located in a mountainous area (upstream) and the Jinhua River is located in a midstream, flat area.
Two types of data, hourly streamflow (Q) and average hourly rainfall (P), were used as input variables
to build ensemble streamflow predictions in this study. This study used the Pearson correlation
coefficient [33] to find the high correlation input variables. The time-dependent variables Q(t), Q(t − 1),
Q(t − 2), and P(t − 3), where t is the current time, were selected in the Longquan Creek basin, and
Q(t), Q(t − 1), Q(t − 2) and P(t − 10) were selected in the Jinhua River basin.

A total of 37 flood events occurred in Longquan Creek, and 70 flood events occurred in the Jinhua
River during the collection period of 1994 to 2013. Even though the number of events is different,
the sample sizes are sufficient to train the neural networks in both watersheds. The arrangement of
data in training, validation, and testing phases follows the ratio of 3:1:1. Table 2 shows the statistics of
streamflow measurements in three independent datasets. The statistics includes maximum, minimum,
mean, and standard deviation (STD) of streamflow.

Table 2. The statistics of streamflow in three datasets (m3/s).

Statistic
Longquan Creek Jinhua River

Training Validation Testing Training Validation Testing

Max. 3040 2430 2640 4200 3810 3640
Min. 13 7 11 2 6 3
Mean 248 216 202 514 575 510
STD 323 318 256 550 628 528

3.2. Evaluation Criteria

The coefficient of determination (R2), root mean square error (RMSE), and Gbench index
(Gbench) were used in this study to evaluate the accuracy of a single neural network and ensemble
neural network.

(i) Coefficient of Determination (R2)

R2 = 1−

N
∑

t=1

(
Qobs(t + n)−Qpre(t + n)

)2

N
∑

t=1

(
Qobs(t + n)−Qobs

)2
(8)

where Qobs(t + n) and Qpre(t + n) are the observed and predicted flow at time t + n, Qobs(t)
is the mean of the observed runoff, and N is the number of data points. The value of R2

varies between negative infinity and one. Values approaching one indicate higher accuracy in
model performance.
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(ii) root mean square error (RMSE)

RMSE =

√√√√√ N
∑

t=1

(
Qobs(t + n)−Qpre(t + n)

)2

N
(9)

The merits of models can be significantly reflected through RMSE values when assessing peak
values of variables.

(iii) Gbench index (Gbench)

Gbench = 1−

N
∑

t=1

(
Qpre(t + n)−Qobs(t + n)

)2

N
∑

t=1
(Qobs(t + n)−Qbench(t))

2
(10)

where Qbench(t) represents the benchmark series of real observed runoff at time t. Gbench is
negative if the model performance is poorer than the benchmark, zero if the model performs
as well as the benchmark, and positive if the model is superior. Values closer to one indicate a
perfect fit [34].

4. Results and Discussions

In this study, the single BPNN was calibrated using the training dataset, and the validation dataset
was applied to check the overfitting issue. Then, the twelve ensemble strategies were integrated into
BPNN models to build the ensemble streamflow predictions. Results obtained from SNN and ENNs in
both watersheds are described below, as well as the comparison of model accuracy and the sensitivity
of ensemble strategies.

4.1. Comparison of a Single Neural Network and Ensemble Neural Network

Table 3 shows the test results of forecasted streamflow for 1–3 h lead time in Longquan Creek
watershed by the SNN and twelve ENN models. In general, the results produced by all ensemble
models are better than the single network model. Among various ensemble strategies, the combination
of boosting and BMA (ENN7) provided about 19–37% improvement in terms of RMSE at different lead
times compared to the single model. The overall performance of ENN7 was better than other ensemble
strategies for 1–3 h ahead streamflow predictions. Compared to other ENN models, the ENN7 model
has a higher R2, lower RMSE, and higher Gbench, indicating that the combination of the boosting
algorithm and Bayesian model average is more reliable for streamflow predictions. Additionally,
according to the comparison of the evaluation criteria (Table 3), it can be seen that the single artificial
neural network was capable of producing accurate streamflow predictions with the coefficient of
determination (R2) being higher than 0.9 for 1–3 h ahead streamflow predictions. In addition, the use
of the ensemble technique effectively increased the output accuracy, which means the integration of
the ensemble technique and ANN provides a better option for hydrological predictions.

Table 4 lists the results of the testing dataset obtained from the SNN and twelve ENN models in
the Jinhua River watershed. Similar to those by the Longquan Creek watershed, the results produced
by ENN models are better than those of the single model. Among various ensemble strategies, the
ENN7 model still provided the best performance compared to other ENN models in terms of higher
R2, lower RMSE, and higher Gbench values. Even though the performance of all ENN models is similar
at a lead time of one hour, the results have significant difference as the lead time increases. Compared
to the SNN, the improvement made by the ENN7 model is about 20–30% for 1–3 h ahead streamflow
predictions in terms of RMSE. The results also demonstrate that the combination of the boosting
algorithm and Bayesian model average had a better predictive capability for long-term streamflow
predictions. Figures 3 and 4 show the scatterplot of observations and predictions produced by the SNN
and ENN7 models in the Longquan Creek and Jinhua River watershed, respectively. It is obvious that
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the performance obtained from the ENN7 model is much better than that of the SNN model in both
watersheds. According to Tables 3 and 4 and Figures 3 and 4, an important result can be found, which
is that the best ensemble strategy (the combination of member generalization and member integration)
is neither sensitive to hydrological nor physiographical conditions in terms of streamflow prediction.
Therefore, the boosting resampling algorithm is suggested for generating ensemble members and the
Bayesian model average is recommended for integrating the outputs of ensemble members.

Table 3. Testing results obtained from the single neural network (SNN) and 12 ensemble neural
networks (ENNs) in the Longquan Creek watershed.

Criteria R2 RMSE Gbench

Lead Time 1 h 2 h 3 h 1 h 2 h 3 h 1 h 2 h 3 h

SNN 0.984 0.955 0.928 32.2 54.3 69.0 0.375 0.489 0.587
ENN1 0.993 0.976 0.945 21.9 39.4 60.0 0.712 0.731 0.688
ENN2 0.993 0.977 0.947 21.6 38.8 59.3 0.720 0.740 0.696
ENN3 0.993 0.976 0.945 21.6 39.8 60.3 0.720 0.726 0.685
ENN4 0.993 0.978 0.944 21.6 38.2 60.7 0.720 0.746 0.680
ENN5 0.993 0.976 0.946 21.7 39.5 59.8 0.718 0.730 0.690
ENN6 0.993 0.979 0.950 21.4 37.4 57.5 0.726 0.757 0.713
ENN7 0.994 0.980 0.953 20.2 36.0 55.6 0.754 0.775 0.732
ENN8 0.993 0.975 0.936 21.8 40.2 65.3 0.715 0.719 0.631
ENN9 0.993 0.976 0.943 21.6 39.5 61.3 0.720 0.730 0.674

ENN10 0.991 0.976 0.950 23.8 40.0 57.7 0.659 0.723 0.711
ENN11 0.990 0.979 0.949 25.8 37.3 57.8 0.600 0.759 0.711
ENN12 0.993 0.971 0.928 22.1 43.8 69.0 0.706 0.668 0.587

Table 4. Testing results obtained from the SNN and 12 ENNs in the Jinhua River watershed.

Criteria R2 RMSE Gbench

Lead Time 1 h 2 h 3 h 1 h 2 h 3 h 1 h 2 h 3 h

SNN 0.996 0.990 0.980 32.3 53.1 75.5 0.827 0.776 0.730
ENN1 0.998 0.993 0.986 23.0 43.3 62.1 0.913 0.851 0.817
ENN2 0.998 0.994 0.987 23.3 42.1 61.1 0.910 0.859 0.823
ENN3 0.998 0.993 0.986 25.9 44.2 62.1 0.888 0.845 0.817
ENN4 0.998 0.992 0.986 23.3 46.0 63.8 0.910 0.832 0.807
ENN5 0.998 0.993 0.987 23.1 42.9 61.8 0.912 0.854 0.819
ENN6 0.998 0.994 0.987 23.5 42.0 60.8 0.909 0.860 0.825
ENN7 0.998 0.994 0.987 22.6 41.8 60.3 0.915 0.862 0.828
ENN8 0.998 0.993 0.985 23.2 44.5 64.0 0.911 0.843 0.806
ENN9 0.998 0.993 0.986 22.7 43.0 62.9 0.915 0.853 0.813

ENN10 0.998 0.994 0.986 23.1 42.5 62.1 0.912 0.857 0.817
ENN11 0.998 0.994 0.987 23.2 42.0 61.1 0.910 0.860 0.823
ENN12 0.998 0.993 0.985 24.2 45.4 64.7 0.903 0.836 0.802
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Figure 3. Scatterplots of observations and predictions produced by the SNN and ENN7 models in the
Longquan Creek watershed.
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Figure 4. Scatterplots of observations and predictions produced by the SNN and ENN7 models in the
Jinhua River watershed.

4.2. Peak Flow Prediction

The most important mission is to accurately predict peak flow. Compared to the deterministic
prediction from the single model, the ensemble models provide the probabilistic outputs to reduce
the uncertainty of model predictions. Figures 5 and 6 illustrate the comparison between SNN and
ENN7 models for the largest peak flow during the testing phase in the Longquan Creek and Jinhua
River watershed, respectively. In Figures 5 and 6, the circles represent the actual streamflow, the grey
area represents the predictive interval consisting of twenty ensemble members, and the black line
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represents the model prediction. Generally, both SNN and ENN7 models produced reliable predictions
for the lead time of one hour in both watersheds. However, as the lead time increases, the predictive
hydrograph produced by SNN has a significant time-lag problem, which may result in the failure
of flood warning or flood prevention. The predictive hydrograph obtained from ENN7 has much
better predictions, and the time-lag problem is insignificant. Furthermore, the SNN underestimated
the streamflow in the rising limb and overestimated the streamflow in the recession limb for 2 h and 3
h lead time in both watersheds. On the other hand, the outputs of ENN7 fit the observations well and
the predictive interval produced by twenty ensemble members covers almost the whole of the actual
streamflow, indicating the ENN7 model maintained robust predictive capability for 2 h and 3 h ahead
streamflow prediction. In Figures 5 and 6, it is seen that most of the observed peak flow is covered
by the predictive interval (gray area). In the other words, this demonstrates that ENN can effectively
reduce the quantitative uncertainty of hydrologic models [35,36].

Based on the presented results, it is found that the model accuracy in the Jinhua River watershed
is slightly better than that in the Longquan Creek watershed. This is mainly because the Longquan
Creek watershed is located upstream, where the flow velocity is much higher than that in midstream
and downstream. Thus, further analysis of peak flow prediction must be discussed. Table 5 displays
the peak flow predictions obtained from the ENN7 model on the first three largest flood events from
the testing dataset in both watersheds. The relative error of model predictions in the Longquan
Creek watershed and the Jinhua River watershed are within 10% and 5%, respectively, for 1–3 h
ahead streamflow prediction, suggesting that the ENN model was able to produce reliable peak
flow predictions.
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Figure 6. Comparison between SNN and ENN7 models for the largest peak flow of the testing phase
in the Jinhua River watershed. (a) SNN, lead time = 1 h; (b) ENN7, lead time = 1 h; (c) SNN, lead
time = 2 h; (d) ENN7, lead time = 2 h; (e) SNN, lead time = 3 h; (f) ENN7, lead time = 3 h.

Table 5. Peak flow prediction produced by ENN7 in both watersheds.

ENN7
Lead Time = 1 h Lead Time = 2 h Lead Time = 3 h

Qp Qp’ (m3/s) Error (%) Qp’ (m3/s) Error (%) Qp’ (m3/s) Error (%)

Longquan Creek Basin

Event 1 1191 1215 2 1261 6 1181 −0.8
Event 2 2640 2618 −0.8 2510 −5 2466 −6.5
Event 3 1410 1403 −0.5 1524 8 1280 −9

Jinhua River Basin

Event 1 2520 2523 0.1 2507 −0.5 2508 −0.5
Event 2 3040 3062 0.7 3045 0.2 3165 4.1
Event 3 3640 3665 0.7 3611 −0.8 3731 2.5

Qp: Actual peak flow; Qp’: Forecasted peak flow.

4.3. Sensitivity of Ensemble Neural Networks

To understand whether the ensemble models are sensitive to hydrological and physiographical
conditions, Figures 7 and 8 show the peak flow predictions of the three largest events and the RMSE of
the testing dataset at the two watersheds, respectively. It is clear from the boxplot (Figure 7) that the
peak flow predictions of twelve ENN models are quite stable and consistent for 1–3 h ahead prediction.
Figure 8 indicates the overall performance of twelve ENN models in the testing phase. In general,
longer lead time may cause larger bias of model output (larger RMSE value when lead time = 3 h,
see Figure 8). However, for the streamflow prediction, the results still show a consistent trend of the
twelve ENN models in both watersheds for 1–3 h ahead prediction, in which the ENN7 has the lowest
RMSE in both the Longquan Creek and Jinhua River watershed. This result demonstrates that the
ESP with the combination of the boosting resampling algorithm (generating member) and Bayesian
model average (integrating member) was better than others. Figure 8 also shows the trends of RMSE
values of the 12 ENNs in both watersheds. There are three ensemble combinations with different
trends of RMSE values in both watersheds (ENN3 and ENN11 when lead time = 1 h, ENN4 when
lead time = 2 h). The results indicate that RMSE values depend on ensemble combinations. However,
the figure demonstrates that there are similar trends (9 of 12 are similar) in both watersheds (lower
sensitivity of ensemble neural networks). In summary, the results displayed in Figures 7 and 8 also
indicate the ENN models not only present a higher accuracy of predictive capability, but also reveal
their lower sensitivity in ESP.
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5. Conclusions

Streamflow prediction is critical for assessing imminent flood risk and evaluating and planning
flood mitigation activities. In general, uncertainty and sensitivity are two important considerations
in hydrological modeling. The main purpose of this study was to integrate the ensemble technique
concept into artificial neural networks to reduce uncertainty and discuss the sensitivity in streamflow
predictions. The results show that the ENNs were able to effectively reduce the uncertainty in
hydrological modeling, compared to the SNN. Additionally, the best ensemble strategy was identified
through both case studies as the combination of boosting resampling and Bayesian model average.
The main achievements and innovations of this study are concluded as follows: (1) The ENN models
greatly improved the accuracy of streamflow prediction compared to SNN models for 1–3 h ahead
prediction in both watersheds. The improvement made by the ENNs is about 20% to 40% in terms
of RMSE; (2) the relative error of peak flow predictions in both the Longquan Creek and Jinhua
River watershed obtained from the ENN7 model demonstrates that the ensemble model is capable of
reflecting the possible maximum flood, which is a valuable reference for flood prevention; (3) the best
ensemble strategy integrated into the ANN-based hydrological models in two study watersheds is the
same, indicating that the ensemble strategy has low sensitivity to the hydrological and physiographical
factors. In other words, the artificial neural network combined with ensemble technique can be
applicable for generating streamflow predictions in different flood-prone areas.
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