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Abstract: With the pressure of population growth and environmental pollution, it is particularly
important to develop and utilize water resources more rationally, safely, and efficiently. Due to
safety concerns, the government today adopts a pessimistic method, single factor assessment, for the
evaluation of domestic water quality. At the same time, however, it is impossible to grasp the
timely comprehensive pollution status of each area, so effective measures cannot be taken in time
to reverse or at least alleviate its deterioration. Thus, the main propose of this paper is to establish
a comprehensive evaluation model of water quality, which can provide the managers with timely
information of water pollution in various regions. After considering various evaluation methods,
this paper finally decided to use the fuzzy support vector machine method (FSVM) to establish
the model that is mentioned above. The FSVM method is formed by applying the membership
function to the support vector machine. However, the existing membership functions have some
shortcomings, so after some improvements in these functions, a new membership function is finally
formed. The model is then tested on the artificial data, UCI dataset, and water quality evaluation
historical data. The results show that the improvement is meaningful, the improved fuzzy support
vector machine has good performance, and it can deal with noise and outliers well. Thus, the model
can completely solve the problem of comprehensive evaluation of water quality.

Keywords: water quality; fuzzy support vector machine; membership function; comprehensive
evaluation

1. Introduction

Water is an essential resource for human survival and development, and it has become more
and more important because of the growth of population and the deterioration of environmental
pollution [1–5]. Therefore, a model that can distinguish water quality is critical. It helps managers to
rationally allocate and utilize water resources, and brings a more comprehensive understanding of
water pollution in various areas at the same time.

Existing water quality assessment methods can be broadly divided into three categories:
traditional assessment method, evaluation method based on fuzzy mathematics and machine learning
method. For the first one, traditional water quality assessment methods such as the single factor
assessment, grading score method, function evaluation method, etc. used a series of calculations to
obtain a comprehensive score to evaluate water quality [6]. However, due to the non-determinism and
non-linearity of water pollution, traditional methods cannot accurately describe this complex pollution
process. For the second one, since the classification boundaries and pollution levels are both fuzzy
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phenomena, fuzzy mathematics was applied to water quality assessment. Among them, the fuzzy
comprehensive evaluation [7–9] and the gray clustering method [10,11] were widely used. Besides,
Yun and Zou combined these two methods for water quality evaluation [12]. However, on the one hand,
it takes time and effort for experts to give scores, and on the other hand, the choice of whitening function
varies from person to person, so these methods that are based on fuzzy mathematics are difficult to
be used widely. For the third one, because today’s machine learning methods can solve nonlinear
problems well, these algorithms have been widely used in the field of water quality evaluation. In terms
of neural networks, it has been widely used in the evaluation of water quality [13–16]. However,
the neural network algorithm requires a significant amount of samples for training. In contrast,
support vector machine (SVM) has good generalization ability and unique advantage in solving
the classification problem of nonlinear high-dimensional modes in the case of a small number of
samples [17].

Vladimir Vapnik originally proposed the SVM for the two-class classification problem [18]. It has
been applied to classification and prediction problems in various fields such as medicine, engineering,
and education. However, as the SVM is applied to many fields, the performance of standard SVM
method is gradually insufficient to meet our needs. Therefore, many researchers have optimized it
to further improve the performance of this evaluation model. In terms of parameter optimization,
ant colony algorithm [19], genetic algorithm [20], and particle swarm optimization algorithm [21], etc.
were used to help the SVM search for the optimal parameters g and c faster. In addition, in terms of
model building, Fei and Liu provided a new binary tree-based SVM algorithm, which can improve
classification efficiency [22]. Liu et al. proposed an efficient self-adaption instance selection algorithm
to reconstruct the training set of support vector machine [23]. Li et al. used Adaboost to improve
SVM [24]. Suykens et al. proposed a least squares support vector machine, which can reduce the
computational complexity [25].

Therefore, SVM is widely used in water quality evaluation, and its performance is constantly
being improved. Zhou et al. used SVM to evaluate the water quality data of Wei River, and proposed a
self-adaptive parameter optimization method using float genetic algorithm [26]. Chen et al. used SVM
to evaluate the groundwater quality of Yangmaowan Irrigated Area [27]. Dai also used intelligent
genetic algorithm to select the parameters of the least square support vector machine (LS-SVM),
and then used this model to classify and predict the water quality of the Changjiang River [28].

However, this paper finds that the problem of noise points that may be formed during water
quality evaluation has not been solved. Fortunately, the fuzzy support vector machine method
(FSVM) was proposed. It can solve the problem of noise and outliers by applying the concept of
membership function in support vector machine [29]. Applying it to water quality assessment can
solve this problem.

Besides, the core of FSVM, the membership function, is also constantly being improved to better
identify noise. Ren constructed a new membership function through the geometric mean of two
membership functions, and found that this method can improve the classification performance [30].
Wu defined an adjustment factor by classifying hyperplanes and classification intervals [31].
Xu proposed two definition methods of membership function, one was to use two intra-surface
hyperplanes to define membership degree, and the other was to consider both the distance-based
membership function and the new compactness-based membership function [32]. However, after
analyzing several membership functions in the above existing articles, this paper finds that these
functions have some problems in some cases.

Therefore, the main purposes of this study are (1) to form a new membership function by
improving the above defects; (2) to construct the FSVM water quality evaluation model that is based
on this membership function; and, (3) to verify the performance of the above model and apply it to
the real cases. This study aims to establish a reasonable and efficient comprehensive model of water
quality assessment, by which managers can understand the timely water pollution information of
each region.
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2. FSVM Methodology

2.1. Data Preprocessing

2.1.1. Data Imbalance

For the water quality assessment, in order to strengthen the management of surface water
environment, prevent water pollution, and protect human health, the “Surface Water Environmental
Quality Standard” (GB3838-2002) promulgated by the State Environmental Protection Administration
of China is used as the national quality standard for water quality assessment in China. According to
it, the water quality is divided into five categories from I to V. But, in reality, some indicator values
of a small amount of areas exceed the value of this evaluation table, which is evaluated as inferior
V. Obviously, the data of the inferior V class is less than the other classes. As a result, the dataset is
not balanced.

Therefore, this problem needs to be solved by oversampling or undersampling method. In 2002,
Chawla et al. proposed the synthetic minority over-sampling technique method (SMOTE), which solves
the data imbalance problem by randomly selecting a point from the k neighbors of one sample in the
minority class and generating a new sample between the original sample and this selected sample [33].
However, this method may also cause additional noise, so the modified approach (MSMOTE) was
proposed by Hu et al. in 2009 [34]. It first divides the minority class samples into safety samples,
boundary samples and potential noise, and then oversamples the safety samples. In general, MSMOTE
can be used to solve the data imbalance problem well, but sometimes there are several minority classes
at the same time, then the problem can only be solved by the undersampling method.

Of course, after data balancing, the accuracy may not be improved, sometimes it would even be
slightly reduced on the contrary. For the training data of water quality assessment, it is very likely that
the amount of data in the inferior V is very small. However, there are many data belonging to class
II or class III. After all, the excellent water resources will only be a minority, as well as the severely
polluted area. Then, if the classifier for the class II and inferior class V judges that all the samples
belong to the former, the accuracy rate can be very high, but, in fact, the popularity of this model
is very poor, only in its own testing set has a high accuracy. Therefore, once the above methods are
used to balance the dataset, it is likely to lead to a decrease in classification accuracy, but, in fact, the
promotion degree of the model will be increased.

2.1.2. Data Normalization

The water quality data has different dimensions for different indicators. For example, the pH
value generally belongs to the range of 6–9, while the ammonia nitrogen value is mostly between 0
and 1. So, the data needs to be normalized first. In this paper, the mapminmax function in Matlab is
used for normalization, and all data is normalized to (0,1). The formula that is used by mapminmax is
shown in Equation (1).

xi
′ =

(maxxi
′ −minxi

′)(x−minxi)

maxxi −minxi
+ minxi

′ (1)

where the value of max xi
′ and min xi

′ need to be set. Here as the range of normalization is (0, 1),
we have max xi

′ = 1, min xi
′ = 0.

2.2. Basic Model Selection

According to the “Surface Water Environmental Quality Standards” (GB3838-2002), the classification
criteria of three indicators are shown in Table 1. Now, suppose that the situation is simplified into a
two-dimensional plane, then the location of samples belonging to class I and II is shown in Figure 1. The
points in lower left and upper right areas are unquestionable standard water quality, but in reality, there
must be sample points in the lower right and upper left areas of the figure. For these points, the value
of one indicator satisfies the Class I standard, and the value of the other indicator is not satisfied.
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This situation cannot be evaluated only by the water quality standard. Therefore, it is necessary for
the experts to evaluate them according to the actual situation. Because of the opinion differences,
noise that may interfere with the classification model will be generated. Therefore, the water quality
evaluation model of this paper will be constituted by the FSVM method to reduce noise.

Table 1. Part of the surface water quality standard.

Category DO (≥) CODmn (≤) NH3-N (≤)

I 7.5 2 0.15
II 6 4 0.5
III 5 6 1
IV 3 10 1.5
V 2 15 2

Inferior V <2.0 >15 >2.00
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Why can FSVM remove the effects of noise points? In the standard SVM model, the classification
problem may be overfitting at the beginning, that is, the model requires a perfect separation of the two
types of samples, which would result in the situation of Figure 2b instead of Figure 2a. Therefore, it is
necessary to relax the original condition of yi

(
wTzi + b

)
≥ 1 by the slack variable, that is, the value of

yi
(
wTzi + b

)
of some points can be allowed to be less than 1, but this relaxation still requires a certain

limit. Therefore, the sum of all the slack variables εi needs to be kept to a minimum. At the same time,
the penalty parameter C is applied to control this degree of rigor. So, the Equation (2) is formed.

min
w,b,ε

( 1
2 wTw + C

n
∑

i=1
εi)

s.t. yi
(
wTzi + b

)
≥ 1− εi

εi ≥ 0 i = 1, . . . , n

(2)
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But, since C is a constant, the SVM model gives the same degree of punishment to each sample
after softening the boundary. Therefore, the FSVM specifically gives different importance to different
samples to solve this problem, that is, transform the sample set U by the membership degree Si to
U′ = {(xi, yi, Si), i = 1, 2, . . . , n}, where xi ∈ Rm, yi ∈ {+1,−1}, Si ∈ (0, 1). Thus, the previous SVM
model is changed into Equation (3).

min (
w,b,ε

1
2 wTw + C

n
∑

i=1
Si·εi)

s.t. yi
(
wTzi + b

)
≥ 1− εi

εi ≥ 0 i = 1, . . . , n

(3)

Convert the above problem into Equation (4) while using the Lagrangian function:

min
w,b,ε

max
ai≥0 βi≥0

L(w, b, α, β) i = 1, . . . , n

L(w, b, α) = 1
2 wTw + C

n
∑

i=1
Si·εi +

n
∑

i=1
αi
[
1− εi − yi

(
wTzi + b

)]
+

n
∑

i=1
βi·(−εi)

(4)

Then, convert it to dual problem:

max
ai≥0 βi≥0

min{
w,b,ε

1
2

wTw + C
n

∑
i=1

Si·εi +
n

∑
i=1

αi

[
1− εi − yi

(
wTzi + b

)]
+

n

∑
i=1

βi·(−εi)} i = 1, . . . , n (5)

Since ∂L
∂ε = Si·C− αi − βi = 0, the original form becomes:

max
0≤ai≤C βi=Si ·C−αi

min{
w,b,ε

1
2

wTw +
n

∑
i=1

αi

[
1− yi

(
wTzi + b

)]
} i = 1, . . . , n (6)

Since ∂L
∂b = 0 and ∂L

∂wi
= 0, the above formula can be reduced to a problem only containing the

unknown number αi:

min
ai

( 1
2

n
∑

i=1

n
∑

j=1
αiαjyiyjzi

Tzj −
n
∑

i=1
αi)

s.t.
n
∑

i=1
αiyi = 0

0 ≤ ai ≤ Si·C i = 1, . . . , n

w =
n
∑

i=1
αiyizi, βi = Si·C− αi i = 1, . . . , n

(7)

It can be seen that since the C value is the same for all the sample points, the points whose Si
is larger are less likely to be misclassified, and the points whose Si is smaller have less effect on the
formation of the optimal hyperplane. Therefore, by assigning different Si values to different sample
points, the influence of sample noise can be reduced.
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2.3. Parameter Optimization

The penalty parameter C indicates the degree of punishment for the misclassified samples, so the
larger the C is, the smaller the error would be. However, if C is too large, this will lead to overfitting,
so a suitable parameter C is needed. In this paper, the RBF kernel function is selected, so the size of
the parameter g will affect the complexity of the optimal classification plane. In terms of parameter
optimization, this paper adopts the grid optimization method. Each time that a set of (C, g) values are
determined to be run in the model, and finally, all of the areas in the grid are traversed to obtain the
best C and g.

2.4. Cross-Validation

For a classification model, after training with historical data, samples of unknown results can be
put into the model to obtain prediction results. But, there is no way to verify the performance of this
classifier itself. Thus, this sample set of known results is generally divided into two parts, one part is
still used to train the model and the other part is used to test the performance of the trained model [35].

The commonly used cross-validation methods are as follows:

(1) K-cv: The data is divided into k groups, then each time one of them is selected for testing, and
the remaining (k − 1) groups are used to train the model. This process will be repeated k times.
Finally, the evaluation result is generated by taking the average of all the results.

(2) Loo-cv: Suppose there are n samples, each time (n − 1) samples are used for training, and the
remaining one is used as a test set. The above process is repeated n times, and the final result is
the average of all values. Since almost every sample is used for training each time, this method
leaves almost no information and the results are more reliable. However, because it is repeated
too many times, the method is time consuming.

2.5. Multi-Classification Model

Since the water quality data is divided into six categories, the structure of model used in this
paper is as shown in Figure 3. First, step (1) is performed, that is, each of the two types of data in the
training set is separately put into the classifiers 1–15 for training. Then, step (2) is performed, that is,
a new sample of an unknown result is separately put into 15 classifiers for evaluation. Finally, step (3)
is to summarize the classification result of all classifiers to obtain the final prediction result.

Step (1): The two-class classification model uses the FSVM method, and the training dataset is
put into the model to calculate the values of w and b.

Step (2): For the sample x with the unknown result, since w = ∑n
i=1 αiyizi, so yi, αi, xi, and b are

all known variables. Therefore, the classification function takes the form of the Equation (8), in which

the kernel function uses the Gaussian kernel function K(xi, xj) = exp (− ||xi−xj ||2

2σ2 ).

g(x) = sign(
n

∑
i=1

αiyiK(xi, x) + b) (8)

Step (3): This paper adopts the one-to-one method [36]. Whenever a new project enters the model,
the classifiers 1–15 will respectively give a result. In the end, the category that receives the most votes
will be the result of the sample evaluation.

The above is a complete classification model for water quality assessment, but the optimization
problem in step (1) still needs to be solved by complicated methods. In 1998, the SMO algorithm that
was invented by John Plett solved this problem [37]. This article uses the SMO algorithm to solve
the SVM.

In order to solve the optimization problem about (α1, . . . , αn) described by Equation (7), SMO
decomposed it into several sub-problems that solve only two parameters each time. The outer loop part
traverses the entire set, finds αi that violates the KKT condition as the first point α1, and then performs
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an inner loop to find the point α2 that can maximize |E1 − E2|. Then, update some parameters, find
the value of b, and finally determine whether the stop condition is met. If it is not satisfied, continue
the loop.

Water 2018, 10, x FOR PEER REVIEW  7 of 24 

 

was invented by John Plett solved this problem [37]. This article uses the SMO algorithm to solve the 
SVM. 

In order to solve the optimization problem about (𝛼 , … , 𝛼 ) described by Equation (7), SMO 
decomposed it into several sub-problems that solve only two parameters each time. The outer loop 
part traverses the entire set, finds 𝛼  that violates the KKT condition as the first point 𝛼 , and then 
performs an inner loop to find the point 𝛼  that can maximize |𝐸 − 𝐸 | . Then, update some 
parameters, find the value of b, and finally determine whether the stop condition is met. If it is not 
satisfied, continue the loop. 

 
Figure 3. Structure of multi-classification model. 

3. Improved Membership Function 

At present, the basic framework of the water quality evaluation model is already available, but 
the membership function as the core of the FSVM model has not yet been determined. Because some 
existing membership functions still have certain defects, this part mainly analyzes and improves the 
problems of them, and it finally proposes the improved membership function of this paper. 

3.1. Membership Function 

The membership function itself is a mapping between a sample set and the range (0, 1), which 
indicates the extent to which a sample belongs to a certain situation. Here are a few common 
membership functions: 

(1) Trigonometric membership function 

μ(𝑥) =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 0               𝑥 ≤ 𝑎𝑥 − 𝑎𝑏 − 𝑎      𝑎 < 𝑥 ≤ 𝑏𝑐 − 𝑥𝑐 − 𝑏      𝑏 < 𝑥 ≤ 𝑐

0               𝑥 > 𝑐
 (9) 

Figure 3. Structure of multi-classification model.

3. Improved Membership Function

At present, the basic framework of the water quality evaluation model is already available, but the
membership function as the core of the FSVM model has not yet been determined. Because some
existing membership functions still have certain defects, this part mainly analyzes and improves the
problems of them, and it finally proposes the improved membership function of this paper.

3.1. Membership Function

The membership function itself is a mapping between a sample set and the range (0, 1), which
indicates the extent to which a sample belongs to a certain situation. Here are a few common
membership functions:

(1) Trigonometric membership function

µ(x) =


0 x ≤ a
x−a
b−a a < x ≤ b
c−x
c−b b < x ≤ c
0 x > c

(9)
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(2) Trapezoidal membership function

µ(x) =



0 x ≤ a
x−a
b−a a < x ≤ b
1 b < x ≤ c
c−x
c−b c < x ≤ d
0 x > d

(10)

(3) Distance-based membership function in FSVM

µ(x) =

{
1− di+

r++δ , yi = +1

1− di−
r−+δ , yi = −1

(11)

where di+ = ||xi − x+||, di− = ||xi − x−||, r+ = max di+, r− = max di−, x+ and x− are the centers
of the positive and negative samples, respectively.

3.2. Basic Form of Membership Function

At present, there are a lot of literatures that have put forward their own ideas on the issue
of membership function. In [30], the author used the positive and negative class radius (r+, r−),
the distance from the point to the center of the class (di+, di−), and the distance from the center of
the positive class to the center of the negative class (d+−) to construct the membership function µi,
as follows:

µi =
√

µi1·µi2 (12)

µi1 =

 1− 1
1+(r+2−di+

2)+δ
, yi = +1

1− 1
1+(r−2−di−

2)+δ
, yi = −1

(13)

µi2 =


µi

+ =

{
δ+di+

r+ , di+ ≤ d+−·ε
δ, di+ > d+−·ε

µi
− =

{
δ+di−

r− , di− ≤ d+−·ε
δ, di− > d+−·ε

(14)

In [32], the author also proposed two new membership functions. One is a combination of the
traditional membership function that is based on distance and compactness. The membership function
based on distance is the same as Equation (14), and the membership function based on compactness
selects the nearest p points around the sample point xi. When all of the p samples do not belong
to the class of xi, xi is judged as noise, which has no effect on the formation of classification plane,
so the value of ei is δ. When all of the p samples belong to the class of xi, the value given to ei is
(∑

p
j=1

1
dij
)/p. When q of the p samples belong to the class of xi, and the rest do not belong to this class,

the

∣∣∣∣∣ (∑
q
j=1

1
dij

)

q −
(∑

p
j=q+1

1
dij

)

p−q

∣∣∣∣∣ is used as the value of ei. Finally, µi2 = |ei |
max|ei |

, µi = µi1·µi2.

The other one is based on the intra-class hyperplane as defined. It only considers the points
inside two intra-class hyperplanes. The membership of the outer points is directly defined as a very
small positive number δ. According to the distance di+ or di− from the point to the hyperplane of this
class and the distance D between two hyperplanes, the membership of the inner points is defined,
as follows.  Si+ =

di+− min
1≤j≤t+

dj+

max
1≤j≤t+

dj+− min
1≤j≤t+

dj+
, di+ ≤ λD

Si+ = δ , di+ > λD
(15)
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 Si− =
di−− min

1≤j≤t−
dj−

max
1≤j≤t−

dj+− min
1≤j≤t−

dj−
, di− ≤ λD

Si− = δ , di− > λD
(16)

3.3. Design of the Improved Membership Function

3.3.1. Problems with Existing Membership Functions

(1) Basic architecture issues

In addition to satisfying the requirements of the basic value range (0, 1), the membership function
that is required by FSVM is mainly to reflect the requirements of noise reduction and to facilitate the
formation of classification planes. Many articles, including [30,31], construct a hypersphere based
on the class center, and design a membership function based on the distance from the sample point
to the sample center. To some extent, this method relies heavily on the geometry of the sample
distribution. For example, in the case of Figure 4 below, the two points A and B contribute the same to
the construction of the classification plane, but due to the different distance between the two points
and their class centers, the values of membership, as calculated by the above method, based on class
center are different.
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Therefore, this paper decides to use the idea of intra-class hyperplane to design the membership
function. As shown in Figure 5, the class centers x+ = 1

n+
∑n+

i=1 xi and x− = 1
n− ∑n−

i=1 xi are first
obtained, respectively. Then the two intra-class hyperplanes are constructed by the normal vector
W = x+ − x−.

I+ : WT(x− x+) = 0
I− : WT(x− x−) = 0

(17)
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Thus, the membership function considers only the set U′, which includes the sample points
inside the two hyperplanes I+ and I−. The sample points outside the hyperplanes are no longer
considered, because they do not help in the determination of the optimal hyperplane. The above
content is described in Equation (18).

Si = δ, x /∈ U′

U′+ = {x|(x− x+)(x− − x+) ≥ 0, x ∈ U+}
U′− = {x|(x− x−)(x+ − x−) ≥ 0, x ∈ U−}

U
′
= U′+ ∪U′−

(18)

where δ is a very small positive number.

(2) The problem of distance-based membership function

The distance-based membership functions that are designed in [30,32] are inversely proportional
to the distance di, that is, the closer to the center of the class, the larger the value. This design is
mainly based on the idea that the closer the point is to the class center, the more it should belong to
this class. However, the point outside the boundary of the classification plane satisfies the condition∣∣wTx + b

∣∣> 1 , and its relaxation variable εi = 0, so the value of C does not affect the classification
result. Conversely, such a method makes the Si of the useless point that is closer to the center of the
class bigger than the Si of the point that may be the support vector. Therefore, this paper adopts the
idea of membership function that is based on intra-class hyperplane in [32], and it gives the larger
function value to the samples that are closer to the boundary zones between two types.

(3) The problem of compactness-based membership function

In [30], the author used a parameter λ ∈ (0, 1) to solve the problem of noise reduction. When
the value of di is bigger than the product of λ and the distance D between two hyperplanes, Si = δ

(δ is a small positive number). However, if the situation in Figure 6 below occurs, that is, the final
classification plane is not parallel to the two hyperplanes. Here, dA or dB is the distance from the point
A or B to the intra-class hyperplane. Assuming that the final λ can make dA > λ·D, the noise A can
be successfully excluded, but the B point satisfying dA = dB should be a support vector. However,
the condition of dB > λ·D is also satisfied, so B is also treated as noise. Therefore, there may be some
problems with this method.Water 2018, 10, x FOR PEER REVIEW  11 of 24 
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Figure 6. Problem in the use of the parameter λ.

In [32], the author constructed a membership function based on compactness. When q samples of
the nearest p neighbors of the sample xi are not in the same class as xi, the centripetal degree is defined
as the former one. However, as shown in Figure 7, if p = 5, and the five white points that are shown in
Figure 7e,f are the nearest five neighbors of point A and B, the point A in Figure 7a has a certain effect
on the formation of the classification plane, but the point B in Figure 7b is obviously a noise point. But,
according to the method of [32], A and B have the same membership.
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3.3.2. Improvement Ideas

For the case where the neighbors of a sample point are all of the same class of this point or the
neighbors of a sample point are all the points of the different class, it can be directly determined.
However, there are two main situations for areas where the positive and negative sample points are
mixed together. One is that the points are close to the junction area of two types, so most of the samples
in this area should be given correspondingly large values. The other is that the point is a noise point
inside a certain class, but the categories of its neighbors are not all different from it, so this situation is
different from the case, where all of the surrounding points are of different class.

At the beginning, this paper uses the category of the nearest neighbor as the criterion for evaluating
whether the point in the mixed area is noise. If the class of the sample point closest to it is the same as
its class, it is judged to be a useful point. If the class of the sample point closest to it is different from its
class, the point is determined to be noise, namely,

(1) When all of the p sample points are not in the class of xi, xi is noise, and has no effect on the
classification plane formation, so the value of ci is δ.

(2) When all the p sample points are of the same class as xi, the function is designed according to the
degree of compactness of the points around xi, so the value of ci is ∑

p
j=1

1
dij

.

(3) When only q samples of the p points belong to the same class of xi, ci takes the value δ or ∑
q
j=1

1
dij

,
according to the class of its nearest neighbor.

But, in fact, the counterexample, like Figure 8, can be given. If p = 5, what appears under normal
conditions should be similar to the case of Figure 8a,c. Since they are close to the classification plane,
the two points A and C do not belong to the cases (1) or (2). Then, according to the class of the nearest
neighbor, this method determines that point A is noise, and point C is useful for determining the
classification plane.

However, it is inaccurate to base only on whether xi’s nearest neighbor is of the same or different
class as xi. The reason is that although the model in this article can deal with those noise points,
they will also interfere with the judgment of the surrounding points. For example, there is a nearest
different-class neighbor next to point B. Point B will be judged as noise by this method, but the actual
situation is not the same. Similarly, when the two noise points are very close, this method will instead
judge point D as the point that contributes to the classification plane. In both cases, other noise points
interfere with the determination of the adjacent sample points.

Thus, the situation similar to that in Figure 8b is first solved here. Although some of the noise
isolated from the different-class points is removed by the previous case (1), a different-class point
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itself still interferes with the determination of the surrounding points. Therefore, this paper decides to
treat the judgment of the previous situation (1) as a priori. After finding out the noise points whose
neighbors are all the different-class points, the discrimination of case (2) and case (3) no longer consider
these noise points in the situation (1).
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Figure 8. Counterexample of the first attempt. The figures (a–d) are four different cases of
surrounding neighbors.

In addition, in order to solve the situation like Figure 8d, we must consider the second influencing
factor—the number of same-class and different-class points. When a different-class point is the closest
neighbor, and the number of surrounding different-class points is more than that of the same-class
points, this point is judged as noise (such as point A). When a different-class point is the closest
neighbor, but the number of same-class points is more than that of different-class points, the point is
judged to be a useful point (such as point B). When a same-class point is the closest neighbor, and the
number of same-class points is more than that of different-class points, the point is judged to be a
useful point (such as point C). When a same-class point is the closest neighbor, but the number of
different-class points is more than that of similar points, the point is judged as noise (such as point D).

However, it was found that in the condition from A to D discussed above, when the number of
surrounding different-class points is more than the number of same-class points, the point is judged as
noise regardless of the category of its closest neighbor. Thus, the result of this judgment is exactly the
same as the method that considers only the number of same-class points and different-class points.
The category of the nearest neighbor has no meaning. Therefore, it can be determined as directly based
on the number of neighbors in the different class and in the same class.

If a counterexample is also given to this classification method, it should be similar to the case of
Figure 9b,c under normal circumstances. That is, when there are more neighbors of the same class of
this point, it should be a normal point. Similarly, when the number of neighbors that belong to the
different class of the point is bigger, it should be the noise.

Water 2018, 10, x FOR PEER REVIEW  13 of 24 

 

points. The category of the nearest neighbor has no meaning. Therefore, it can be determined as 
directly based on the number of neighbors in the different class and in the same class. 

If a counterexample is also given to this classification method, it should be similar to the case of 
Figure 9b,c under normal circumstances. That is, when there are more neighbors of the same class of 
this point, it should be a normal point. Similarly, when the number of neighbors that belong to the 
different class of the point is bigger, it should be the noise. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Counterexample of the second attempt. The figures (a–d) are four different cases of 
surrounding neighbors. 

However, for example, the number of different-class points in the neighbors of point A in Figure 
9a is more than that of the same type, but it is not a noise point. Similarly, the number of same-class 
points around point D in Figure 9d is more than that of the different class, but it is noise. In fact, this 
kind of idea that is similar to k-nearest neighbor is acceptable. The most important goal of the function 𝑆  is to find the noise point, so the method is acceptable that identifies the point, the neighbors of 
which have more points of the different class, as noise. But, this judgment will be limited by the value 
of the parameter p and the local phenomenon interference. 

Therefore, another factor to be considered is added here, which is the number of the points 
belonging to the same class as the point 𝑥  among the three neighbors other than the p nearest 
neighbors. This factor can avoid the interference of local phenomena on judgment to a certain extent. 

In this case, when the number of same-class points in p neighbors around a point is less than the 
different-class points, this point should be judged as noise. But, if two or three of the three nearest 
neighbors, except the p points are belong to the same category, it proves that the above situation is 
only a partial phenomenon, so the sample point is judged to be a normal point (such as point A). If 
only one or none of the three neighbors except the p points is in the same class, then the sample point 
is judged to be noise (such as point B). When there are more same-class neighbors of the p point, if 
only one or none of the three neighbors except the p points is in the same class, the sample point is 
judged to be noise (such as point D). If two or three of the three nearest neighbors except the p points 
belong to the same category, the sample point is judged to be a normal point (such as point C). The 
Equation (19) shows this function: 

𝑐 =
⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧ 𝛿,                    𝑡 = −1  , 𝑞 − 𝑝2 < 01𝑑 ,               𝑡 = 1 , 𝑞 − 𝑝2 < 0

𝛿,                    𝑡 = −1  , 𝑞 − 𝑝2 > 0
  

1𝑑 ,               𝑡 = 1 , 𝑞 − 𝑝2 > 0   
 (19) 

Figure 9. Counterexample of the second attempt. The figures (a–d) are four different cases of
surrounding neighbors.



Water 2018, 10, 1303 13 of 23

However, for example, the number of different-class points in the neighbors of point A in Figure 9a
is more than that of the same type, but it is not a noise point. Similarly, the number of same-class points
around point D in Figure 9d is more than that of the different class, but it is noise. In fact, this kind of
idea that is similar to k-nearest neighbor is acceptable. The most important goal of the function Si2 is
to find the noise point, so the method is acceptable that identifies the point, the neighbors of which
have more points of the different class, as noise. But, this judgment will be limited by the value of the
parameter p and the local phenomenon interference.

Therefore, another factor to be considered is added here, which is the number of the points
belonging to the same class as the point xi among the three neighbors other than the p nearest
neighbors. This factor can avoid the interference of local phenomena on judgment to a certain extent.

In this case, when the number of same-class points in p neighbors around a point is less than the
different-class points, this point should be judged as noise. But, if two or three of the three nearest
neighbors, except the p points are belong to the same category, it proves that the above situation is only
a partial phenomenon, so the sample point is judged to be a normal point (such as point A). If only one
or none of the three neighbors except the p points is in the same class, then the sample point is judged
to be noise (such as point B). When there are more same-class neighbors of the p point, if only one or
none of the three neighbors except the p points is in the same class, the sample point is judged to be
noise (such as point D). If two or three of the three nearest neighbors except the p points belong to the
same category, the sample point is judged to be a normal point (such as point C). The Equation (19)
shows this function:

ci =



δ, ti = −1, q− p
2 < 0

q
∑

j=1

1
dij

, ti = 1, q− p
2 < 0

δ, ti = −1, q− p
2 > 0

q
∑

j=1

1
dij

, ti = 1, q− p
2 > 0

(19)

where if there are two or three points in the three neighbors belonging to the same class as the point xi,
ti = 1. If there are only one or none of the three points in the three neighbors belonging to the same
class as the point xi, ti = −1.

However, in fact, when ti = 1, regardless of whether the value of (q− p
2 ) is positive or negative,

the value of ci is δ. Similarly, when ti = −1, the value of ci is ∑
q
j=1

1
dij

, regardless of the value of (q− p
2 ).

Therefore, the value of the function can be only determined by the positive and negative of ti, namely,

ci =


δ, ti = −1

q
∑

j=1

1
dij

, ti = 1 (20)

However, the discriminant of Equation (20), the condition of the three neighbors, except the p
points, is actually based on the number of same-class and different-class points around it in essence.
The difference between the two judgement conditions is only the value of p. So the addition of three
points is actually meaningless. That is, the problem can be solved by using only the idea of the number
of same-class and different-class points around the point.

3.3.3. Improved Membership Function

Therefore, based on the above analysis, the membership function of the paper finally combines
both the distance and the compactness. The following Equation (21) is the distance-based membership
function of this article that is designed for easy classification:
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Si1 =


1−

max
1≤j≤t+

dj+−di+

max
1≤j≤t+

dj++δ , yi > 0

1−
max

1≤j≤t−
dj−−di−

max
1≤j≤t−

dj−+δ , yi < 0
(21)

where t− and t+ are the total number of positive and negative sample points inside the two hyperplanes,
respectively, and δ is a small positive number.

When a point is very close to the intra-class hyperplane, it has no effect on the construction of the
classification plane, so its membership degree is infinitely close to zero. As the sample point gets closer
to the junction zone of the two types of samples, its contribution to the construction of the classification
plane is greater. Therefore, its membership is also greater.

However, only one function in the model is obviously insufficient. For example, when a point
satisfying the condition yi > 0 is far away from the positive class hyperplane, it is mixed into the
negative class sample points. Obviously, it should be a noise point, but the value of the membership
function S1 above will be large. Therefore, it is necessary to adjust the above function. To this end,
this paper designs another membership function to solve the problem of noise and isolated points.

The following is the improved compactness-based membership function that is proposed in this
paper. Here, distance from the nearest p sample points around the sample point xi to xi is di1, di2, · · · ,
dip, where p is an odd number.

(1) When all the p sample points are not in the same class as xi, xi is judged as noise and it has no
effect on the classification plane formation, namely,

ci = δ (22)

(2) Reselect p sample points around the sample point xi that are closest to it and do not contain the
points of the above case (1). This can effectively avoid the interference of a single noise point in
some cases (1) to the judgment of surrounding sample points.

a. When all of the p sample points at this time are not in the same class as xi, xi is judged as
noise and it has no effect on the classification plane formation, namely,

ci = δ (23)

b. When all of the p sample points are of the same class as xi, the function is designed
according to the compactness of the sample points around xi, that is, the tighter the sample
point, the larger the ci:

ci =
p

∑
j=1

1
dij

(24)

c. When q points in p sample points belong to the same class of xi, the remaining ones do not
belong to this class, the value of ci is as follows:

ci =


δ, q− p

2 < 0
q
∑

j=1

1
dij

, q− p
2 > 0 (25)

Finally, the formula of the second membership function Si2 is presented, as follows:

Si2 =
ci

maxci
(26)
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So far, the design of ci in the case (1) and the case a of (2) completes the aim of noise reduction.
The design of the function value ∑

q
j=1

1
dij

in b of the case (2) excludes the effect of isolated points. When
a point is isolated, its ci will be very small. The c of the case (2) compensates for the loopholes of
the previous two cases a and b. It uses the idea of k-nearest neighbor to make Si2 better distinguish
the effect of the sample points in the junction area by the appropriate parameter p. At the same time,
together with case (1), it also solves the problem left by Si1, that is, by the effect of determining the
noise, the function Si2 negates the membership value in Si1, which is largely due to being far away
from the hyperplane in the class.

Since Si1 only considers the importance of points near the classification plane, it has no ability to
handle noise and isolated points. Therefore, this paper constructs Si2 to complete the task of removing
noise and isolated points, and it makes up for the defects of Si1. Thus, the final membership function
of this paper is determined, as follows:

Si =

{
δ, x /∈ U′

Si1·Si2, x ∈ U′
(27)

When the compactness of the neighbors around the sample point is constant, the closer the sample
point is to the junction area, the greater its membership degree. When the distance between the sample
points and the hyperplane in the class is constant, the bigger the compactness of the neighbors of
the sample point, the greater the membership degree. For the method of the combination of Si1 and
Si2, since the two functions can compensate each other after the addition, this article does not adopt
the addition method. When considering that noise should be directly rejected, this paper uses the
multiplication method that is uncompensated.

Now, please have a look at the issues discussed before:

(1) For the case of Figure 4, it is clear that this problem has been solved by using the method of
intra-class hyperplane instead of hypersphere. The value of Si1 of the new function is the same
for A and B in Figure 4, but, depending on the situation of the surrounding points of A and B,
different Si2 may be given. Finally, the result is the combination of Si1 and Si2.

(2) For the case of Figure 5, the new function judges the sample point based on the number of
same-class and different-class points around it, rather than the distance to the intra-class
hyperplane.

(3) For the problem of Figure 6, the improved effect has been shown in the analysis of the situation
in Figure 9.

Finally, since the model is to be adopted to multi-class classification, the variables are to be
converted. These variables include the class centers ϕ(x+) and ϕ(x−), distance ||W|| between two
class centers, condition that determines whether it is inside or outside the hyperplane, the distance di+
or di− between the point and the intra-class hyperplane and the distance dij between the sample points.

ϕ(x+) =
1

n+

n+

∑
i=1

ϕ(xi), ϕ(x−) =
1

n−

n−

∑
i=1

ϕ(xi) (28)

||W||2 = ||ϕ(x+)− ϕ(x−)||2

= 1
n+

2

n+

∑
i=1

n+

∑
j=1

K
(

xi, xj
)
+ 1

n−2

n−
∑

i=1

n−
∑

j=1
K
(
xi, xj

)
− 1

n+×n−

n+

∑
i=1

n−
∑

j=1
K
(
xi, xj

) (29)

(ϕ(x−)− ϕ(x+))·(ϕ(xi)− ϕ(x+))

= 1
n−

n−
∑

j=1
K
(

xi, xj
)
+ 1

n+
2

n+

∑
k=1

n+

∑
j=1

K
(
xk, xj

)
− 1

n+

n+

∑
j=1

K
(
xi, xj

)
− 1

n+×n−

n+

∑
k=1

n−
∑

j=1
K
(

xk, xj
) (30)
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(ϕ(x+)− ϕ(x−))·(ϕ(xi)− ϕ(x−))

= 1
n+

n+

∑
j=1

K
(

xi, xj
)
+ 1

n−2

n−
∑

k=1

n−
∑

j=1
K
(

xk, xj
)
− 1

n−

n−
∑

j=1
K
(

xi, xj
)
− 1

n+×n−

n+

∑
k=1

n−
∑

j=1
K
(
xk, xj

) (31)

di+ =

∣∣WT(ϕ(xi)− ϕ(x+))
∣∣

||W|| =
|(ϕ(x−)− ϕ(x+))·(ϕ(xi)− ϕ(x+))|

||W|| (32)

di− =

∣∣WT(ϕ(xi)− ϕ(x−))
∣∣

||W|| =
|(ϕ(x+)− ϕ(x−))·(ϕ(xi)− ϕ(x−))|

||W|| (33)

dij =
√

K(xi, xi)− 2K
(
xi, xj

)
+ K

(
xj, xj

)
(34)

3.4. Data Verification

In order to verify whether the improved membership function that is proposed in this paper can
really achieve the expected effect, the following experiments are conducted while using the artificial
dataset and the UCI standard data to verify the model performance.

3.4.1. Experiment Based on Artificial Data

In order to test the function’s ability to recognize noise and outliers in the case of visualization,
the improved membership function is first tested by an artificial data set. Randomly place 90 sample
points whose horizontal and vertical coordinates are between 0 and 1 on a two-dimensional plane.
Take the data whose x1 in (0, 0.5) as the negative sample point, and the data whose x1 in (0.5, 1) as the
positive sample point. Then, 10 noise points are randomly placed into the data set. The above data
was put into the improved FSVM model. Since the sample set is small, p takes 3. Since the construction
of Si1 is relatively simple, the focus is on the value of the function Si2. The above work is repeated
ten times and the results are observed. The specific data distribution of a certain time is shown in
Figure 10, and the final results are shown in Table 2.Water 2018, 10, x FOR PEER REVIEW  17 of 24 
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It can be seen that among all of the Si2 values, 10 samples have a value of 6.17 × 10−6, which are
all the noise points that are placed previously. Another point (0.36, 0.14) can be seen as an isolated point
from the figure below, so its Si2 value is only 0.0630. Therefore, it can be seen that the improved FSVM
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handles these 11 points that are not useful for classification very well. In the same way, the results of
the other several experiments are also the same.

Table 2. Results of experiments on artificial dataset.

y x1 x2 Si2 y x1 x2 Si2

−1 0.22 0.80 0.3287 −1 0.73 0.90 6.17 × 10−6

−1 0.41 0.54 0.3761 −1 0.93 0.83 6.17 × 10−6

−1 0.16 0.98 0.1909 1 0.34 0.07 6.17 × 10−6

−1 0.12 0.72 0.2546 1 0.22 0.92 6.17 × 10−6

−1 0.17 0.84 0.3883 1 0.06 0.29 6.17 × 10−6

−1 0.19 0.43 0.3100 1 0.48 0.31 6.17 × 10−6

−1 0.27 0.47 0.4214 1 0.63 0.21 0.1526
−1 0.28 0.56 0.6710 1 0.95 0.65 0.3475
−1 0.20 0.27 0.1277 1 0.80 0.07 0.2154
−1 0.20 0.75 0.2858 1 0.75 0.41 0.3068
−1 0.26 0.50 0.3991 1 0.81 0.67 0.3720
−1 0.33 0.65 0.1835 1 0.91 0.93 0.2784
−1 0.36 0.14 0.0630 1 0.77 0.81 0.3665
−1 0.20 0.48 0.3500 1 0.60 0.48 0.3823
−1 0.42 0.36 0.0946 1 0.73 0.76 0.3186
−1 0.07 0.79 0.2842 1 0.71 0.42 0.3982
−1 0.03 0.78 0.2730 1 0.98 0.97 0.1617
−1 0.04 0.67 0.4481 1 0.81 0.99 0.1910
−1 0.08 0.13 0.1211 1 0.85 0.86 0.4601
−1 0.16 0.02 0.1879 1 0.86 0.39 0.4178
−1 0.15 0.56 0.3917 1 0.67 0.45 0.9910
−1 0.01 0.30 0.2041 1 0.78 0.78 0.4035
−1 0.27 0.94 0.2795 1 0.78 0.91 0.2237
−1 0.05 0.98 0.1216 1 0.71 0.60 0.1552
−1 0.07 0.29 0.2036 1 0.92 0.15 0.2456
−1 0.32 0.80 0.2002 1 0.87 0.90 0.6229
−1 0.43 0.90 0.4366 1 0.68 0.45 1.0000
−1 0.43 0.60 0.5239 1 0.73 0.21 0.1997
−1 0.29 0.88 0.2491 1 0.69 0.90 0.1696
−1 0.50 0.94 0.2531 1 0.89 0.76 0.2117
−1 0.28 0.55 0.7064 1 0.87 0.88 0.6807
−1 0.26 0.73 0.2413 1 0.72 0.28 0.2682
−1 0.17 0.58 0.3887 1 0.85 0.67 0.3610
−1 0.22 0.03 0.1858 1 0.97 0.66 0.3351
−1 0.25 0.45 0.3884 1 0.89 0.12 0.2691
−1 0.04 0.65 0.4183 1 0.85 0.41 0.4281
−1 0.44 0.52 0.3003 1 0.69 0.72 0.2458
−1 0.03 0.37 0.1829 1 0.80 0.28 0.2356
−1 0.22 0.94 0.2751 1 0.53 0.83 0.2377
−1 0.41 0.83 0.2080 1 0.61 0.39 0.2323
−1 0.20 0.85 0.4059 1 0.92 0.50 0.1605
−1 0.31 0.37 0.1803 1 0.51 0.86 0.2558
−1 0.41 0.59 0.5391 1 0.54 0.51 0.1625
−1 0.44 0.87 0.4405 1 0.83 0.57 0.1810
−1 0.47 0.93 0.3934 1 0.75 0.33 0.2900
−1 0.10 0.67 0.3253 1 0.61 0.46 0.3996
−1 0.76 0.25 6.17 × 10−6 1 0.79 0.71 0.3303
−1 0.58 0.88 6.17 × 10−6 1 0.56 0.88 0.1994
−1 0.85 0.56 6.17 × 10−6 1 0.84 0.72 0.3496
−1 0.60 0.28 6.17 × 10−6 1 0.80 0.02 0.1947
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3.4.2. Experiment Based on UCI Dataset

Here, the model is validated by three test datasets: column, seeds and haberman. These datasets
in the UCI standard databases are characterized by small samples and high-dimensional, which can
well verify the performance of improved model of this paper. Firstly, the data is preprocessed and
parameter optimized, and the ratio of the training set to the test set in cross-validation is 4:1. The data
is put into the standard SVM model, the model based on the intra-class hyperplane in [32], the model
based on the intra-class centripetal degree in [32], and the improved FSVM model that is proposed in
this paper respectively. The final result that is evaluated by accuracy, recall, and F1-score is shown,
as follows:

It can be seen from Table 3 that the distribution of points in the dataset may be too neat, so all of the
last three models (FSVM1, FSVM2, and FSVM) have no room for improvement by noise identification.
To put it another way, although FSVM cannot further improve the model performance, at least it can
prove that FSVM can also handle this standard dataset well. The final performance of FSVM is not
weaker than that of standard SVM. It can be seen from Tables 4 and 5 that the F1-score of the improved
FSVM method that is proposed in this paper is, respectively, 3% and 6% higher than the standard SVM
method. However, the situation of noise may not be complicated, that is, the noise is very easy to be
identified. Therefore, FSVM1 and FSVM2 can also achieve the effect of the FSVM model in the seeds
dataset. Similarly, FSVM1 can also achieve the effect of the FSVM model in the haberman dataset.
However, the above results can only prove that the performance of FSVM in this article is indeed
improved when compared to the standard SVM, whether the improvement based on the previous
FSVM models is effective cannot be proved here. To this end, other experiments are still needed.

Table 3. Results of experiment on the column dataset.

SVM FSVM1 FSVM2 FSVM

Precision 0.8312 0.8312 0.8312 0.8312
Recall 0.7512 0.7512 0.7512 0.7512

F1-score 0.7892 0.7892 0.7892 0.7892

Table 4. Results of experiment on the seeds dataset.

SVM FSVM1 FSVM2 FSVM

Precision 0.7934 0.8167 0.8167 0.8167
Recall 0.7619 0.7857 0.7857 0.7857

F1-score 0.7774 0.8009 0.8009 0.8009

Table 5. Results of experiment on the haberman dataset.

SVM FSVM1 FSVM2 FSVM

Precision 0.6839 0.8750 0.5692 0.8750
Recall 0.5715 0.5313 0.5882 0.5313

F1-score 0.6227 0.6611 0.5785 0.6611

4. Results and Discussion

4.1. Selection of Dataset and Evaluation Indicators

After analyzing the various river basins in China, the paper finally decided to select the water
resources monitoring data of the Pearl River Basin for experiments. The Pearl River is China’s second
largest river. It originates from Maxiong Mountain in the Wumeng Mountains of Yunnan-Kweichow
Plateau, flowing through the six provinces of central and western China and northern Vietnam,
and finally injects into the South China Sea from the eight inlets downstream. According to data
released by the Pearl River Water Resources Bulletin, the total water consumption of the Pearl River in
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2016 reached 83.81 billion cubic meters, while the total amount of wastewater discharged was 17.42
billion tons. For this reason, it is of great significance to carry out a water quality assessment on the
Pearl River, which is large both in water consumption and waste water discharge [38].

This paper selects the automatic monitoring data of the Pearl River Basin from 2012 to now
(6, 2018), a total of 2633 records were deleted after all the null values were removed. Since the
pollution of the Pearl River is mainly organic pollution, this paper selects four conventional evaluation
indicators: pH value, chemical oxygen demand (CODmn), dissolved oxygen (DO), and ammonia
nitrogen (NH3-N). The distribution of the dataset is very unbalanced as shown in Table 6, and there
are many minority classes at the same time, that is, there are several classes at the same time whose
number of samples is much smaller than that of the class with the most samples. Therefore, the
undersampling method is performed first. The data is then put into the FSVM model based on the
improved membership function of this paper.

Table 6. Distribution of water quality data.

Value Count Percent

I 605 22.98%
II 1560 59.25%
III 189 7.18%
IV 103 3.91%
V 95 3.61%

Inferior V 81 3.08%

4.2. Analysis and Comparison of Evaluation Results

According to the cross-validation method, 80% of the data is used as the training set, and 20% of
the data is used as the testing set. The classification is carried out by the FSVM model of this paper,
and the results that were obtained are compared with the single factor evaluation (SFE). Finally, part of
the different results is shown in Table 7.

Table 7. Part of the comparison of evaluation results.

No. pH DO (mg/L) CODMn (mg/L) NH3-N (mg/L) FSVM SFE

1 7.76 8.16 1.8 0.22 1 2
2 8.11 9.52 2.3 0.1 1 2
3 8.13 8.92 2.6 0.15 1 2
4 7.92 9.56 1.5 0.2 1 2
5 8.18 8.52 2.1 0.13 1 2
6 7.75 10.7 2.4 0.36 1 2
7 7.95 9.65 2.2 0.2 1 2
8 8.11 8.59 1.6 0.17 1 2
9 7.86 11.1 2.1 0.35 1 2
10 7.61 5.82 4.2 0.14 1 3
11 6.55 5.14 2.8 0.11 1 3

The current domestic water quality assessment generally adopts the single factor evaluation
method, which is to determine the over-index of each indicator, and the worst one is used as the
sample’s water quality evaluation result [39]. The advantage of this method is that the calculation is
very simple, and because it adopts the principle of pessimism, it is very suitable for the evaluation of
drinking water, which attaches great importance to security issues.

However, the negative evaluation results have not allowed the government to grasp the overall
situation of water pollution in a certain basin in time. The FSVM model proposed in this paper can
solve this problem. The combination of this model and the single-factor evaluation can simultaneously
allocate water resources reasonably and provide the comprehensive pollution status of an area.
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Most evaluation results of the two models are the same, and the main differences appear in
the classes I, II, and III. Part of the water quality standard is shown in Table 1. It is obvious that
the dissolved oxygen and chemical oxygen demand of the first and fourth samples meet the Class I
standard, but the ammonia nitrogen of the two samples exceeds the Class I standard, so, according to
the pessimistic principle, they should be classified as Class II. However, the comprehensive evaluation
can classify them as the Class I. Similarly, the chemical oxygen demand of the No.2, No.3 and No.5
samples does not meet the Class I water quality standard, and the other indicators conform to the Class
I standard, so the evaluation results are different. Both the chemical oxygen demand and ammonia
nitrogen of the samples No.6, No.7, and No.9 exceeded the standard, but their dissolved oxygen was
very high. Moreover, the two indicators of these points only exceeded a little, so the comprehensive
evaluation result is the first category. It can be seen that it is feasible to use the improved FSVM model
to evaluate water quality, and this model can provide comprehensive evaluation results well.

4.3. Analysis and Comparison of Model Performance

The previous data is also put into the standard SVM model and the two methods that are described
above based on the intra-class hyperplane and the intra-class centripetal degree method. Since the
single factor evaluation can be used to carefully divide water resources, the ultimate goal of the FSVM
model is only to provide the manager with real-time overall information.

On the one hand, for the determination of excellent water quality, we hope that the water qualities
that are judged to be excellent are really good. That is, each sample that is judged into good-quality
class is deserved. Even if the standards are harsh, some of the good water resources cannot be selected.
Otherwise, if some water resources that have begun to become polluted are also misjudged as good
quality, the managers cannot take immediate measures. Thus, the indicator precision is needed. On the
other hand, for polluted areas, we want to identify all of the heavily polluted areas, and do not want
some places to “escape” the scope. Similarly, this will also cause delay in remediation. Therefore,
the recognition range needs to be widened, even if some of the slightly polluted areas are included in
it. Thus, it is necessary to use the indicator recall.

Therefore, we need both of them to achieve the goal of model building, but it is impossible to have
the best of both indicators at the same time. If you want to identify more samples of a certain class,
there will inevitably be misjudgments. Thus, the paper finally decided to adopt F1-score to consider
both the model’s precision and recall [40].

The performance of the model is shown in Table 8. It can be clearly seen that the improved FSVM
model is better than several other models, and its F1-score is 8% higher than the standard SVM model.
All of these show that the model in this paper can better evaluate the water quality comprehensively.
The reason for the poor performance of the FSVM2 model here might be that it is specifically designed
for gene classification problems.

Table 8. Evaluation index of these models.

SVM FSVM1 FSVM2 FSVM

Precision 0.7609 0.8345 0.5840 0.8395
Recall 0.6979 0.7083 0.6563 0.7396

F1-score 0.7280 0.7663 0.6180 0.7864

5. Conclusions

Water is closely related to people’s lives, and it is an indispensable resource. However, with the
deterioration of industrial pollution, it is imperative to classify water resources in different regions
in order to use water more reasonably, efficiently, and safely. For the consideration of people’s safety,
the current domestic evaluation method of water quality is single factor assessment. This method can
eliminate the potential water misuse through negative evaluation. However, at the same time, because
the result of the evaluation is too pessimistic, it will not be able to provide the current situation of water
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pollution in a certain area from a global perspective. Thus, timely measures cannot be implemented
immediately. Therefore, a model that can comprehensively evaluate water quality is essential.

After understanding the traditional assessment methods of water quality and some evaluation
methods in recent years, this paper finally decided to build a classification model that is based on
the support vector machine. Firstly, the model is optimized by data preprocessing, data balance,
cross-validation and parameter optimization. Then, since the samples do not fully comply with the
water quality standards set by the state in many cases, noise is likely to occur in some ambiguous
areas. Therefore, the standard SVM model is optimized in terms of removing the influence of noise
and isolated points, so the membership function is adopted to form the FSVM model.

However, the membership function proposed in several papers has certain problems in some
cases. For this reason, this paper builds a new membership function step by step. The distance-based
function and the compactness-based function have been improved successively. The closer the point is
to the classification plane, the larger the distance-based function. The compactness-based function first
discriminates the influence of a part of the noise points by a priori, and it then determines whether
a sample point is noise by the number of same-class and different-class points in the surrounding
p neighbors. Finally, the two functions are combined into the new membership function.

In order to verify whether the improved membership function of this paper is reasonable in
practical applications, three experiments are carried out in this paper. Firstly, an experiment is done
through an artificial dataset, which is intended to observe whether the function is meaningful through
the two-dimensional visual data. Then, through the high-dimensional data in the UCI database,
the performance of the function is tested. However, the above two kinds of data are not the actual data
of water quality assessment. Therefore, the water quality monitoring historical data is finally used for
the experiment.

Finally, the result of the experiment on an artificial dataset shows that the model can deal with the
negative effects of noise and isolated points. The result of the experiment on the UCI dataset shows
that the model does have good performance when dealing with the high-dimensional actual data.
The result of the experiment on water quality monitoring historical data shows that the improved
FSVM model proposed in this paper is indeed better than the previous models to some extent. In the
field of water quality assessment, it can complete the comprehensive evaluation task well, and it can
provide the overall information better.
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