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Abstract: Polder watercourses within agricultural areas are affected by high chemical oxygen 
demand (COD) and biological oxygen demand (BOD5) concentrations, due to intensive farming 
activities and runoff. Practical cases have shown that constructed wetlands (CWs) are eco-friendly 
and cost-effective treatment systems which can reduce high levels of organic and nutrient pollution 
from agricultural discharges. However, accumulated recalcitrant organic matter, originated by in-
situ sources or elements of CWs (i.e., plants or microbial detritus), limits the fulfilment of current 
COD discharge threshold. Thus, to evaluate its relevance regarding rivers ecosystem health 
preservation, we analysed the response of bio-indicators, the Multimetric Macroinvertebrate Index 
Flanders (MMIF) and the occurrence of organic pollution sensitive taxa towards organic pollutants. 
For this purpose, statistical models were developed based on collected data in polder watercourses 
and CWs located in Flanders (Belgium). Results showed that, given the correlation between COD 
and BOD5, both parameters can be used to indicate the ecological and water quality conditions. 
However, the variability of the MMIF and the occurrence of sensitive species are explained better 
by BOD5, which captures a major part of their common effect. Whereas, recalcitrant COD and the 
interaction among other physico-chemical variables indicate a minor variability on the bio-
indicators. Based on these outcomes we suggest a critical re-evaluation of current COD thresholds 
and moreover, consider other emerging technologies determining organic pollution levels, since 
this could support the feasibility of the implementation of CWs to tackle agricultural pollution. 

Keywords: chemical oxygen demand (COD); biological oxygen demand (BOD5); constructed 
wetlands (CWs); biological indicators; environmental standard limits 
 

1. Introduction 

Throughout the years, the environmental limits imposed by the European Water Framework 
Directive (EU WFD) (2000/60/EC) have become stricter. The aim is to protect and prevent a further 
decline of the ecological and chemical water status of European fresh and brackish watercourses. By 
2027, all surface watercourses should reach ‘good ecological and chemical conditions’ [1,2]. In 
Flanders (Belgium) these goals are far from being met; since a great majority of surface watercourses, 
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especially polder watercourses have been affected by intensive agricultural practices, causing erosion 
and excessive spread of manure as fertilizer [3].  

Wastewater and agricultural run-off discharged into streams or lakes with high content of 
organic pollution affect animal and plant life. On the one hand, organic matter (OM) concentrations 
in watercourses are analysed and measured by the biological oxygen demand (BOD5) and the 
chemical oxygen demand (COD). Their quantification is based on the amount of oxygen needed to 
degrade OM. The BOD5 test measures the amount of oxygen consumed by aerobic biological 
organisms to decompose the organic matter; in contrast to the COD test, which determines the total 
amount of oxygen needed to oxidize inorganic and organic contaminants, dissolved or suspended in 
surface water. On the other hand, the ecological status of aquatic ecosystems is determined by metrics 
and indices. These are derived by several factors such as richness, evenness, diversity, sensitivity and 
dominance of bio-indicators, such as macroinvertebrates which are linked to the morphology, 
hydrology, nutrients, salinity, dissolved oxygen (DO), BOD5 and COD contents in watercourses [4,5]. 
In Flanders, the surface water quality and the ecological conditions of these systems are evaluated by 
the Flemish Environment Agency (VMM) on monthly and yearly basis, as this agency oversees the 
fulfilment of environmental policies in Flanders.  

Throughout the EU member states, one of the techniques used for the treatment of agricultural 
and industrial wastes, or run-off are constructed wetlands (CWs), which have been tested and 
catalogued as a cost-effective an eco-friendly water treatment technique [3,6–10]. Since agricultural 
wastes and their proper management are the central target for the EU WFD, strict discharge limits 
have been imposed to the effluents coming from CWs treating animal manure. Moreover, in Flanders 
it is required that CWs’ yearly average removal efficiencies achieve at least 75% of COD, 90% of BOD5 
and 70% of suspended solids (SS) [11]. However, due to recalcitrant organic matter originated by 
external inputs (organic wastewater) and in-situ sources (microbial and plant detritus), reported and 
practical cases have shown that COD levels at CWs effluents are above the current thresholds. 
Considering the numerous advantages of CWs to cope with organic pollution following an 
environmentally-sensitive approach, Van den Broeck et al. [12] highlighted the need to set more 
consistent and easily applicable environmental limits for small wetlands and watercourses. So far, 
most of the emission limit values (ELVs) and environmental quality standard (EQS) set by the EU 
WFD have been defined on basis of large waterbodies and CWs larger than 50 ha.  

Looking at the broader context, congruence and obligations between EU member states have 
restricted a comprehensible and appropriate implementation of the European water policies. Some 
of the main limiting factors are the complexity of understanding the ecosystem functioning, 
knowledge transfer between political institutions and researchers, as well as the lack of or inadequacy 
of data collection [13]. For example, Table A1 shows how COD and BOD5 discharge standard limits 
vary between distinct types of industrial wastewater versus CWs effluents.  

To encourage the application of CWs to treat agricultural wastewater, the present study 
investigates the ecological relevance of the current COD discharge standard limit imposed to CWs 
treating animal manure. For this purpose, multivariate regression models and linear probability 
models were developed for case specific scenarios, to estimate the possible effects of different 
physico-chemical concentrations on the ecological status of polder watercourses. For this purpose, 
the Multimetric Macroinvertebrate Index Flanders (MMIF) was considered as a response variable, as 
this was adapted to measure the ecological water quality of watercourses according to the river type 
they belong and to cope with the implementation of the EU WFD [4]. Likewise, the presence of 
pollution sensitive taxa in polder watercourses was evaluated to have a better insight respect to 
organic pollution. A study group of macroinvertebrates was selected based on their tolerance score 
in relation to the MMIF and their saprobic index as presented by Tachet et al. [14]. In this manner, 
taxa used as key elements to shape the ecosystem stability were inspected for sensitivity towards 
organic stressors. It is important to note that in this study, other physico-chemical variables were 
considered for data exploration and statistical regression analysis to indicate the relative importance 
and interactions of other steering factors determining the health of the receiving river ecosystem. 
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By assessing the response of the MMIF and sensitive taxa to organic pollution, assumed to be 
represented by COD, BOD5 and DO concentrations, it is expected to indicate if CWs’ effluent treating 
animal manure would affect the health and stability of the receiving polder watercourses. In case of 
negligible effects, the implementation of CWs in vulnerable agricultural lands could be supported. 
In addition, through this study, flaws and opportunities to delineate standard limits are intended to 
be highlighted.  

The present manuscript is outlined as follows: the materials and methods section indicates the 
inspection and distribution of physico-chemical and biological data in relation to environmental and 
discharge standard limits. Then, it describes how data was processed to develop the subsequent 
multivariate and linear probability models. In Section 3, the results of data analysis and developed 
models are shown. Finally, the discussion and conclusion sections incorporate an evaluation of the 
study outcomes regarding the EU WFD and current environmental policies and COD, BOD5 standard 
limits applied in Flanders.  

2. Materials and Methods  

2.1. Study Area and Data Selection 

Thanks to the wide surface water monitoring network of small polder watercourses in Flanders, 
the physico-chemical and biological data (MMIF values and different taxa type with their respective 
abundances) could be retrieved from the website of the Flemish Environment Agency (VMM) [15,16]. 
This agency allocated the control sampling points as specified in the Compendium for Water Analysis 
(WAC) [17], considering the areas with homogeneous water composition, least favourable water 
quality conditions, feasible accessibility and impacted by anthropogenic activities.  

Physico-chemical concentrations and biological status determinations based on validated 
international standard methods are performed by the VMM as routine controls. Abiotic information 
is monitored and reported per month, whereas the biotic conditions are evaluated every year. For the 
determination of physico-chemical concentrations, such as conductivity (EC), pH, DO, nitrate (NO3), 
total phosphorous (TP), suspended solids (TSS), BOD5, COD, total nitrogen (TN) and ammonium 
(NH4), specified in the WAC part III A. C. and D [18–26] are used respectively. Correspondingly, 
samples of macroinvertebrates are collected following the WAC part V [27] method or as discussed 
by Gabriels et al. [4].  

Currently, within the Flemish polder watercourses there are 308 sampling locations where 
physico-chemical variables are measured and 170 sampling locations where macroinvertebrates are 
sampled. Among these sampling points, in only 156, biological and water samples for physico-
chemical analysis are collected [28]. Since these abiotic and biotic samples are not collected at the 
same moment, data needed to be coupled in a temporal dimension considering a certain time lag. A 
delta of 30 days prior to the biological observations was considered as an interval to couple the 
samples. A boundary to couple each abiotic observation only once was set to avoid the presence of 
duplicates. Other time intervals were considered (i.e., 7, 30, 90, 180 and 360 days), however, 30 days 
interval was selected because it gave a representative amount of coupled records without losing 
interpretability to the information caused by the fluctuations between physico-chemical 
concentrations and the biological status. As a result, the coupled data set was comprised by 77 
sampling locations where 16 physico-chemical variables were controlled, each determined 220 times 
over a period of 26 years (1989–2015). Important to note that, given the fact that each of the specific 
locations were not sampled at the same frequency, these were additionally grouped according to the 
river basin they belong to. In this case, four river basins were considered: (i) the lower Scheldt River; 
(ii) Brugse Polders; (iii) Ghent Canals; and (iv) Yser River. In this manner the fluctuation of abiotic 
predictor concentrations, the MMIF index values and prevalence of taxa could be assessed, through 
time and space.  

To evaluate the performance of COD removal by CWs treating the liquid fraction of animal 
manure, effluents coming from four CWs located in Gistel, Ichtegem, Langemark and Pittem (West-
Flanders, Belgium) were analysed. At these installations, animal manure initially goes to a primary 
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treatment where the liquid and a solid fraction are separated. Then, in the secondary or biological 
treatment, the liquid fraction is processed in an activated sludge reactor to reduce nutrient load. 
Finally, the pre-treated effluent proceeds to the wetland system, acting as tertiary treatment, where 
nutrient concentrations are expected to decrease below discharge standard limits. Each of the selected 
wetland system as case study have different number of horizontal and vertical flow helophyte filters, 
as well as, hydrophyte beds and the pleustophyte ponds. The area of these systems differs between 
0.35 ha. (Ichtegem), 0.4 ha. (Langemark), 0.9 ha. (Pittem) to 1.4 ha. (Gistel). The surface loading rate 
(1 to 1.2 m3/m2) of these manure treatment installations was defined based on the COD and nitrogen 
concentrations. After their construction in 2006 (Ichtegem), 2007 (Gistel), 2008 (Langemark) and 2009 
(Pittem), these CWs have reached a treatment capacity of 5000 to 20,000 t/year of liquid fraction of 
piggery manure [29]. A more detailed description of these treatment facilities (processing capacity, 
location) is available in Meers et al. [7]. and Donoso et al. [3,6]. Monthly samples of the effluents 
coming from the four CWs were collected since 2008 until 2016 and the obtained results were 
considered in this study. COD concentrations of the water samples were determined through 
photometric testing using NANOCOLOR® test kits [30].  

2.2. Data Exploration  

To identify the evolution and current status of the water quality conditions of fresh polder 
watercourses in Flanders, the reported physico-chemical concentrations were compared with each of 
the environmental standards limits as set by the Flemish Environmental Permitting Regulations 
(VLAREM II), Annex 2.3.1: Basic environmental quality norms for surface water as these are an 
implementation of the EU WFD into national regulations (Table A2 in Appendix A). To evaluate the 
ecological status of the watercourses, the MMIF was considered. This index calculated based on five 
equally weighted metrics, which are taxa richness, number of Ephemeroptera, Plecoptera and 
Trichoptera taxa, number of other sensitive taxa, the Shannon–Wiener diversity index and the mean 
tolerance score, is expressed in terms of an Ecological Quality Ratio (EQR). It ranges from 0 
representing a poor ecological status, to 1 that indicates good ecological conditions. According to the 
EU WFD and as discussed by Gabriels et al. [4] the EQR ratio was adapted to the type of river, this 
study considers the polder watercourses. In order to, interpret the ecological conditions, this type-
specific index was transformed into five classes: “bad,” “poor,” ”moderate,” “good” and “high.” In 
this study, classes were defined as “bad,” “poor,” ”moderate” and “good high,” with boundaries of 
0–0.19, 0.20–0.39, 0.4–0.59, 0.60–1 respectively. The good and high classes were combined because in 
only four instances a high ecological status was reported. To show how data were distributed among 
the different MMIF classes and physico-chemical chemical concentrations, box plots were generated. 
The presented boxplots considered all outliers in the measurements since critical values could mimic 
the impact point source discharges with high concentrations, either if these are coming from CWs or 
agricultural activities. Furthermore, the presence of organic pollution sensitive taxa was also 
considered for ecological quality evaluation. The degree of sensitivity of these taxa towards organic 
matter was studied on basis of their tolerance score, ranging from 10 for very pollution sensitive to 1 
for very pollution tolerant taxa [4]; and the saproby metric divided in 4 classes: Oligosaprobic, beta-
Mesosaprobic, alfa-Mesosaprobic and Polysaprobic. These classes regard ammonium (NH4), DO and 
BOD5 concentrations in surface watercourses, ranging from: <0.1, 0.1–0.5, 0.5–4, >4 mgNH4/L; >8, 8–
6, 6–2, <2 mg O2/L; and <1 mg, 1–5, 5–13, >13 mgBOD5/L respectively for each class and chemical 
variable [5].  

Furthermore, the CWs effluent concentrations were evaluated based on the discharge standard 
limits for installations treating animal manure, according to the VLAREM II Annex 5.3.2. Sectoral 
discharge conditions for industrial waste water (See Table A3 in Appendix A). In this case, the 
ecological status at the discharge ponds from the studied CWs has not been fully assessed. Therefore, 
box plots presented in Section 3.1 illustrate the distribution of COD concentrations determined at the 
effluents coming from the studied wetlands.  
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2.3. Multivariate and Probability Linear Models  

Prior to investigating the empirical relationship between the MMIF and the physico-chemical 
variables in this study it was necessary to assess the systematic differences between the controlling 
factors considered during the sampling process as described in Section 2.1. In other words, it was 
essential to determine if the sampling locations and sampling periods exhibit heterogeneous 
conditions that should be accounted for while modelling the aleatory behaviour of the MMIF. For 
this purpose, an exploratory ANOVA type approach was conducted to test for systematic differences 
in the MMIF across the sampled river basins and months. The idea behind this was to select a river 
basin and a month as base category and then build a regression model that estimates the relative 
difference between the base category and every basin/month combination. Equation (1) denotes the 
conditional model for the average of the MMIF:  	 = + ∑ = + ∑ = +   (1) 

where MMIF is the response variable observed at location (river basin) = 1,… ,  and time 
(month) 	 = 1,… , ;  represents the mean of each explanatory variables for the river basin and 
month base category; 	represents the potential systematic difference between each specific river 
basin and the base category; and 	denotes a similar construct for each particular sampling month 
keeping constant the river basins;  represents the term error. =  symbolises a series of 
indicator functions for each sampled basin, (An indicator function of the form =  is a 
conventional notation for a function that assigns the value of 1 if locations =  coincide, or 0 in the 
opposite case); whereas, =  indicates a series of indicator functions for each sampled month.  

After estimating the regression model specified in Equation (1), the predicted residual term  
can be inspected for normality by means of the Skewness-Kurtosis (Jarque-Bera) test statistic. If this 
test is rejected, there is a reason to suspect that the model specification as described in Equation (1) is 
incomplete, in the sense that more explanatory covariates should be considered to have a valid model 
for the conditional mean of the 	 . In the latter case, more appropriate candidate models should 
be given.  

As previously stated COD and BOD5 measures are widely used as water quality monitoring 
parameters which indicate the amount of oxygen needed to degrade organic and inorganic agents 
[31,32]. Theory and reported studies indicated that COD, BOD5 and DO are highly correlated 
parameters [31,33]. The correlation among them, however, varies according to the wastewater 
composition or the status of the aquatic system. Accordingly, considering organic matter pollution, 
other parameters were included in the model to correctly capture the partial effect each of them may 
have on the MMIF. In the present study, pH, EC, TN, NO3, NH4, TP, TSS, as well as, the interaction 
terms between these variables were considered.  

Equation (2) describes the resulting fully saturated model, as follows: = +	 + + + + + ++	 + × + × + × +	 × + × + × +	 × +× +	 × + × +	 × +× + × +	 × + × +	 × + × + × + × +	 ×+ × +	 × +	 × + × +	 × + × +	 × + × +	 × + × + × + ∑ −1=1 = +∑ = +−1=1 	  

(2) 

Then, the optimal model configuration was selected by means of a stepwise feature selection 
regression procedure. A greedy backward selection approach was implemented, starting from the 
model in Equation (2). By this means, the terms with the lowest contribution to the overall Bayesian 
Information Criteria (BIC, objective function) were iteratively removed from the model until a stable 
configuration was reached. This approach is an effective manner to reduce model complexity and to 
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increase interpretability, as including irrelevant explanatory variables would only decrease the 
precision and explanatory power of the model.  

It is important to note that through the developed models and selection procedure, we seek to 
understand the context of existing ecological conditions and present taxa regarding the potential 
explanatory variables but not to estimate accurate model predictions. Also, by applying stepwise 
variable selection algorithms the risk of overfitting is reduced [34]. We acknowledge that there is a 
risk of missing specific interactions in the selection procedure due to local decision in variable 
selection, which cannot always be considered as globally valid. In addition, that backward selection 
is biased towards ending up with a larger model than for instance forward selection [35]. However, 
it is important to note that the purpose of model evaluation in a ‘seeking to understand’ context is 
not to measure the accuracy of model projections but the probability that any given predictor variable 
can be selected as the potential driving force of existing species distributions. 

Then, the resulting regression model was validated by inspecting the residual term  for 
normality, as performed in the case of Equation (1). A satisfactory result indicating that normality is 
not rejected would allow to use this model to derive conclusions over the influence of the chemical 
variables over variance of the MMIF means.  

In this manner, the model can accommodate non-constant partial effects or the so called 
estimated marginal effects for each chemical variable; which may in turn depend on the values that 
the other covariates have in the model. As an illustration, the saturated model formulation for the 
partial effect of COD is given bellow: = + × + × + × + ×+ × + × + × + ×  

(3) 

The flexibility of this approach rests in its ability to model inter-dependent effects and therefore 
inspect the nature of partial effects of each of the variables included in the model. Normally, the 
application of the variable selection procedure described above will end in an optimized specification 
if compared to the fully saturated expression as presented in Equation (3) and it will potentially 
simplify the resulting partial effect. To evaluate these effects in practical conditions two scenarios 
(called as “average and worst-case” scenarios) were considered. In the first scenario, the partial effects 
of each significant variable and their interactions expressed in final model were calculated based on 
the mean physico-chemical concentrations at each river basin. By this means, the dominant water 
quality conditions at each river basin could be interpreted. In the second scenario, the partial effects 
of the final variables comprising the optimized model were calculated based on the physico-chemical 
values reported together with the highest COD and BOD5 concentrations at each river basin. In this 
manner, it is expected that the “worst” organic pollution conditions could be evaluated.  

Afterwards, a more in-depth evaluation of the probability of occurrence of organic pollution 
sensitive taxa in polder watercourses was performed to show more direct links with environmental 
pollution, as MMIF gives only a pooled overview of biological conditions. Its determination is more 
robust as it represents the ecological status of an assemblage of different taxa sensitive or resistant to 
several types of pollution, thus it presents limitations to estimate links towards specific pollutants.  

To start, with the organic pollution sensitive taxa assessment, a background data set was built 
considering single sampling locations and dates where physico-chemical parameters were measured 
but no taxa were observed. Then, abundance data were transformed to presence-absence with a 
threshold of 1 on the abundance and 0 on absence and coupled to the background data set. Further, 
a cluster of representative organic pollution sensitive taxa from the whole population of 67 different 
ones, found in the small polder watercourses in Flanders, was chosen. This selection was based on 
the saprobic index as reported by Tachet [14] and the tolerance score with regards to the MMIF [4]. 
In addition, only taxa with 20 instances and more were considered, as if less instances would have 
been taken into account, the developed models would be subject to overfitting to few presence 
records. Table A4 presents the cluster of the selected taxa. Boxplots were generated to illustrate the 
chemical conditions in which these taxa were present in comparison to the environmental standard 
limits.  
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Finally, the presence-absence of the selected taxa was evaluated by means of Linear Probability 
Models (LPMs). These models could be considered as rough approximations to conditional 
probability models (such as logit and probit models), which would be the natural choice given the 
binary nature of the response variable. The estimation was corrected via the Newey-West robust 
variance estimator to account for the induced heterogeneity that is introduced by the LPM 
specification. Approximating probit/logit models through LPM is a standard practice and has the 
added advantage that the linear nature of the approximation allows an easy interpretation of the 
estimated average marginal effects implied by the formulation of probabilistic models [36]. These 
LPMs were developed following the same principle of assessment as the multivariate regression 
models by considering river basins and sampling months as clusters as well together with the 
different physico-chemical variables with their interactions. Similarly, the backward selection 
approach was used in this case to browse across potential model specifications (starting from the 
fully saturated specification). To evaluate the model performance a confusion matrix was generated 
to compare the model predictions with the observations. As a confusion matrix requires binary data 
as input, the probability of occurrence is transformed by means of a threshold approach. A cut-off 
default value of 0.5, determining whether an observation has a predicted positive outcome, was 
applied. The evaluation criteria used were sensitivity (proportion of correctly predicted presences), 
specificity (proportion of correctly predicted absences), the Kappa statistics and the true skill statistic 
that normalise the overall accuracy by the accuracy that might have occurred by chance alone [37,38]. 
Finally, the partial average marginal effects of physico-chemical variables on the presence of 
pollution sensitive taxa were calculated considering the average and worst-case scenarios as 
previously stated.  

3. Results 

The analysis of the reported concentrations of water quality parameters, the MMIF values and 
the presence of organic pollution sensitive taxa allowed the interpretation of the water quality and 
ecological conditions of the Flemish polder watercourses. In addition, the chemical and biological 
data analysis allowed the description of how data were distributed through time and space. Based 
on this, statistical regression models were applied to evaluate the response of ecological water quality 
indicators in function of the chemical concentrations of water quality parameters.  

3.1. Data Exploration 

In this section, it is important to note that the data analysis was performed based on the coupled 
data set comprised by 220 measurements of each physico-chemical variable and the MMIF. In Figure 
1, the boxplots of BOD5 (panel A), COD (panel B) and DO in % and mg/L (panel C and D) are 
presented. Panel A, Figure 1 indicates that in polder watercourses with bad and poor ecological 
quality, BOD5 concentrations above the environmental quality standard of 6 mgO2/L were recorded 
the most in comparison with the other classes. 50.6% of the 85 recorded values distributed along the 
bad and poor classes were above the standard limit. Outliers in the graph could have been the result 
of punctual discharges or abnormal events. In contrast, locations with moderate, good and high 
ecological quality conditions, were encountered when most of the BOD5 concentrations were below 
the environmental standard. 32.6% of the 135 recorded values distributed in these classes were 
determined above the standard limit. For a better graphical representation, the BOD5 outlier values 
of 100 and 129 mgO2/L were omitted.  

Furthermore, Panel B, Figure 1, shows that almost all COD concentrations in polder 
watercourses were above the COD environmental standard limit of 30 mgO2/L. All the boxplots 
representing each of the MMIF classes are placed above the limit. Only 11.8% of the total 220 recorded 
values were below the standard threshold. The highest reported concentrations around 230 to 260 
mgO2/L are nearly ten times higher than the acceptable standard limit.  

Panel D, Figure 1, shows that in watercourses with bad ecological quality 77.8% of the 18 DO 
measurements in this class were below the standard limit of 6 mg/L. Regarding the poor, moderate, 
good and high classes it can be seen that the median of the boxplots is located slightly above the 
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minimum required standard limit. 38.1% of the 197 recorded values distributed over these classes 
were reported below the standard limit. In this case only 215 measurements were available for DO 
concentrations. Relating panel D with C, all the DO measurements in percentage in watercourses 
with bad quality were below the maximum required standard limit of 120%. Whereas 14.1% of the 
198 measurements recorded at poor, moderate, good high-quality classes exceed the maximum 
allowed percentage of DO. High percentage of oxygen measurements in these boxplots could 
represent oversaturated watercourses due to excessive algae growth, or high flow and turbulent 
waters. The, high percentage of DO encountered at watercourses with poor class could be the result 
of measurements taken during day light when dense aquatic plant beds produce high oxygen levels.  

Altogether, boxplots in Figure 1 indicate that as lower the biological water quality in the small 
polder watercourses was, the higher the BOD5 concentrations and the lower DO concentration were 
measured. In case of COD concentrations, most of the watercourses with good and high biological 
water quality are just slightly above the environmental standard limit; whereas, in the other classes 
even higher COD concentrations were recorded. 
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Figure 1. Panel (A) BOD5; Panel (B) COD; Panel (C) % DO; and Panel (D) DO concentrations recorded in fresh and brackish small polder watercourses compared to the 
environmental standard limits of 6 mgO2/L, 30 mgO2/L, 120% and 6 mg/L (striped lines) respectively and the ecological water quality classes based on the MMIF. 
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Figure 2 shows the distribution of COD concentrations measured at effluents coming from the 
case study CWs, located in Gistel, Ichtegem, Langemark and Pittem (Belgium). It indicates that all of 
them had to deal with COD concentrations higher than the admissible discharge standard limit. 
Though special attention is given to the wetland located at Pittem, where most of the times the 
discharge standard limit was met except for two observations recorded above the 125 mgO2/L. Thus, 
considering these results and reported studies [39,40] we evidenced that the mitigation of COD 
concentrations below the discharge limit are a challenge for CWs and therefore the importance to 
investigate if high COD concentrations impact the ecological water quality of receiving small polder 
watercourses.  

 
Figure 2. COD concentrations present in the case-study CWs compared to the COD discharge 
standard limit of 125 mgO2/L. 

3.2. MMIF and Organic Pollution Sensitive Taxa Response towards Physico-Chemical Variables 

In the first stage, the systematic differences in the MMIF mean values assumed to be influenced 
by the sampled months and river basins were assessed by the generated linear regression model. 
Table 1 shows that this initial regression model, based on 207 observations, resulted in a relatively 
low adjusted R-squared of 0.1049; indicating that other factors may be accounted for to explain the 
variations or effects on the MMIF means. In addition, comparing the coefficient estimates values of 
each month and river basin, results indicate that those of the Brugse Polders, the Yser River basins, 
as well as in the month of November would pose large potential differences in the average values of 
the MMIF. Hence, it is concluded that there are important reasons to consider additional factors to 
develop an explanatory model including the sampling river basins and months in the final model 
specification. 

Subsequently, residuals were evaluated by performing a skewness/kurtosis (Jarque-Bera) test 
statistic which resulted on a significant skewness of 0.0136 and kurtosis of 2.3076 as shown in Table 
1. It is expected that residuals with a normal distribution have a skewness of 0 and kurtosis of 3. Thus, 
to properly interpret results and reject or accept normality the probability skewness and kurtosis 
values in comparison with the probability chi-square, which indicates if the two latter violate 
normality, were evaluated. In this manner, the probability chi-square value of 0.0183 indicated that 
the null hypothesis was rejected at the 5% significance level, which strongly suggest that this initial 
exploratory specification is incomplete, as was originally suspected. 
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Table 1. Results of the explanatory ANOVA type approach performed to assess the differences 
between the means of the MMIF at each sampling river basin and month.  

Model Performance Result
Number of observations 207

R-squared 0.1396
Adjusted R-squared 0.1049 

MMIF Coefficient Estimates p-Value [95% Confidence Interval] 
Basin   

Brugse Polders 0.1060 0.002 0.0393 0.1728 
Yser River 0.1097 0.002 0.0409 0.1785 

Month     
July 0.0512 0.409 −0.0709 0.1733 
June 0.0579 0.263 −0.0438 0.1596 
May −0.0045 0.934 −0.1130 0.1039 

November 0.1230 0.022 0.0178 0.2283 
October 0.0370 0.439 −0.0572 0.1312 

September −0.0140 0.790 −0.1174 0.0894 
Constant 0.3017 0.000 0.2046 0.3988 

Residuals Skewness/Kurtosis Tests for Normality 
Mean 4.90 × 10−1 Variable Residual model 

Std. Dev. 0.168 Observations 207 
Skewness 0.0136 Probability (Skewness) 0.934 
Kurtosis 2.3076 Probability (Kurtosis) 0.032 

  Chi2 8.00 
  Probability > Chi2 0.0183 

Table 2 indicates the resulting specification for the optimised model. It shows the final variables 
that can significantly explain the variance of the MMIF means with 95% confidence level. All the 
variables that did not significantly contribute to the overall BIC for the model fit were removed from 
the fully saturated model. Besides, Table 2 presents the coefficient estimates for the selected 
explanatory variables and their corresponding interactions influencing the MMIF means with the 
95% confidence intervals. In addition, Table 2 also shows that the sample behaviour of the model 
residuals can be statistically classified as normally distributed though the estimated skewness 
(−0.273) and kurtosis (2.552) indicate a slightly longer left tail. This Gaussian distribution is justified 
by the probability chi-square value of 0.114 that allows the approval of the null hypothesis, in 
consequence the optimized model could be used for further evaluations.  

Table 2. Results of the Multivariate Linear Regression Model performed to assess the differences 
between the means of the MMIF and physico-chemical variables. 

Model Performance Result
Number of observations 183 

R-squared 0.4183 
Adjusted R-squared 0.3772

MMIF Coefficient Estimates p-Value [95% Confidence Interval] 
BOD5 −0.0075 0.001 −0.012 −0.0030 
COD 0.0037 0.012 0.0008 0.0066 
DO 0.0027 0.001 0.0011 0.0043 
TSS −0.0058 0 −0.008 −0.0032 
NH4 −0.0191 0.011 −0.034 −0.0045 

EC*pH −3.56 × 10−6 0 −4.81 × 10−6 −2.31 × 10−6 
BOD5*NO3 −0.0050 0 −0.0074 −0.0026 
COD*DO −3.51 × 10−5 0.004 −5.86 × 10−5 −1.16 × 10−5 
COD*TSS 5.30 × 10−5 0.011 1.23 × 10−5 9.37 × 10−5 
NO3*TSS 7.96 × 10−4 0 4.74 × 10−4 0.001 

Basin 
Brugse Polders 0.1464 0.000 0.088 0.205 

Yser River 0.0944 0.001 0.040 0.149 
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Constant 0.3068 0.019 0.163 0.451 
Residuals Skewness/Kurtosis Tests for Normality 

Mean −3.05 × 10−11 Variable Residual model 
Std. Dev. 0.1326 Observations 183 
Skewness −0.2726 Probability (Skewness) 0.1242 
Kurtosis 2.5521 Probability (Kurtosis) 0.1657 

  Chi2 4.34 
  Probability > Chi2 0.1143 

Note: (*) used to represent the tested interactions among the variables. 

In that manner, by means of the coefficient estimates of the optimised regression model, the 
marginal or partial effects of the resulting explanatory variables over the conditional mean of the 
MMIF were quantified. Table 3 presents the expected partial effects of each chemical variable after 
the stepwise selection procedure was carried out considering the average and worst-case scenarios. 
The analysis of these results indicate that the positive and negative values represent the direction of 
the effects. On the one hand, in this case, the negative sign on the estimated marginal effects of BOD5, 
DO, TSS and NH4 on the average MMIF indicates that high concentrations of these variables, would 
lead to low mean MMIF conditions. On the other hand, the positive sign on the estimated marginal 
effects of COD and in some cases of DO, might be misleading if an opposite interpretation is 
considered. However, the positive sign indicates that most of the effect of these parameters is already 
captured by the BOD5 and some of the other variables and interactions that the model accommodates. 
In consequence, to define the variables that give information about variance in the MMIF means, it is 
important to consider primarily the size of the estimated effect. For instance, comparing the partial 
effects of COD in contrast to the ones of BOD5 and NH4, the former is four and seven times smaller 
respectively (in absolute terms). In general, the estimated coefficients by the developed model could 
be considered as a close estimation of the physico-chemical variables which could explain the 
variation of MMIF means under case specific conditions. Hence, the expected partial effects presented 
in Table 3 are not a definite indication of how much the increase or decrease of chemical 
concentrations would increment or lower the MMIF mean values. Rather, they serve as an indication 
of the relative importance each of the physico-chemical parameters has to tell about the ecological 
and water quality conditions. Nonetheless, by the analysis of the partial effects on the variation of the 
MMIF means it was seen that BOD5 captures a major part of the common effect of the studied 
variables, while the recalcitrant COD and the interaction among physico-chemical variables explain 
a minor part of the variability observed in the MMIF. Even though average and worst-case 
concentrations were considered, it is observed that the tendency of the effect of BOD5 remained for 
both situations. Only when extreme COD and TSS concentrations of (i.e., 216 mgO2/L and 80 mg/L 
respectively), were reported the partial effect of the BOD5 drops but not to a point higher than the 
one of COD.  

Overall, the present assessment through the developed explanatory model is meant to explain 
the variation of the MMIF means according to different water quality conditions and thus applicable 
to any case-study situation. In this case, for average and assumed worst-case scenarios of polder 
watercourses registered between 1989 and 2015, BOD5 could be considered as an important 
parameter to estimate the ecological and water quality conditions, resulting in the variance of the 
MMIF means.  

Table 3. Average and “worst-case” concentrations of physico-chemical variables at the polder watercourses 
river basins considered as input scenarios to estimate the marginal effects on the MMIF means.  

Basin 
(a.) Average and (b.) “Worst-Case” Physico-Chemical Concentrations Reported at Each River Basin 

BOD5 COD pH EC NH4 NO3 DO TP TSS 
mgO2/L mgO2/L Units μS/cm mg/L mg/L % mg/L mg/L 

Yser River a. 6.5 56 8.0 1641 0.78 2.56 77.8 1.2 33.9 
b. 16 204 8.6 855 0.10 0.80 134.3 3.3 70.0 

Ghent Canals 
a. 6.0 71.9 8.0 3077 0.76 0.68 70.4 1.6 53.9 
b. 9.9 108.0 8.3 2820 0.3 0.2 76.1 2.1 94 

Brugse Polders a. 5.4 44.5 8.0 3047 1.43 1.72 72.2 1.0 20.5 
b. 19.1 91.1 8.7 5530 0.30 0.40 153.8 1.7 59.0 
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Lower Scheldt 
a. 13.9 74.1 7.7 2006 4.17 0.91 67.9 1.1 29.0 
b. 129 216 7.3 985 12.8 0.10 41.0 4.7 80.0 

Basin 
Estimated Marginal Effect of Significant Variables on the MMIF Means 

BOD5 COD pH EC NH4 NO3 DO TP TSS 

Yser River a. −0.020 0.0028 - - −0.019 - 0.0007 - −0.0008 
b. −0.011 0.0027 - - −0.019 - −0.0045 - 0.0056 

Ghent Canals 
a. −0.011 0.0041 - - −0.019 - 0.0001 - −0.0015 
b. −0.008 0.0060 - - −0.019 - −0.001 - −0.0001 

Brugse Polders a. −0.016 0.0023 - - −0.019 - 0.0011 - −0.0021 
b. −0.009 0.0014 - - −0.019 - −0.0005 - −0.0007 

Lower Scheldt a. −0.012 0.0029 - - −0.019 - 0.0001 - −0.0012 
b. −0.008 0.0065 - - −0.019 - −0.0049 - 0.0057 

Note: (-): Variables which estimated marginal effect is held by the interaction with others.  

3.3. Evaluation of the Presence-Absence of Pollution Indicator Taxa  

In the former section, the model developed to relate the variance in the MMIF explained by 
physico-chemical variables reflects a pooled response of the macroinvertebrate community towards 
these predictors. Therefore, masking to some extent the possibility to obtain a good estimate of the 
steering factors shaping the response of specific organic pollution sensitive taxa. In consequence, the 
following step was to inspect if there is a stronger link between the presence of specific taxa (building 
blocks of the MMIF) and physico-chemical parameters by means of probability linear models.  

Table 4 presents the result of the selected organic pollution sensitive taxa for further evaluation. 
As explained in Section 2.3, this specific group of organic pollution sensitive taxa was selected based 
on their saprobity level and tolerance score according to the MMIF. Oligosaprobic and β-
mesosaprobic taxa, living organisms tolerating BOD5 concentrations between <1 and 5 mgO2/L and 
NH4 concentrations between <0.1 and 0.5 mg/L with tolerance score 6 and 8, were considered as 
indicator organisms of organic matter pollution.  

Later, the evaluation of their presence according to the different physico-chemical 
concentrations, was performed through boxplots. Figure 3 presents the concentrations at which some 
of the selected taxa in Table 4 are present with respect to water quality parameters (BOD5, COD, DO, 
TP, NO3 and TSS). The illustrated boxplots show that the selected taxa are sensitive to BOD5, NO3, 
DO and TSS since most of the present taxa were encountered only at concentrations lower than the 
environmental standard limit. However, the same trend of occurrence was not recorded in the case 
of COD and TP. In contrast, boxplots show that organic pollution sensitive taxa were encountered at 
COD and TP concentrations higher than the environmental standard limit; implying that these could 
have a low influence on the present taxa.  

Table 4. Organic pollution sensitive taxa to organic pollution encountered more than 20 instances 
from 1989–2016 in polder watercourses (Flanders–Belgium). 

Taxa Saprobity MMIF Tolerance Score  
Gyraulus 

Oligosaprobic 
<0.1 mgNH4/L 

>8 mgO2/L 
<1 mgBOD5/L 

6 
Hippeutis 6 

Micronecta 6 
Potamopyrgus 6 
Leptoceridae 

β-mesosaprobic 
0.1–0.5 mgNH4/L

6–8 mgO2/L 
1–5 mgBOD5/L 

8 
Caenis 6 
Cloeon 6 

Haliplidae 6 
Ischnura 6 
Planorbis 6 
Valvata 6 
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Figure 3. Selected taxa present in the polder watercourses in relation to the environmental standard limits of Panel (A) BOD5; Panel (B) COD; Panel (C) % DO; Panel (D) 
TP; Panel (E) NO3; Panel (F) TSS. (Ca = Caenis, Cl = Cloeon, Gy = Gyraulus, Ha = Haliplidae, Hi = Hippeutis, Is = Ischnura, Le = Leptoceridae, Mi = Micronecta, Pl = Planorbis, 
Po = Potamopyrgus, Va = Valvata).
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C D 
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The presence/absence of the selected taxa in function of water quality parameters was evaluated 
through linear probability models as described in the methodology (Section 2.3). Results showed that 
considering the organic pollution water quality indicators, the presence of Hippeutis and Valvata was 
more sensitive to BOD5 concentrations; whereas, Leptoceridae’s presence was more sensitive to DO 
levels. Moreover, the occurrence of Caenis, Haliplidae, Micronecta, Planorbis showed to be responsive 
to TSS; whereas, Micronecta and Potamopyrgus’ presence was more sensitive to TP levels. A 
representation of the resulting model for Hippeutis after the backward selection procedure was 
performed, is presented in Table 5; which indicates the variables and their interactions that are 
significant to explain Hippeutis’ presences with a 95% confidence level. Moreover, Table 5 presents 
the coefficient estimates of each of these variables by which the average marginal effects on the 
probability of occurrence of Hippeutis were calculated.  

Table 5. Linear Probability Model developed to estimate the average marginal effects on the 
probability of occurrence of Hippeutis. 

Hippeutis-Linear Probability Model

Frequency Absent 143
Present 40 

Number of observations 183
R-squared 0.243
Root MSE 0.203

Presence Coefficient Estimate p-Value [95% Confidence Interval] 
BOD5 −0.019 0.002 −0.030 −0.007 
NH4 0.049 0.023 0.007 0.091 
TP*pH −0.032 0.001 −0.051 −0.014 
EC*pH −5.19 × 10−6 0.001 −8.3 × 10−6 −2.1 × 10−6 
NO3*NH4 −0.036 0.003 −0.060 −0.012 
COD*TP 0.003 0.001 0.001 0.004 
NO3*TSS 0.001 0.013 1.6 × 10−4 0.001 
Brugse Polders  0.381 0.000 0.223 0.540 
Yser River 0.271 0.001 0.106 0.437 
Constant 0.266 0.001 0.118 0.415 

Note: (*) used to represent the tested interactions among the variables. 

For further analysis, Hippeutis, Leptoceridae and Valvata were considered, since these taxa 
showed sensitivity to COD, BOD5 and DO which are the variables of interest in this study. In fact, 
among the three, only Valvata’s presence could be explained by variance in COD concentrations. 

To derive final conclusions about the executed evaluation, the models’ performance of each of 
these taxa was assessed by computing evaluation measures derived from a confusion matrix from 
which four performance criteria are calculated and presented in Table 6. A confusion matrix is a two 
by two table presenting four outcomes produced by a binary classifier, in this case, presence–absence 
of the analysed taxa.  

Table 6. Different organic pollution sensitive taxa, their corresponding elements of the confusion 
matrices: true positive (TP), false positive (FP), false negative (FN), true negative (TN) and four 
different performance criteria: sensitivity (Sn), specificity (Sp), Cohen’s Kappa (Kappa) and true skill 
statistic (TSS). A threshold of 0.5 was used to transform probability of occurrence to presence/absence. 

Taxa 
Elements of the Confusion Matrix Criterion 

TP FP FN TN Sn Sp TSS Kappa 
Hippeutis 10 1 30 142 0.25 0.99 0.24 0.33 

Leptoceridae 1 0 23 159 0.04 1.00 0.04 0.07 
Valvata  49 19 22 93 0.69 0.83 0.52 0.52 

Results showed that considering the elements of the confusion matrix and the four different 
evaluation criteria, the model developed to evaluate the probability of occurrence of Leptoceridae 
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should not be considered for further evaluation; since there was only one presence properly 
estimated, compared to the correct estimation of 159 absent records. In consequence, we focused on 
the model results of Hippeutis and Valvata. In an ecological context and following the guidelines of 
Manel et al. and Gabriels et al. [41,42] a Kappa statistic between 0.20–0.40 and 0.40–0.60 represent fair 
and moderate model performance respectively. The true skill statistic (TSS), does not have defined 
guidelines to classify the model performance. However, it explains the predictive accuracy of a given 
species distribution model based on the sensitivity and specificity. Hence, comparing the model 
results of the four evaluation criteria of Hippeutis and Valvata, it is concluded that the model of Valvata 
is better in explaining why would this taxon be absent given certain environmental conditions (COD 
or BOD5 concentrations), rather than being present. 

This conclusion is based on the moderate model performance (Kappa = 0.52) and the slightly 
higher specificity (Sp = 0.83) than sensitivity (Sn = 0.69) which indicates that true-negative predictions 
are better estimated. In the context of defining limits, one would rather aim to get an insight of the 
environmental conditions when species are absent, which is in fact the reason why we considered the 
developed models as adequate for the present study. 

Furthermore, the estimated average marginal effects given two relevant input scenarios, average 
and “worst-case,” are presented in Table 7. Similarly, as explained in Section 3.2, the interpretation 
of the estimated average marginal effects indicates that the BOD5, COD, DO, TP, NH4 and EC are 
correlated parameters that could indicate the ecological and water quality conditions which influence 
the presence of Valvata. However, BOD5 is the variable that captures most of their common effect and 
thus, it is an important variable that describes the impact on the probability of Valvata’s occurrence. 
It is important to note that the positive sign in the estimated average marginal effects indicates that 
the increase of the probability of occurrence of a specific taxon given one-unit increase in one of the 
physico-chemical variables would potentially depend on their initial value and the values of the other 
predictor variables. Also, the positive sign would indicate that the increase of the predictor variable 
would lead to the increase of the predicted probability of presence. In contrast, the negative sign 
would indicate that an increase of the predictor variable would lead to a decrease in the predicted 
probability [43].  

In this evaluation, two scenarios were considered; one regarded the average physico-chemical 
concentrations; and the other, considered the physico-chemical concentrations reported along with 
the highest COD and BOD5 recorded values. Results showed that regardless different physico-
chemical conditions were considered, the trend of occurrence of Hippeutis and Valvata could be 
affected mainly by BOD5 concentrations. In the case of Valvata, the average marginal effect of BOD5, 
results from the interaction of pH, TP and TSS. The positive partial effect of 0.002 and 0.021 of COD 
considering average and “worst-case” conditions respectively, could be the result of the interactions 
among the other physico-chemical variables considered in the model. The average marginal effect of 
COD, results from the interaction of pH, NO3 and TSS. Hence, relating the estimated effects for BOD5 
and COD with the ones of the interacting variables, one could conclude that high concentrations of 
TP in watercourses would influence the estimated effect in the case of BOD5, whereas, high TSS 
concentrations would determine a greater estimated effect in the case of COD. Nevertheless, positive 
and negative signs cannot always have a straightforward interpretation but is mainly the size of the 
effect what matters to determine the importance of the best explanatory variable.  

Table 7. Estimated average marginal effects on the probability of occurrence of organic pollution 
sensitive taxa given the average and “worst-case” concentrations of water quality parameters in the 
polder watercourses.  

 Reported (a.) Average and (b.) “Worst-Case” Physico-Chemical Concentrations  
Variable  BOD5 COD DO NO3 TSS TP pH NH4 EC 

Units  mg/L mg/L % mg/L mg/L mg/L units mg/L μS/cm 
Value a. 6.5 52.7 73.9 1.8 28.8 1.0 7.9 1.1 2256.3 

 b. 129 216 41 0.1 80 4.7 7.3 12.8 985 
  Estimated Average Marginal Effects
  BOD5 COD DO NO3 TSS TP pH NH4 EC 
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Taxa     
Hippeutis a. −0.019 - - - - - - −0.018 - 

 b. −0.019 - - - - - - 0.045 - 
Valvata a. −0.042 0.002 - - - −0.002 - - −6.4 × 10−5 

 b. −0.029 0.021 - - - 4.002 - - −6.4 × 10−5 

4. Discussion 

The focus of this study was to evaluate the ecological relevance of the current COD discharge 
standard limit for CWs treating animal manure which effluent is received in polder watercourses. In 
this section, two main aspects are discussed regarding the different ways physico-chemical and 
biological data were evaluated, to explore the significance COD as an ecological quality indicator of 
organic pollution. At first instance, the main drawbacks on the available data are presented with the 
aim to highlight important sampling criteria that should be considered in efforts of meeting specific 
goals, such as the EU WFD criteria. The reason this issue was taken into account relies on two points. 
First, that environmental limits have been usually set based on data collected mainly at large 
watercourses; and second that CWs effluents need to meet the same standards as other types of high-
tech manure treatment installations. Then, the second aspect of discussion considered the importance 
of COD as indicator of organic pollution in watercourses through the interpretation of its expected 
partial effects in two ecological water quality indicators, the MMIF index and organic pollution 
sensitive taxa found in polders watercourses. Based on obtained results through the developed 
multivariate regression analysis and the linear probability models we evaluate if the aims of this 
study were met, so that alternative policy measures regarding the control of organic pollution could 
be formulated. 

4.1. Important Criteria to Set Appropriate Environmental and Discharge Standard Limits  

Even though, it is well-known that all European surface water need to meet a good ecological 
and water quality status regarding the EU WFD, little research or evaluations have been performed 
coupling the biotic and abiotic aspects in a reasonable manner. So far, there is not much evidence of 
ecological studies carried out, for instance, to define proper standard limits. Bio-indicators have been 
mainly used to determine water quality conditions. Consequently, this study is presented as a 
practical evaluation and illustration of setting and quantifying standard limits looking at expected 
variations of ecological indicators given different physico-chemical conditions.  

For this analysis, a coupled data set comprised by control measurements taken on routine bases 
by the VMM was used. In consequence, three main downsides of the available data set are pointed 
out to indicate how an unsuitable assessment following generalized and standardized procedures 
could limit the achievement of goals. (1) Sampling periods or dates throughout the years do not 
always match between biotic and abiotic observations. As presented by Lock and Goethals [28], the 
Flemish Environment Agency has defined different sampling periods and frequencies for chemical 
and biological parameters; (2) Reported concentrations of the physico-chemical variables of interest 
(COD, BOD5 and DO) for comparison are not consistently reported or measured; (3) Sampling 
locations are not sequentially followed through time and space. Therefore, though the compiled data 
set was clustered and analysed considering different scenarios such as seasonality, type of polder 
waterways, sampling months and river basins to assess the ecological relevance of COD standard 
limit; at the end, we could only identify patterns to help steer rule setting for limits but not to ensure 
their relevance or to define new ones. Thus, to estimate or predict relevant abiotic-biotic coupled 
conditions through statistical regression analysis studies, data collected on sequential time lapses are 
needed. Most of the water quality assessments and standard limits delineations carried out by EU 
Member States are based on data gathered on a routine basis for quality control but, rather for a 
limited number of times data are collected based on specific objectives. Through this study, we 
evidenced that even though the extensive data collected on the polder watercourses, regarding 
physico-chemical and biological indicators for water quality conditions, statistical regression studies, 
can result in uncertainties or depict partial environmental or biological conditions. 
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In addition, another aspect to consider when it comes to discharge limits and effluent water 
quality control is that CWs stand under the group of manure processing plants. This implies that the 
different performance capacities between natural versus chemical, energy or high-technology 
requiring treatments are underestimated. Hence, the current COD discharge standard limit for CWs 
treating animal manure shown to be frequently unreachable. However, to present a consistent 
analysis on this matter, chronological missing data of existent biological communities in the polder 
watercourses and in CWs needs to be filled prior delineating suitable standard limits that can control 
the real impact of CWs effluents and further deterioration of the ecology of receiving watercourses. 

4.2. Response of the MMIF to Physico-Chemical Variables by Means of a Multivariate Linear Model 

Based on Section 4.1, the present study proceeded with the statistical analysis of the available 
data to determine if by this, it was possible to explain the ecological relevance of the current COD 
environmental and discharge standard limits imposed to for small polder watercourses and CWs 
treating animal manure. Bearing in mind the way data were collected, the effects of sampling periods 
and locations were examined by performing an exploratory ANOVA type approach. We certified 
that those factors were not determining an impact on the variance of the response variables but the 
capacity to extrapolate the results of the model to other case-study situations. Moreover, given that 
the good status of surface water is not only derived by controlling COD, BOD5 and DO 
concentrations, other variables were considered for further assessment. NO3, NH4, TP, TSS, pH and 
conductivity measurements are not based on the determination of oxygen levels, however, high 
concentrations of these in surface water could be related to organic pollution. Elevated nutrient 
concentrations, for example, deplete DO levels of surface water and can affect macroinvertebrates 
communities health [44]. Studies evaluating the relationships between water and habitat quality with 
macroinvertebrate communities existing in small watercourses, have considered similar variables 
and ways to cluster and evaluate data [44–46].  

Therefore, by conducting statistical regression analysis we investigated if among those variables 
COD could be considered as a good indicator of organic pollution in relation to the ecological status 
and presence of macroinvertebrates species. Results concluded that COD is a variable which does not 
explain significantly the effect of organic pollution on ecological indicators (MMIF or organic 
pollution sensitive taxa) in the optimized model specification, which controls for BOD5 and other 
physico-chemical variables. The opposite was claimed in the case of BOD5. The hypothesis test, 
checking for normality in the residuals of the optimised model after the backward selection criteria 
was performed, allowed to conclude that the presented analysis was valid and reliable enough with 
a 95% confidence level. Thus, we could indicate that BOD5 is assessed as an explanatory variable 
which specifies better the variance in MMIF and occurrence of organic sensitive taxa. In consequence, 
it is proposed that one of the possible ways to assess and control organic pollution by CWs effluents, 
could be the re-evaluation of discharge standard limits, considering for example a (BOD5/COD) ratio 
adapted to the type of wastewater being treated, so that a better degree of biodegradability of organic 
matter could be estimated. In that manner, both water quality parameters would keep 
complementing to each other while major attention is given to biodegradable organic matter and not 
to the recalcitrant one [33,47]. Allan et al. [2] acknowledged that COD, BOD5 and BOD5/COD ratio 
are important water quality parameters to be considered, yet they stated that the combination of 
standard spot sampling techniques and laboratory analysis with emerging technologies (i.e., 
biomarkers or biosensors) would provide a more realistic overview of the impacts of contaminants 
on aquatic organisms. 

In addition, rather recent studies have noted some of the limitations these two parameters 
present [31,48]. Apart from being the result of in spot-sampling techniques, their determination is 
characterized as insensitive, imprecise, time-consuming, plus chemical waste generating. Van den 
Broeck et al. [12] added that for the case of shallow and relatively small ponds, which represent 
habitat characteristics of CWs and polder water courses, climate conditions strongly determine 
oxygen and nutrient concentrations. Hence, snapshot measurements would disregard temporal 
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fluctuations and as such, a proper delineation of standard environmental limits could turn out to be 
inadequate. 

Besides, considering that CWs are aquatic macrophyte-dominated systems, where these plants 
and existing aquatic communities participate on the removal of organics, it is believed that the 
presence of recalcitrant organic matter originated by the nature of the treatment leads to high COD 
effluent concentrations which are not possible to degrade. In contrast, other wastewater treatment 
techniques use additional chemical elements, limited sets of microorganisms composed by bacteria 
or high inputs of energy for organic removal and thus, discharge limits could be met but in the 
process different compounds will be converted into products that could affect the biota.  

Thus, as previously stated, the coupling of cost-effective emerging techniques (i.e., microbial 
bio-sensors, photometric methods, microbial biomass and microbial respiration rates to qualitatively 
indicate the OM content among others [48,49]) with snapshot measurements would allow a more 
appropriate delineation of environmental and discharge limits.  

4.3. Evaluation of the Presence-Absence of Pollution Indicator Taxa  

As previously stated, several studies based on the presence or ecological water quality indices 
of macroinvertebrates have been carried out to evaluate the ecological status of watercourses 
[28,44,50,51]. Some of them mainly focused on oxygen concentrations in surface water and the 
response of organic pollution sensitive taxa. For example, Lock et al. [28] and Connolly et al. [51] 
considered oxygen concentrations for modelling and predicting the presence of organic pollution 
sensitive taxa. On the one hand, Lock et al. [28] associated the low foreseen increase of stoneflies 
occurrence in watercourses in Flanders between 2015–2027, with the need of more rigorous 
management plans to meet the EU WFD goals. On the other hand, Connolly et al. [51], did not 
perceive a sensitive response on the prevalence of the macroinvertebrate communities at a mesocosm 
scale experiment testing low DO concentrations. Yet, they certify the need to assess the natural system 
and different taxa over several generations to have a more precise estimation of the effects of low DO 
in the biota. Yazdian et al. [45] and among others, considered DO and BOD5 as important physico-
chemical variables to define biological indices.  

In this study, similar aspects were replicated when the probability of occurrence of the most 
organic pollution sensitive taxa found in the Flemish polder watercourses was analysed. Data 
exploration showed that these taxa are good indicators of organic pollution given their minimal 
presence at low DO concentrations and high BOD5 concentrations. However, the presence of these 
taxa at COD concentrations higher than the environmental standard limit; and, the low estimated 
average effect on the occurrence probability, could be an indication that either COD cannot explain 
the effect of organic pollution on sensitive taxa, or that the imposed COD concentrations as standard 
limits do not affect their occurrence. Thus, the suggested re-evaluation of the standard thresholds or 
determination of alternative physico-chemical parameters concerning organic pollution levels, were 
supported. Considering our case study, after evaluating the effect on the probability of occurrence of 
organic pollution sensitive taxa present in Flemish polder watercourses, only Valvata was sensitive to 
COD and BOD5. However, major effect on its occurrence was detected by BOD5 than COD 
considering average and “worst-case” scenarios. Hence, to re-evaluate and define proper COD 
environmental and discharge standard limits more attention could be given to Valvata’s response 
towards different COD concentrations and mainly in the locations where it prevails. In fact, further 
research should consider the integration of abiotic and biotic components, mainly for the case of CWs. 
Nowadays, only few studies assessing the water and ecological quality of CWs using biological 
indicators in regard to the WFD have been carried out [12].  

5. Conclusions 

The compliance with the EU WFD goals by 2027 in EU-countries, urges policy makers and 
scientist to identify key ecological and water quality parameters used in combination to define the 
biotic and abiotic conditions of surface watercourses and setting appropriate standard limits. COD 
concentrations in polders watercourses located in Flanders (Belgium) are higher than the 
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environmental standard limits. Similarly, COD concentrations determined in CWs effluents do not 
always meet current COD discharge criteria. Thus, we considered the importance of investigating the 
impact of COD on the ecology and water quality conditions of the receiving watercourses. 
Particularly, the relevance of COD thresholds set for the Flemish polder watercourses and CWs 
treating animal manure located near some of these polder watercourses, were evaluated. Different 
aspects were considered during the study, such as the sampling and data collection process, the 
performance of CWs to degrade recalcitrant organic matter and the response of biological indicators 
(organic pollution sensitive taxa) and ecological indices (MMIF) towards organic matter 
contamination quantified by COD, BOD5 and DO concentrations. Statistical regression analysis 
showed that higher estimated effects on the variation of the MMIF mean values and the probability 
of occurrence of sensitive taxa (Valvata) were given by BOD5. Given the high correlation levels present 
between BOD5 and COD, it is important that policies do not regard solely to current COD thresholds. 
The performed assessments showed, current COD standard limits in for Flemish polder watercourses 
and effluents coming from CWs treating animal manure do not go along with these rivers ecosystem 
preservation or capacity of these type of CWs to degrade recalcitrant organic matter. Considering the 
natural type of treatment in CWs, the presence of recalcitrant organic matter (i.e., in the form of humic 
substances) make COD by itself a non-sensitive parameter. In consequence, it is suggested further 
research to explain reliable effects of recalcitrant organic matter for this type specific scenario to 
define appropriate environmental limits, or to apply more sensitive legislation measures around 
BOD5. To this end, emerging technologies for a qualitative determination of organic matter could be 
tested and considered, as well as, other oxygen demand quality control parameters which are less 
time consuming and determined in a reliable high-throughput manner than BOD5 or COD. Besides, 
to define proper standard limits, models with high explanatory and predictive power need to be 
developed based representative ecological information in combination with abiotic data. For this, the 
selected sampling locations should be periodically monitored and at the same frequencies.  

In any respect, a re-evaluation of the COD discharge limit would promote the implementation 
of CWs to treat agricultural discharges, such as liquid fractions of animal manure, which 
management is of big concern in Flanders and in other EU Member States.  
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Appendix A 

Table A1. Discharge COD and BOD5 standard limits for different industrial waste water. 

Industry 
Variable 

BOD COD 
Food industry  
Potato production 25 mgO2/L 200 mgO2/L 
Beer and beverages industries 25 mgO2/L 200 mgO2/L 
Gelatine Industry 100 mgO2/L 600 mgO2/L 
Canned fruits and vegetables industries 50 mgO2/L 300 mgO2/L 
Fertilizer production plants   

Discharge into brackish surface water 
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Industry 
Variable 

BOD COD 
Food industry  

a) Phosphate and superphosphate fertilizers, phosphoric 
acids and technical phosphates 

25 mgO2/L 450 mgO2/L 
Discharge into fresh surface water 
60 mgO2/L 300 mgO2/L 

b) Nitrogen fertilizers 50 mgO2/L 160 mgO2/L 
c) Fertilizers compounds 25 mgO2/L 150 mgO2/L 
Manure and manure processing plants    
a) Large scale installations  
 (>60.000 ton/year) for piggery manure 

25 mg O2/L 125 mgO2/L 
b) All size installations for cattle production 
c) Slaughterhouses  
Sugar factories, juice processing raspberries and beet industries
First period Mid-September–Mid-January 85 mgO2/L 200 mgO2/L 
Second period March–End May  180 mgO2/L 450 mgO2/L 
Third period June–September  30 mgO2/L  

Table A2. Basic water quality standards for fresh and brackish for polder surface watercourses. 

Variable Units Test Indicator Environmental Limit 
EC (Fresh water) μS/cm 90–percentile 1000 

EC (Brackish water) μS/cm Summer middle year average 150,000 
pH (Fresh water) pH units Minimum–maximum 6.5–8.5 

pH (Brackish water) pH units Minimum–maximum 7.0–9.0 
Dissolved Oxygen (DO) mgO2/L 10–percentile 6 
Dissolved Oxygen (DO) % Maximum 120 
Total Phosphorous (TP) mgP/L Summer middle year average 0.14 

Total Nitrogen (TN) mgN/L Summer middle year average 4 
Nitrate (NO3) mgN/L 90–percentile 5.65 

Total Suspended Solids (TSS) mg/L 90–percentile 50 
Chemical Oxygen Demand (COD) mgO2/L 90–percentile 30 
Biological Oxygen Demand (BOD5) mgO2/l 90–percentile 6 

Table A3. Discharge standard limits for installations treating animal manure. 

Variable Units Discharge Standard Limit 
EC μS/cm 1000 
pH pH units 6.5–8.5 

Total Phosphorous (TP) mgP/L 2 
Total Nitrogen (TN) mgN/L 15 

Total Suspended Solids (TSS) mg/L 33 
Chemical Oxygen Demand (COD) mgO2/L 125 
Biological Oxygen Demand (BOD5) mgO2/L 25 

Dissolved Oxygen (DO) mgO2/L 6 

Table A4. Taxa occurring more than 20 instances indicating their saprobic and tolerance score. 

Taxa Saprobity Tolerance Score 
Anisus β-mesosaprobic 4 

Armiger β-mesosaprobic 4 
Asellidae α-mesosaprobic 4 
Bithynia β-mesosaprobic 5 
Caenis β-mesosaprobic 6 

Chirnomidae-non-thummi-plumosus 
β-mesosaprobic 
α-mesosaprobic 

3 
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Polysaprobic 

Chironomidae-thummi-plumosus 
β-mesosaprobic mesosaprobic

Polysaprobic 
2 

Cloeon β-mesosaprobic 6 
Dendrocoelum β-mesosaprobic 5 

Dugesia β-mesosaprobic 5 
Dytiscidae α-mesosaprobic 5 
Erpobdella α-mesosaprobic 3 

Gammaridae β-mesosaprobic 5 
Glossiphonia β-mesosaprobic 4 

Gyraulus 
Oligosaprobic 
β-mesosaprobic 

6 

Haliplidae β-mesosaprobic 6 
Helobdella α-mesosaprobic 4 

Hemiclepsis β-mesosaprobic 4 

Hippeutis 
Oligosaprobic 
β-mesosaprobic 

6 

Hydracarina Oligosaprobic 5 
Ischnura β-mesosaprobic 6 

Leptoceridae 
β-mesosaprobic 
α-mesosaprobic 

8 

Lymnaea β-mesosaprobic 5 

Micronecta 
Oligosaprobic 
β-mesosaprobic 

6 

Naididae 
β-mesosaprobic 
α-mesosaprobic 

5 

Notonecta β-mesosaprobic 5 
Palaemonidae  5 

Physa β-mesosaprobic 5 
Physella α-mesosaprobic 3 
Piscicola β-mesosaprobic 5 
Pisidium Oligosaprobic 4 
Planorbis β-mesosaprobic 6 

Potamopyrgus 
β-mesosaprobic 
α-mesosaprobic 

6 

Sigara 
Oligosaprobic 
β-mesosaprobic 

5 

Sphaerium β-mesosaprobic 4 
Theromyzon β-mesosaprobic 4 
Tubificidae α-mesosaprobic 1 

Valvata β-mesosaprobic 6 
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