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Abstract: Identification of the key environmental indicators (KEIs) from a large number of
environmental variables is important for environmental management in tidal flat reclamation areas.
In this study, a modified principal component analysis approach (MPCA) has been developed for
determining the KEIs. The MPCA accounts for the two important attributes of the environmental
variables: pollution status and temporal variation, in addition to the commonly considered numerical
divergence attribute. It also incorporates the distance correlation (dCor) to replace the Pearson’s
correlation to measure the nonlinear interrelationship between the variables. The proposed method
was applied to the Tiaozini sand shoal, a large-scale tidal flat reclamation region in China. Five KEIs
were identified as dissolved inorganic nitrogen, Cd, petroleum in the water column, Hg, and total
organic carbon in the sediment. The identified KEIs were shown to respond well to the biodiversity of
phytoplankton. This demonstrated that the identified KEIs adequately represent the environmental
condition in the coastal marine system. Therefore, the MPCA is a practicable method for extracting
effective indicators that have key roles in the coastal and marine environment.

Keywords: key environmental indicators; tidal flat reclamation; coast; modified principal component analysis

1. Introduction

Coastal tidal flats have often been reclaimed to moderate the conflict between population growth
and land scarcity [1]. In China, about 1.12 million hectare (ha) of coastal flats has been reclaimed since
1979 [2], and the number will increase another 0.25 million ha by 2020 [3]. Numerous studies have noted
that the reclamation has noticeable effects on the coastal marine environment [4–7]. To characterize the
local environment with changes that are caused by reclamation and evaluate the environmental effect
of reclamation activity, it is essential to identify the key environmental indicators (KEIs) from a large
number of environmental variables. The KEIs also provide useful tools for tracking the environmental
progress, supporting policy evaluation, and informing the public about coastal and marine governance.

Environmental issues often involve analysis of a wide range of variables simultaneously. Principal
component analysis (PCA) can effectively reduce the dimension of a multivariate data set by using
only the first few principal components (PCs) [8], while still preserving its structure to the extent
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possible [9]. Therefore, PCA has been commonly employed in environmental fields to identify the
KEIs. For example, Pejman et al. used PCA to extract the most significant parameters contributing
to water quality variations for all seasons in Haraz River Basin in India [10]. Yang and Yao et al.
identified the soil organic matter as an indispensable enabling factor of soil quality from a total of
22 soil properties on the coast in the northern of Jiangsu province of China [11,12]. With the PCA
method, Berger et al. selected five variables as the most key water quality variables, including electric
conductivity, oxygen concentration, caffeine, silicate, and toxic units with respect to pesticides, and they
were significantly correlated with the ecological quality in German streams [13]. Ouyang et al. extract
the parameters that are most important in assessing seasonal variations of river water quality from
16 physical and chemical parameters in LSJR basin, USA [14]. In the coastal and marine region,
González-Oreja and Sáiz-Salinas applied PCA to propose the dissolved oxygen from the data set of
30 abiotic variables as the key environmental factor controlling the distribution of benthos in the Bilbao
and Plentzia estuary, Spain [15]. Performing PCA on the long-term data of physico-chemical and
biological variables in the Nervión estuary, Borja et al. confirmed the redox potential, dissolved oxygen
and metal concentrations of the sediments to be the critical controllers determining the local benthic
structure [16]. Looi et al. extracted the seven major components out of 28 variables by 48 samples of
the coastal water of the Straits of Malacca, Malaysia, with relation to the pollution contribution from
minerals-related parameters, natural and anthropogenic sources [17]. Udayakumar et al. used PCA
to locate the major parameter affecting the ecological health of the coastal water in the Mangalore
coastal region in India [18]. On the basis of PCA, Iyer et al. constructed a statistical model to explain
the relationships between the various physicochemical variables and the environmental conditions in
the Cochin coast in south west India [19]. Wilbers et al. identified the four key factors to explain the
presence of pollution in surface water from the dataset of 32 sampling locations in the Mekong Delta of
Vietnam [20]. In the Kuwait Bay, AI-Mutairi et al. calculated three principal components responsible
for water quality variations, in which the first component included DO and pH, the second including
PO4, TSS, and NO3, and the last containing seawater temperature and turbidity [21]. The PCA
also has been performed to compare the heavy metal composition among the coastal sediments
and reduce the dimensionality of the original chemical variables into a few factors to identify the
noteworthy elements in the contaminated areas [22,23]. Simeonov et al. defined the structure of
the 15 analytes sediment data collected from the western coastline of the USA as four latent factors
conditionally named “anthropogenic”, “organic”, “natural”, and “hot spots” [24]. Pereira et al.s’ work
demonstrated the importance of organic matter content and the fine-grained fraction of sediments
on the control of the bioavailable metals distribution in the Paraguaçu estuary, Brazil [25]. However,
these previous attempts were conducted primarily based on the numerical divergence of a data set but
with inadequate consideration of the other two important attributes: pollution status and temporal
variation. In addition, the Pearson’s linear correlation was frequently used to detect the correlations of
the environmental variables, whereas they are often inherently nonlinear in nature [26].

The objective of this study is to develop an approach to identify the KEIs accounting for all three
important attributes of the environmental variables and their nonlinear interrelationships. To achieve
this, a modified PCA method (MPCA) was proposed. The three attributes were taken as coordinates to
construct a three-dimensional environmental characteristic space, and the distance correlation (dCor)
was used to measure the nonlinear interrelationships between the variables. The MPCA was applied
to determine the KEIs in the Tiaozini sand shoal, which is a large-scale tidal flat reclamation region in
China. The identified KEIs were shown to successfully represent the local environmental characteristics.
The approach provides a practicable tool to identify the KEIs for assessing the environment quality in
coastal reclamation areas. The results can be used as part of a framework to assess the effects of coastal
reclamation and relevant policies, as well as provide subsequent ecosystem services for protecting
coastal and marine environments. The results can also be used to provide technological support for
the establishment of coastal environmental monitoring and administration system for conservation
and sustainable development of marine resources.
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2. Methods and Materials

2.1. MPCA

Assume that A is an (m × n) matrix containing measurements of n environmental variables, each
measured at m sampling sites. Firstly, A was normalized through the properties of data divergence,
variables pollution status, and temporal variation to develop three matrixes D, P, and T.

(i) Matrix of data divergence D = [dij](m×n)

dij = (aij − aj)/σj (i = 1, . . . , m; j = 1, . . . , n), (1)

where, aij is the value of the jth variable measured at the ith sampling site; aj is the spatial average
of the jth variable; σj is the spatial standard deviation of the jth variable; and, dij is the data
divergence of aij, which indicates the spatial differentiation of the jth variable.

(ii) Matrix of pollution status P = [pij](m×n)

pij =


|aij −

pHju+pHjd
2 |/|

pHju−pHjd
2 | pH

|DO f − aij|/|DO f − Sj| DO
aij/Sj other varibles

, (2)

where, pij is the pollution index of aij; Sj is the environmental quality standard of the jth variable;
pH is the power of hydrogen in water; pHju, pHjd are the upper and lower limits of pH standard
value, respectively; and, DOf is the saturation concentration of dissolved oxygen in water. A pij
greater than 1.0 indicates that the value of aij exceeds the environmental quality guidelines.

(iii) Matrix of temporal variation T = [tij](m×n)

tij = sgn ·

√√√√1
l

l

∑
k=1

(ak
ij − aij)

2/aij, (3)

where, tij is the temporal fluctuation intensity of aij; ak
ij is the measurement at the kth monitoring;

aij is the temporal average of aij; l is the total monitoring times. sgn is the sign function with
a value of 1 if there is an overall increasing tendency of aij and −1 otherwise. The bigger the
absolute value of tij, the larger the temporal variation of aij.

The spatial distribution, pollution status, and the temporal variation of an environmental variable
are independent, and thus can be used to construct a three-dimensional characteristic space (C-Space).
Mathematically, dij, pij, and tij are the projected lengths of aij on the respective coordinates of the
C-Space (Figure 1). The measurement vector of any variable in the three-dimensional space can be
written as:

vij = dij
→
d + pij

→
p + tij

→
t (i = 1, . . . , m; j = 1, . . . , n), (4)

where, vij is the measurement vector of the jth variable at the ith sampling site;
→
d ,
→
p , and

→
t are the

three coordinate vectors, respectively, in the C-Space. Thus, vij indicates the integrated environmental
feature of the jth variable at the ith sampling site.
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In a normal PCA, the Pearson’s correlations for variables are calculated to indicate their paired
linear dependences. However, in an environmental system, these dependences usually show a strong
non-linear nature [26] and are difficult to effectively detect by the Pearson’s correlation. This study
uses the distance correlation (dCor) instead to measure the relationships of the environmental variables.
This method has been shown to have remarkable advantages in detecting non-linear or non-monotone
relationships among random variables [27].

Firstly, defining the C-Space distance of the αth variable vα:

φkl = ‖vkα − vlα‖; φk =
1
m

m
∑

l=1
φkl ; φl =

1
m

m
∑

k=1
φkl ; φ =

1
m2

m
∑

k,l=1
φkl ;

(k, l = 1, 2, . . . , m)
, (5)

where, ||·|| is the Euclidean norm; ϕkl is the C-Space distance between the kth and the lth sampling site
of the αth variable vα.

Similarly:

ϕkl = ‖vkβ − vlβ‖; ϕk =
1
m

m
∑

l=1
ϕkl ; ϕl =

1
m

m
∑

k=1
ϕkl ; ϕ =

1
m2

m
∑

k,l=1
ϕkl ;

(k, l = 1, 2, . . . , m)
, (6)

where, φkl is the distance between the kth and the lth sampling site of the βth variable vβ.
The empirical distance covariance (dCov) of vα and vβ can be calculated as:

dCov(vα, vβ) =
1
m

√
m

∑
k=1

m

∑
l=1

[(φkl − φk − φl + φ)(ϕkl − ϕk − ϕl + ϕ)], (7)

Then, the empirical distance correlation (dCor) is given as:

dCor(vα, vβ) =
dCov(vα, vβ)√

dCov2(vα, vα)dCov2(vβ, vβ)
, (8)

Based on the dCor among the environmental variables, the comprehensive matrix R can then be
established as:

R = [dCor(vα, vβ)](n×n), (9)

The eigenvalue problems of matrix R can be solved:



Water 2018, 10, 69 5 of 18

|R− λI| = 0, (10)

where, λ is the eigenvalue; I is the identity matrix. The eigenvectors of R are the principal components
(PCs), and their orders are determined based on the magnitude of their corresponding eigenvalues.
The eigenvector with the largest eigenvalue best represents A and is defined as the first PC. Similarly,
the eigenvector with the second-largest eigenvalue best represents the residual left in A once the first
eigenvector has been removed and is defined as the second PC. Each subsequent eigenvector is defined
the same way. Typically, only the top several PCs are needed to achieve a high level of discriminating
accuracy with an accumulated contribution rate greater than 75%. Herein, the contribution rate of the
gth PC is computed as:

cg = λg/
n

∑
i=1

λi × 100%, (11)

where, cg and λg are the contribution rate and eigenvalue of the gth PC, respectively.
The criteria proposed by Andrews et al. [28] is then employed to determine the most appropriate

indicators from the remaining PCs to construct the KEIs of the environmental variables: (1) Only
the variables with a factor loading (the corresponding element of the eigenvector) within 10% of the
highest factor loading (using absolute values) are retained from each remaining PC; (2) If the variables
are correlated (correlation coefficient of >0.60 and significant (two-tailed) at
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pHW (0.273), DOW (0.283), HgW (0.278), SulphideS (0.268), and TOCS (0.267). It also had the moderate 
loadings from DINW (0.251), CODW (0.250), TKNS (0.254), and TPS (0.252), which could be explained 
by nutrient condition in the water column and sediment. The highest loading from CdW was the 
result of significant correlation that existed among pHW, DOW, SRPW, CODW, HgW, TKNS, SulphideS, 
CdS and CdW (Table 3). Because all of the highly weighted variables comprised in this component 
were significantly correlated (dCor > 0.6 and ϸ < 0.01) with CdW except TOCs (see Table 3), PC1 could 
be identified as the “aqueous toxin and organic pollution component”. 

≤ 0.01), the variable with
the highest sum of correlation coefficients (absolute values) is retained for the KEIs; otherwise, all of
the variables are retained. The variables contained in the KEIs are the most important contributors
to the integrated environmental condition of spatial distribution, marine pollution, and temporal
variation. The main steps of the MPCA are illustrated in Figure 2.
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Figure 2. Flow-chart of the main steps used to perform the modified principal component analysis
approach (MPCA).

2.2. Application Area

The Tiaozini sand shoal is a roughly 52,882 ha large silt-muddy flat on the coast in the northern
of Jiangsu province in China, embraced by the radiative sand ridge in the Yellow Sea with stable



Water 2018, 10, 69 6 of 18

and relatively high-speed deposition in recent decades [29]. According to the Jiangsu Coastal
Development Program (China’s National Development and Reform Commission (NDRC), 2009),
the local government planned a large-scale reclamation project covering a 22,773.33 ha area in this flat
to ease the mounting shortage of the agricultural land resource, named as Tiaozini Land Reclamation
(Figure 3). The project was designed to be carried out over three phases to reclaim 6746.67 ha, 8446.67
ha, and 7579.99 ha of the land successively. Phase I was completed in July 2013 and the other two
have not yet been started. In this study, the proposed MPCA was applied to identify the KEIs in the
reclamation region using the environmental data collected before and after the Phase I project.Water 2018, 10, 69  6 of 17 
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Figure 3. Geographical location of the Tiaozini Land Reclamation (32◦42′28.61′ ′ E to 32◦52′56.25′ ′ E
and 120◦53′35.10′ ′ N to 121◦04′51.13′ ′ N).

2.3. Field Sampling

We carried out the field sampling effort in September 2013, after the completion of the Phase I
project. The marine monitoring system included 12 sampling sites (Figure 4). Eight water quality
variables plus seven variables in the sediment compartment were measured at each site. pH, dissolved
oxygen (DO), chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), soluble reactive
phosphorus (SRP), petroleum (PETRO), as well as heavy metals Cd and Hg were measured in the water
column. Sulphide, total organic carbon (TOC), PETRO, total Kjeldahl nitrogen (TKN), total phosphorus
(TP), Cd, and Hg were measured in the sediment sample. We conducted the marine phytoplankton
measurements synchronously. Historical monitoring data of the same variables in April 2010 were
collected from an official report of “Marine environmental monitoring report for Tiaozini Reclamation
Region” (Jiangsu Marine Environmental Monitoring and Forecasting Center, Jiangsu Marine fisheries
research institute, 2010) in order to represent the environmental status of the area before reclamation.
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All the samples were collected, stored, and analyzed according to China’s national standard
“Specification of Oceanographic Survey” (GB/T 12763-2007) and “Specification for Marine Monitoring”
(GB 17378-2007) issued by the General Administration of Quality Supervision, Inspection and
Quarantine and the Standardization Administration of China, as well as “Technical specification
of marine biological quality monitoring” (HY/T 078-2005) issued by the State Oceanic Administration
of China.

Descriptive statistics was conducted to describe the main characteristics of the coastal environment
in the study area both pre- (Table 1) and post (Table 2) the Phase I project. The corresponding limits
of each variable as per the environmental quality guidelines of China Sea Water Quality Standard
(CSWQS GB 3097-1997) and China Marine Sediment Quality (CMSQ GB 18668-2002) are also listed in
Tables 1 and 2.
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Table 1. Descriptive statistics of measured variables of water and sediment samples pre-Phase I (April 2010).

Category Variable Unit Minimum Maximum Mean SD 1 CV (%) 2 CSWQS (2nd Class)

Water variables

pH 6.95 8.6 7.588 0.612 8.07 7.8–8.5
DO mg/L 7.3 8.25 7.771 0.342 4.40 >5

COD mg/L 0.86 3.96 2.144 1.030 48.05 ≤3
DIN mg/L 0.418 1.008 0.747 0.186 24.97 ≤0.30
SRP mg/L 0.023 0.067 0.038 0.014 36.87 ≤0.030

PETRO mg/L BDL 3 0.0045 0.0023 0.00089 38.75 ≤0.05
Cd µg/L 0.085 0.7 0.23 0.16 72.97 ≤5
Hg µg/L 0.25 0.9 0.51 0.17 33.07 ≤0.2

Sediment
variables

CMSQ (1st class)
Sulphide mg/kg 13.1 61.7 28.34 17.255 60.89 ≤300

TOC % 0.5 1.27 0.977 0.265 27.08 ≤2.0
PETRO mg/kg 3.55 17.11 8.196 5.109 62.33 ≤550

TKN mg/kg 105.0 172.0 148.4 20.473 13.80 ≤550 [30]
TP mg/kg 583.0 652.0 626.8 23.289 3.72 ≤600 [30]
Cd µg/g 0.004 0.138 0.0652 0.059 91.23 ≤0.5
Hg µg/g 0.054 0.305 0.1706 0.080 46.90 ≤0.2

Phytoplan-kton
Biodiver-sity

Shannon-Wiener
index 0.51 2.24 1.39 0.526 37.79 NA 4

Rmargalef 0.43 0.98 0.64 0.184 28.62 NA
Pielou index 0.18 0.69 0.47 0.182 38.26 NA

Notes: 1 Standard deviation; 2 Coefficient of variation; 3 Below detection limit; 4 No available standard.

Table 2. Descriptive statistics of measured variables of water and sediment samples post-Phase I
(September 2013).

Category Variable Unit Minimum Maximum Mean SD CV (%) CSWQS (2nd Class)

Water variables

pH 7.99 8.3 8.149 0.092 1.13 7.8–8.5
DO mg/L 6.28 7.51 6.845 0.317 4.64 >5

COD mg/L 1.085 2.364 1.399 0.337 24.07 ≤3
DIN mg/L 0.154 0.545 0.279 0.127 45.48 ≤0.30
SRP mg/L 0.0008 0.01 0.003 0.003 101.59 ≤0.030

PETRO mg/L BDL 0.034 0.012 0.011 89.85 ≤0.05
Cd µg/L 0.027 0.11 0.064 0.025 39.04 ≤5
Hg µg/L 0.019 0.085 0.038 0.017 46.31 ≤0.2

Sediment
variables

CMSQ (1st class)
Sulphide mg/kg 0.3 49.4 9.3 18.093 194.55 ≤300

TOC % 0.106 0.482 0.238 0.119 49.79 ≤2.0
PETRO mg/kg 6.661 26.529 12.722 6.168 48.48 ≤550

TKN mg/kg 50.0 112.0 81.70 21.799 26.68 ≤550 [30]
TP mg/kg 383.0 591.0 532.10 57.875 10.88 ≤600 [30]
Cd µg/g 0.054 0.067 0.061 0.004 6.5 ≤0.2
Hg µg/g 0.001 0.008 0.0034 0.002 63.33 ≤0.5

Phytoplan-kton
Biodiver-sity

Shannon-Wiener
index 1.07 1.62 1.44 0.140 9.727 NA

Rmargalef 1.19 1.55 1.365 0.095 6.983 NA
Pielou index 0.333 0.509 0.454 0.047 10.425 NA

Figure 5 compares the environmental variable measurements (mean value with spatial standard
deviation) between pre- and post-Phase I project. Monitoring data indicated that the spatial and
temporal variations in the concentrations of pH and DO were relatively stable. After the Phase I
project, the concentrations of PETRO increased noticeably both in the water column and sediment,
largely because of the oil spill of working vessels and oily wastewater discharge from working
equipment during the land reclamation. The concentrations of all the other variables showed different
degrees of decrease.

Figure 6 demonstrates the temporal variation in the Shannon-Wiener index, Rmargalef and Pielou
index of phytoplankton (mean value with spatial standard deviation) before and after the Phase I
project. The spatial distributions of the post-Phase I biodiversity indices were more symmetrical
than those of the pre-Phase I. Overall, the Shannon-Wiener index and Rmargalef of phytoplankton
increased, and the Pielou index reduced slightly post the land reclamation.



Water 2018, 10, 69 9 of 18

Water 2018, 10, 69  8 of 17 

 

Table 2. Descriptive statistics of measured variables of water and sediment samples post-Phase I 
(September 2013). 

Category Variable Unit Minimum Maximum Mean SD 
CV 
(%) 

CSWQS (2nd 
Class) 

Water 
variables 

pH  7.99 8.3 8.149 0.092 1.13 7.8–8.5 
DO mg/L 6.28 7.51 6.845 0.317 4.64 >5 

COD mg/L 1.085 2.364 1.399 0.337 24.07 ≤3 
DIN mg/L 0.154 0.545 0.279 0.127 45.48 ≤0.30 
SRP mg/L 0.0008 0.01 0.003 0.003 101.59 ≤0.030 

PETRO mg/L BDL 0.034 0.012 0.011 89.85 ≤0.05 
Cd μg/L 0.027 0.11 0.064 0.025 39.04 ≤5 
Hg μg/L 0.019 0.085 0.038 0.017 46.31 ≤0.2 

Sediment 
variables 

       CMSQ (1st class)
Sulphide mg/kg 0.3 49.4 9.3 18.093 194.55 ≤300 

TOC % 0.106 0.482 0.238 0.119 49.79 ≤2.0 
PETRO mg/kg 6.661 26.529 12.722 6.168 48.48 ≤550 

TKN mg/kg 50.0 112.0 81.70 21.799 26.68 ≤550 [30] 
TP mg/kg 383.0 591.0 532.10 57.875 10.88 ≤600 [30] 
Cd μg/g 0.054 0.067 0.061 0.004 6.5 ≤0.2 
Hg μg/g 0.001 0.008 0.0034 0.002 63.33 ≤0.5 

Phytoplan-kton  
Biodiver-sity 

Shannon-Wiener 
index 

 1.07 1.62 1.44 0.140 9.727 NA 

Rmargalef  1.19 1.55 1.365 0.095 6.983 NA 
Pielou index  0.333 0.509 0.454 0.047 10.425 NA 

Figure 5 compares the environmental variable measurements (mean value with spatial 
standard deviation) between pre- and post-Phase I project. Monitoring data indicated that the 
spatial and temporal variations in the concentrations of pH and DO were relatively stable. After the 
Phase I project, the concentrations of PETRO increased noticeably both in the water column and 
sediment, largely because of the oil spill of working vessels and oily wastewater discharge from 
working equipment during the land reclamation. The concentrations of all the other variables 
showed different degrees of decrease. 

Figure 6 demonstrates the temporal variation in the Shannon-Wiener index, Rmargalef and 
Pielou index of phytoplankton (mean value with spatial standard deviation) before and after the 
Phase I project. The spatial distributions of the post-Phase I biodiversity indices were more 
symmetrical than those of the pre-Phase I. Overall, the Shannon-Wiener index and Rmargalef of 
phytoplankton increased, and the Pielou index reduced slightly post the land reclamation. 

 
Figure 5. Comparison of environmental variable measurements between pre- and post-Phase I 
project. 
Figure 5. Comparison of environmental variable measurements between pre- and post-Phase I project.Water 2018, 10, 69  9 of 17 

 

 
Figure 6. Comparison of phytoplankton biodiversity between pre- and post-Phase I project. 

3. Results 

All the monitoring variables were taken as potential environmental indicators (PEIs). A pool of 
attributes consisting of 8 water variables (pH, DO, COD, DIN, SRP, PETRO, Cd, Hg) and seven 
sediment variables (Sulphide, TOC, PETRO, TKN, TP, Cd, Hg) were established. Due to the limited 
pre-reclamation sediment data (there were 12 sediment sampling sites in 2013 but only 5 in 2010), 
the temporal fluctuation intensity of the variables could not be calculated at every site. To deal with 
this issue, the study area was divided into four sub-regions: North, Center, South, and Far, each 
includes at least one sediment sampling site and several water sampling sites in both years (Figure 
4). The spatial averages of each variable during pre- and post-Phase I periods were calculated in 
each sub-region. Then Equation (3) was used to obtain the sub-region’s overall temporal fluctuation 
intensity. Given that the temporal fluctuation intensity of a variable at any sampling site can be 
approximately represented by the overall value of the sub-region in which the site is located, the 
matrix T in the study area could be obtained. The matrix D and P were constructed using Equations 
(1) and (2), respectively, with the data set measured in September 2013 (Table 2) to highlight the 
spatial distribution and environmental quality of the variables post the Phase I reclamation and 
avoid overuse of the historical data. Thus, the measurement vectors in the C-Space could be built 
according to Equation (4). 

The pollution status (p), temporal variation (t), and spatial variation (d) of all the PEIs are 
illustrated in the box charts shown in Figure 7. Both pollutant statuses and temporal fluctuation 
intensities show strong variations among the measured variables, while the spatial variations 
appear closer to each other. The variable measurements could meet the water and sediment quality 
objectives in general, except for DIN (p ranged from 0.51 to 1.81); at all of the sampling sites, PETRO 
in the water column significantly rose (t ranged from 0.44 to 0.68) and Hg in the sediment 
experienced a huge change (t ranged from −0.98 to −0.91) post the reclamation. 

(a)

Figure 6. Comparison of phytoplankton biodiversity between pre- and post-Phase I project.

3. Results

All the monitoring variables were taken as potential environmental indicators (PEIs). A pool
of attributes consisting of 8 water variables (pH, DO, COD, DIN, SRP, PETRO, Cd, Hg) and seven
sediment variables (Sulphide, TOC, PETRO, TKN, TP, Cd, Hg) were established. Due to the limited
pre-reclamation sediment data (there were 12 sediment sampling sites in 2013 but only 5 in 2010),
the temporal fluctuation intensity of the variables could not be calculated at every site. To deal with this
issue, the study area was divided into four sub-regions: North, Center, South, and Far, each includes at
least one sediment sampling site and several water sampling sites in both years (Figure 4). The spatial
averages of each variable during pre- and post-Phase I periods were calculated in each sub-region.
Then Equation (3) was used to obtain the sub-region’s overall temporal fluctuation intensity. Given that
the temporal fluctuation intensity of a variable at any sampling site can be approximately represented
by the overall value of the sub-region in which the site is located, the matrix T in the study area could
be obtained. The matrix D and P were constructed using Equations (1) and (2), respectively, with the
data set measured in September 2013 (Table 2) to highlight the spatial distribution and environmental
quality of the variables post the Phase I reclamation and avoid overuse of the historical data. Thus,
the measurement vectors in the C-Space could be built according to Equation (4).

The pollution status (p), temporal variation (t), and spatial variation (d) of all the PEIs are
illustrated in the box charts shown in Figure 7. Both pollutant statuses and temporal fluctuation
intensities show strong variations among the measured variables, while the spatial variations appear
closer to each other. The variable measurements could meet the water and sediment quality objectives
in general, except for DIN (p ranged from 0.51 to 1.81); at all of the sampling sites, PETRO in the water
column significantly rose (t ranged from 0.44 to 0.68) and Hg in the sediment experienced a huge
change (t ranged from −0.98 to −0.91) post the reclamation.
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The distance correlations among the variables were calculated using Equations (5)–(8) and are
shown in Table 3.
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Table 3. Distance correlations (dCor) among the measured variables across the reclamation area.

Variable pHW DOW CODW DINW SRPW PETROW CdW HgW TKNS TPS HgS CdS PETROS SulphideS TOCS

pHW 1 0.747 ** 0.475 0.918 ** 0.402 0.412 0.723 ** 0.735 ** 0.563 * 0.559 * 0.496 0.576 * 0.533 * 0.428 0.496
DOW 1 0.590 * 0.826 ** 0.448 0.411 0.682 ** 0.840 ** 0.544 * 0.675 * 0.437 0.438 0.572 * 0.610 * 0.538 *
CODW 1 0.490 0.491 0.315 0.602 * 0.527 * 0.476 0.617 * 0.559 * 0.448 0.450 0.687 ** 0.600 *
DINW 1 0.373 0.364 0.421 0.625 * 0.517 * 0.638 * 0.473 0.472 0.337 0.374 0.495
SRPW 1 0.488 0.735 ** 0.390 0.477 0.498 0.457 0.468 0.522 * 0.728 ** 0.724 **
PETROW 1 0.488 0.403 0.593 * 0.534 * 0.500 0.618 * 0.594 * 0.378 0.497
CdW 1 0.719 ** 0.602 * 0.489 0.441 0.733 ** 0.515 * 0.822 ** 0.581 *
HgW 1 0.560 * 0.503 0.452 0.505 0.680 * 0.711 ** 0.533 *
TKNS 1 0.549 * 0.552 * 0.464 0.608 * 0.542 * 0.470
TPS 1 0.466 0.520 * 0.514 0.399 0.484
HgS 1 0.561 * 0.466 0.489 0.780 **
CdS 1 0.511 0.426 0.477
PETROS 1 0.466 0.441
SulphideS 1 0.805 **
TOCS 1
Sum of dCor 9.063 9.358 8.327 8.323 8.201 7.595 9.553 9.183 8.517 8.445 8.129 8.217 8.209 8.865 8.921

Notes: w The water chemical variable; S The sediment chemical variable; * Significant (two-tailed) at
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The Kaiser Meyer Olkin test (KMO) was first performed to measure the sampling adequacy for the
appropriateness to proceed with a factor analysis. The KMO result was 0.884, confirming the sampling
to be adequate for the PCA analysis. The MPCA was then conducted to select the representative
quality indicators to construct the KEIs from the pool of PEIs.

The results presented in Table 4 show that the first four PCs accounted for 79.71% of the total
characteristics of the coastal marine system, and the extraction rate of different variables ranged from
73.82% to 92.14%. Therefore, these PCs contained the primary information of the original data set.
The order by which the PCs were interpreted was determined by the magnitude of their eigenvalues.
The first PC explained 57.52% of the variance. The factor loadings of all the variables in the first PC
were positive and showed relatively narrow differences. PC1 included six highly weighted variables of
which the factor loadings were within 10% of the highest one: CdW (0.288), pHW (0.273), DOW (0.283),
HgW (0.278), SulphideS (0.268), and TOCS (0.267). It also had the moderate loadings from DINW (0.251),
CODW (0.250), TKNS (0.254), and TPS (0.252), which could be explained by nutrient condition in the
water column and sediment. The highest loading from CdW was the result of significant correlation that
existed among pHW, DOW, SRPW, CODW, HgW, TKNS, SulphideS, CdS and CdW (Table 3). Because all
of the highly weighted variables comprised in this component were significantly correlated (dCor > 0.6
and
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< 0.01) with CdW except TOCs (see Table 3), PC1 could be identified as the “aqueous toxin and
organic pollution component”.

The second PC explained 9.14% of the variance with high factor loading from DINW (−0.479)
and a moderate factor loading from pHW (−0.399), DOW (−0.325), SRPW (0.390), SulphideS (0.323),
and TOCS (0.316). PC2 could be identified as the “eutrophication component” since it mainly explained
variations in characters that are related to the marine eutrophication. In PC2, DINW correlated strongly
with pHW (dCor = 0.918 and
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> 0.05)
(Table 3). The negative loading of DINW and DOW in PC 2 and their strongly interrelationship were
perhaps due to nitration/denitrification in the coastal region. This also suggests that an increasing in
DO concentration would favor the nitrogen process, thus increasing the DINW value.

The third and fourth PC explained 7.24% and 5.81% of the variance with high factor loading
from PETROW (0.574) and HgS (0.517), respectively, and could be termed the “construction pollution
component” as well as the “sedimentary toxin component”. The sum of correlation coefficients of
PETROW (7.595) and HgS (8.129) were the lowest in the water and sediment variables, respectively
(see Table 3). Except for CdS, the dCor of PETROW with any other measurement variables was less
than 0.60. It was the same for HgS except for with TOCS. This showed that these two indicators were
relatively independent among the measured variables.

In PC1, the six highly weighted variables could be divided into two significantly correlated groups:
pHW-CdW-DOW-HgW of the water column and TOCS-SulphideS of the sediment compartment. CdW

and TOCS were the ones with the highest sum of correlation coefficients (9.553 and 8.921, see Table 3)
in each group, respectively. Both CdW and TOCS were retained in the KEIs due to their relatively weak
correlation (dCor = 0.581 and

Water 2018, 10, 69  10 of 17 

 

(b)

(c)

Figure 7. The box charts of (a) pollution status; (b) temporal variation; and, (c) spatial variation of the 
variable measurements. 

The distance correlations among the variables were calculated using Equations (5)–(8) and are 
shown in Table 3. 

The Kaiser Meyer Olkin test (KMO) was first performed to measure the sampling adequacy for 
the appropriateness to proceed with a factor analysis. The KMO result was 0.884, confirming the 
sampling to be adequate for the PCA analysis. The MPCA was then conducted to select the 
representative quality indicators to construct the KEIs from the pool of PEIs. 

The results presented in Table 4 show that the first four PCs accounted for 79.71% of the total 
characteristics of the coastal marine system, and the extraction rate of different variables ranged 
from 73.82% to 92.14%. Therefore, these PCs contained the primary information of the original data 
set. The order by which the PCs were interpreted was determined by the magnitude of their 
eigenvalues. The first PC explained 57.52% of the variance. The factor loadings of all the variables in 
the first PC were positive and showed relatively narrow differences. PC1 included six highly 
weighted variables of which the factor loadings were within 10% of the highest one: CdW (0.288), 
pHW (0.273), DOW (0.283), HgW (0.278), SulphideS (0.268), and TOCS (0.267). It also had the moderate 
loadings from DINW (0.251), CODW (0.250), TKNS (0.254), and TPS (0.252), which could be explained 
by nutrient condition in the water column and sediment. The highest loading from CdW was the 
result of significant correlation that existed among pHW, DOW, SRPW, CODW, HgW, TKNS, SulphideS, 
CdS and CdW (Table 3). Because all of the highly weighted variables comprised in this component 
were significantly correlated (dCor > 0.6 and ϸ < 0.01) with CdW except TOCs (see Table 3), PC1 could 
be identified as the “aqueous toxin and organic pollution component”. 

> 0.01, see Table 3). Only one indicator was highly weighted in PC2
(DINW), PC3 (PETROW) and PC4 (HgS), respectively. Thus, the KEIs are comprised of CdW, DINW,
PETROW, TOCS, and HgS.
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Table 4. MPCA results for selecting the key environmental indicators (KEIs) from the studied samples.

Component PC1 PC2 PC3 PC4

Cumulative Extraction
Rate of the First Four PCs

Eigenvalue 8.628 1.371 1.085 0.871
Percent (%) 57.52 9.14 7.24 5.81
Cumulative percent (%) 57.52 66.66 73.90 79.71

Variables Eigenvectors

pHW 0.273 −0.399 −0.025 −0.006 87.82%
DOW 0.283 −0.325 −0.207 −0.075 86.39%
CODW 0.250 0.091 −0.259 0.235 83.28%
DINW 0.251 −0.479 −0.074 0.300 91.08%
SRPW 0.245 0.390 −0.085 −0.058 79.59%
PETROW 0.224 0.143 0.574 −0.053 88.93%
CdW 0.288 0.129 −0.152 −0.365 84.78%
HgW 0.278 −0.207 −0.188 −0.323 78.17%
TKNS 0.254 −0.003 0.236 −0.092 76.16%
TPS 0.252 −0.161 0.163 0.225 81.22%
HgS 0.242 0.177 0.154 0.517 81.55%
CdS 0.245 0.052 0.332 −0.064 86.44%
PETROS 0.245 0.025 0.286 −0.354 73.82%
SulphideS 0.268 0.323 −0.406 −0.152 92.14%
TOCS 0.267 0.316 −0.162 0.355 80.74%

Note: Statistically high weights are underlined.

4. Discussion

In the KEIs, CdW, and TOCS selected from PC1 were the most highly correlated in the water and
sediment variables, respectively. CdW well correlated (dCor > 0.60) with the toxic pollutant indices
SulphideS, CdS and HgW, as well as the eutrophication indices SRPW, DOW, CODW, and TKNS.
The strongest correlations existed between CdW and SulphideS (0.822,
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< 0.01) within the two groups, respectively. This is related to the precipitation of Cd
sulfide [31] and good correlation between Cd and PO4 [32] in the seawater. Many studies indicated
that Cd could act as either a toxin or a tracer nutrient in marine environments [33–36]. In agreement
with the previous research, CdW held the largest factor loading (0.288) in PC1, thus playing a critical
role in the coastal environment.

TOCS, also selected from PC1, is a direct measure of the organic matter content in the sediment.
Table 3 shows that TOCS strongly correlated with SulphideS (0.805,
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and thus could be considered as a major controlling factor for toxin matter enrichment in sediments.
This agrees with previous studies such as [37–41]. In addition, TOCS correlated strongly with SRPW

(0.724,
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> 0.05) in the study area. This is consistent
with the findings of Hong et al. [42] on the relationship between the organic matter and phosphorus in
the Southwest Yellow Sea. The distribution of TOCS had remarkable effects on the circulation process
of phosphorus in the study area, and thus could be considered a sensitive geochemical indicator.

DINW, PETROW and HgS were the only high factor loading indicators in PC2, PC3 and PC4,
respectively. As can be seen from Table 4, PC2 explained 9.14% of the total characteristics of which
DINW made the most contribution (−0.479). DINW was also the only variable exceeding the CSWQS
guideline during the monitoring period post Phase I reclamation (maximum value of the pollution
status p was 1.81, see Figure 7a). According to the Bulletin of Marine Environmental Quality of Jiangsu
Province [43–46], DINW is the main pollutant of seawater in the region. The nutrient contamination is
one of the fundamental characteristics of the local marine water environment. Therefore, it is reasonable
to identify DINW as the key indicator to represent eutrophication conditions in the reclamation area.
PETROW and HgS were relatively independent among the PEIs. PETROW, with the highest factor
loading (0.574) in PC3, increased sharply after the Phase I reclamation (see Figure 7b) largely due
to the oil pollution of the construction equipment. Therefore, it could be reasonably chosen as the
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representative contaminant of the high-duty construction of reclamation. As the biggest contributor
to PC4, HgS showed the highest absolute temporal fluctuation at all the sampling sites (|t| > 0.90,
see Figure 7b). The relative independence and drastic change made it sensible to select HgS to be an
important indicator in the region.

Because of the direct dependency and high sensitivity of phytoplankton communities on the
environmental variables in the coastal marine system [47,48], the biodiversity of phytoplankton was
used as the response data of the local environmental conditions impacted by reclamation. Figure 8
illustrates the comparison of the measurements of KEIs between pre- and post-Phase I project. After the
reclamation, the concentrations of CdW, TOCS, DINW, and HgS significantly decreased; although the
concentration of PETROW increased, it remained at a rather low level. These variations indicate that
the local environmental condition after the reclamation favored the development of phytoplankton
more than the pre-reclamation condition in the region. This is consistent with the performance of
the biodiversity of phytoplankton (see Figure 6). To further evaluate the validity of the selected
KEIs, multiple regression analysis was conducted using the KEIs as independent variables and
the biodiversity indices as dependent variables. The multiple regressions yielded coefficients of
determination (R2) of 0.996 for Rmargalef, 0.918 for the Shannon-Wiener index, and 0.938 for the Pielou
index after the Phase I project, as well as 0.994 for Rmargalef, 0.912 for the Shannon-Wiener index,
and 0.957 for the Pielou index before the Phase I project (Table 5). The results suggested that the
identified KEIs were well representative of the coastal environmental system.Water 2018, 10, 69  14 of 17 
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Table 5. Multiple regressions of the KEIs on the phytoplankton biodiversity.

Period Parameter Rmargalef Shannon-Wiener Index Pielou Index

pre-Phase I
R2 0.994 0.912 0.957
Standard error 0.023 0.128 0.036
Significance <0.0001 0.011 0.002

post-Phase I
R2 0.996 0.918 0.938
Standard error 0.0089 0.048 0.014
Significance <0.0001 0.003 0.001

PCA has become a frequently used tool of identifying the KEIs in environmental applications
due to its advantage of effective dimensionality reduction with minimal information loss. Many
researchers had performed PCA to reduce the dimensionality of environmental variables to
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identify the key elements [17,22–24], locate the critical controllers in determining the local aquatic
structure [15,16,49–51], as well as reveal the KEIs responsible for water quality variations [18–21,25].
In the normal PCA algorithm, the Pearson’s correlation was often used to measure the correlations of
the environmental variables and construct the correlation coefficient matrix R for the subsequent factor
analysis. However, the Pearson’s correlation is difficult to be applicable when the interrelationships
of the variables are nonlinear. For example, we calculate the Pearson’s correlation coefficient of CdW

with SulphideS, CdW with SRPW, CdW with pHW, CdW with DOW, TOCS with HgS, and TOCS with
SulphideS in the C-space of the study region. The results indicate that the correlation coefficients
are −0.329, 0.0975, −0.0191, −0.146, −0.208, and −0.406, respectively, and their significant values
(two-tailed) are all larger than 0.05. The Pearson’s correlation can’t capture the strong nonlinear
relationships among these variables. The errors should cause the information distortion of high
loading factors in the subsequent factor analysis, and negatively affect the determining results of
KEIs in the system. In this study, the adoption of the distance correlation (dCor) solves this problem
effectively. The validation test of KEIs demonstrates that the proposed MPCA is a suitable method
for identifying the KEIs in the coastal and marine environment. The method also can be extended to
extract the key indicators to support environmental quality management in other regions across the
world where the environmental systems present the non-linear or non-monotone characteristics.

5. Conclusions

A modified principal component analysis approach (MPCA) has been developed to identify the
KEIs. In the MPCA algorithm, a characteristic space composed of three attribute dimensions of spatial
distribution, pollution status, and temporal variation of environmental variables was constructed to
embody their integrated environmental characteristics. The distance correlation (dCor) was introduced
to detect the nonlinear relationships inherently existing between these variables. The MPCA was
applied to identify the KEIs from the PEIs consisting of eight water plus seven sediment chemical
variables in the Tiaozini large-scale tidal flat reclamation area. The identified KEIs in the reclamation
area included DIN, Cd, and PETRO in the water column, and Hg, TOC in the sediment. Satisfactory
responses of the KEIs to the biodiversity of phytoplankton both pre- and post-Phase I project indicate
that the selected KEIs adequately represent the environmental condition of the reclamation region.
Therefore, the proposed MPCA is suitable for extracting effective indicators that play key roles in
the coastal and marine environment. The use of the KEIs can help policy makers and researchers to
monitor the environmental changes in coastal reclamation area and make informative decisions on
selecting management strategies for the sustainable development and utilization of seawater resources.
Next, efforts should be devoted to using more cases to further test the validation of the MPCA in
different coastal and marine systems. It will also be of interest to collect long time-serial data to analyze
the complex interrelationships between the KEIs and marine plankton, and discuss the environmental
behavior and ecological effects of the KEIs with specially designed numerical experiments in the
study region.
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