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Abstract: Water quality models are of great importance for developing policies to control water
pollution, with the model parameters playing a decisive role in the simulation results. It is
necessary to introduce estimation through multi-objective parameters, which is often affected by
noise in the data, into water quality models. This paper presents a multi-objective particle swarm
optimization algorithm, which is based on the Mahalanobis distance operation, mechanism of
cardinality preference and advection-diffusion operator. The Mahalanobis distance operation can
effectively reduce the influence of noise in the data on model calibration. The mechanism of cardinality
preference and the use of the advection-diffusion operator can prevent non-dominated solutions
from falling into the local optimum. Four cases were used to test the proposed approach. The first
two cases with true Pareto fronts show that this approach can accurately estimate the true Pareto
front with a good distribution, even in the presence of noise. Furthermore, the application of the
approach was tested by the O’Connor model and Crops of Engineers Integrated Compartment Water
Quality Model. We show that our approach can produce satisfactory results for the multi-objective
calibration of complex water quality models. In general, the proposed approach can provide accurate
and efficient parameter estimation in water quality models.

Keywords: water quality model; improved multi-objective particle swarm optimization; parameter
estimation; anti-noise performance

1. Introduction

Water quality models play a very important role in water quality research that assesses ecosystem
health and aids in the development of water pollution control strategies [1,2]. Most water quality
models are characterized by differential equations with multiple indicators and a large number of
parameters [3,4]. These parameters may be difficult to obtain by experimental measurements or may
not even have physical measurements. Furthermore, the selection of these parameters plays a decisive
role in the simulation results. Therefore, the calibration of models is crucial in the successful application
of water quality models [5,6].

In general, model calibration can be manual or automatic. The manual trial-error process is
usually inefficient, time consuming and labor intensive. It strongly depends on the experiential
knowledge of the modeler. Implementation of this approach is becoming increasingly difficult due to
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increases in the dimensions of parameters and number of objective functions [7–9]. The shortcomings
of the trial-error approach can be overcome by automatic calibration, which utilizes the performance
of the optimization algorithms and computational efficiency of digital computers. This method has
become more and more popular with the increase in computation efficiency [10–12]. The most common
method for the automatic calibration of water quality models involves the translation of multiple
indicators into a single aggregated scalar with weighted sums [5,13,14]. However, these indicators,
which reflect the characteristics of the ecosystem from different aspects, may be inconsistent and
conflicting. Therefore, more than one objective of the automatic calibration for water quality models
should be considered simultaneously. The essence of automatic calibration is transformed into solving
multi-objective optimization problems (MOPs) [15–18].

A set of solutions denoted as the Pareto optimal set can be obtained as the result of trade-off
among the indicators [19–22]. A variety of multi-objective evolutionary algorithms (MOEAs) have
been developed, which are considered as being effective for solving MOPs [23–29]. Multi-objective
particle swarm optimization (MOPSO) is a mainstream algorithm of MOEAs [30,31]. It is a highly
competitive algorithm because it is easier to implement and attain convergence compared to other
evolutionary algorithms. Furthermore, it is especially suitable for solving MOPs [29,32,33].

There are three aspects that should be considered to improve the quality of solutions when
using MOPSO to solve MOPs. First, it is important to properly redefine the global best guide (gbest)
distribution to obtain a set of non-dominated solutions, which will directly affect the search ability
and convergence of the algorithm [34,35]. Some methods for updating gbest are based on the topological
structure of particles, such as the sigma method [35], minimal particle angle method [36], fitness sharing
mechanism [37], niching mechanism [38], crowding distance [39] and its deformation [40], solution
distribution entropy [41], dynamic neighborhood strategy [42] and decomposition approach [43,44] among
others. The second point involves maintaining non-dominated solutions, which are stored in a
so-called external repository. These solutions are identified through the search process. The size
of the external repository is usually controlled to balance the tradeoff between a good Pareto
optimal set and the computational cost [45]. There are many strategies to attain this goal, such
as the ε-dominance method [46,47], fuzzy clustering technique [38], adaptive grid mechanism [28],
the measurements of parallel cell distance [48], preference order scheme [49] and so on. The third
aspect involves controlling and maintaining the diversity of particles. The methods include the
multi-swarm strategy [45,50], adaptive control of vital parameters [40,51], mutation operator [39], local
search scheme [52], population recombination strategy [53], jump improved operator and proportional
distribution mechanism [34].

The performance metrics of the MOPSO algorithms are usually based on standard test functions.
These algorithms have been widely applied in modeling [10,54,55], although few studies have been
examined water quality models [18]. To calibrate water quality models, the observed data are inevitably
accompanied by noise. There is a lack of knowledge and validation on whether these methods are
able to obtain reasonable results in the case of noise in the data. The noise in the data has a significant
impact on the calibration results of water quality models, but the existing MOPSO algorithms do
not take these issues into account. Therefore, it is important to note whether the algorithm has an
anti-noise performance.

A novel MOPSO algorithm is proposed, which has the purpose of performing parameter
estimation of water quality models with additional noise. This algorithm is inspired by mathematical
statistics and fluid mechanics theory. The shortcomings of traditional MOPSO algorithms can be
overcome using this algorithm. The algorithm is tested on four cases, which include several standard
test functions, test functions under different noise strengths and two water quality models.

2. Method

The proposed MOPSO algorithm is based on the Mahalanobis distance operation, mechanism
of cardinality preference and advection-diffusion operator, so the algorithm was abbreviated as
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MCAD-MOPSO. The main aims of the present study are: (1) To reduce the influence of noise in the
data on the calibration of water quality models; (2) to maintain the diversity of solutions and prevent
the solutions from falling into the local optimum; and (3) to enhance the search ability of algorithms
and better guide the search towards the true Pareto front.

The flowchart of the proposed approach is shown in Figure 1. The improved part of the approach
is shown in the color block diagram and is further discussed in Sections 2.1–2.3.
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2.1. Mahalanobis Distance Operation

The Mahalanobis distance is widely used in many fields, such as electronics and information
systems [56,57], machine learning and pattern recognition [58–61] as well as water quality
assessment [62]. The Mahalanobis distance in these applications usually replaces the Euclidean distance
for clustering analysis. However, it is less frequently used in the research of MOEAs. The similarity
of points in a solution space is usually measured by the Euclidean distance [29,45] and Manhattan
distance [39]. For these distance metrics, each objective value of the point is equally important and
is considered to be independent from the others. This assumption may not always be satisfied for
water quality models. The Mahalanobis distance takes into account unequal variances and correlations
among points in the objective space. It has the ability to evaluate distances by assigning different
weights or important factors to the points in the objective space [63–65]. Therefore, the Mahalanobis
distance is more appropriate for the calibration of water quality models in ecosystems. The distribution
information of each function was applied with the covariance matrix of the multi-objective vectors in
the Mahalanobis distance, which minimizes the effect of noise in this operation. It is the one of the
most important basic features of the MCAD-MOPSO algorithm for the personal best position (pbest)
selection, gbest selection and external repository updating.
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Definition 1 (Mahalanobis distance). The Mahalanobis distance between the two particles in objective
space is defined as:

dm
(

xi, xj
)
=
√[

f (xi)− f
(
xj
)]TS−1

[
f (xi)− f

(
xj
)]

(1)

where xi = (xi1, xi2, · · · , xin) and xj =
(
xj1, xj2, · · · xjn

)
are independent variables of the optimized

function that are marked by the ith and jth particles; f (xi) = ( f1(xi), f2(xi), · · · fM(xi)) and
f
(

xj
)

=
(

f1
(

xj
)
, f2
(

xj
)
, · · · , fM

(
xj
))

are objective functions of the ith and jth particles; T means
the transposed matrix; and S is the covariance matrix of the multi-objective functions, which is
calculated by the particle’s objective functions.

2.2. Mechanism of Cardinality Preference

The cardinality preference mechanism was added to update the gbest and pbest in the algorithm
to ensure that the particles move toward the sparse regions of the search space for maintaining the
diversity of particles.

Definition 2 (Particle inducer). In the particle inducer, we defined ∀xi ∈ A, yj ∈ B, i = 1, 2, · · · , N,
j = 1, 2, . . . , L, A 6= φ, B 6= φ. The inducer of particle xi is denoted as sxi . For particles in B, yk is the
most similar particle to xi, meaning that yk is the inducer of xi. Therefore, it is defined as:

sxi = yk, while dm(xi, yk) = min
j=1,2,...,L

dm
(
xi, yj

)
, xi 6= yj (2)

Definition 3 (Particle induced set). The particle set composed of the particles in set A induced by yk
is called the particle yk induced set Iyk on set A. It is abbreviated as the induced set and is defined
as follows:

Iyk := { xi|sxi = yk, i = 1, 2, · · ·N} (3)

The definition of the induced set is based on Mahalanobis distance and reflects the similarity of
particles. In a similar way, the set induced by each element in B can also be obtained. The gbest and
pbest are updated based on the definition of the particle induced set.

2.2.1. Updated gbest

The gbest is updated by the following three steps.

(1) Compute the cardinality of the induced set of each particle in the external repository E on the
particle population, corresponding to Equations (2) and (3).

(2) Sort each particle in the external repository according to the cardinality of their induced set in
ascending order.

(3) Randomly select one particle from the specified top portion in the external repository, such as
10%, as the gbest.

In this way, the non-dominated solutions in the external repository with smaller cardinality are
selected as the gbest of the particles. This strategy enhances the search ability of the algorithm. It also
makes it easy for particles to explore the sparse area to prevent the solutions from falling into the local
optimum and maintain the diversity of the non-dominated solutions.

2.2.2. Updated Pbset

The updated pbset is based on the Pareto dominance relationship between pbset and the current
particle xi. Otherwise, pbset is updated according to the induced set cardinality in the following steps:

(1) Compare the cardinality of the induced set of the current particle xi and its pbest. The elements in
the induced set are on the external repository E.
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(2) If |Ixi | >
∣∣∣Ipbest

∣∣∣, update pbest = xi. Otherwise, do not update pbest.

The pbest is updated with a greater particle cardinality, which means that the pbest becomes closer
to the external repository. This strategy can accelerate the convergence rate of the algorithm.

2.3. Advection-Diffusion Operator

In the MOPSO algorithm, particles may aggregate after several generations. Therefore, it is
difficult for the algorithm to explore potentially better solutions. The advection-diffusion operator was
introduced to prevent the solutions from falling into the local optimum.

For each particle with n dimensions xi = (xi1, xi2, · · · , xin) in the same induced set
Iyk (yk = 1, 2, · · · , |E|), the proposed advection–diffusion of particles is depicted in Figure 2.

(1) Advection motion

(a) Arbitrarily select the sth dimension of each particle in Iyk .

(b) Theadvectionmagnitudeforeach xi ∈ Iyk iscomputedby Ak =
(

ukup−uklow

)
·C0 ·

(∣∣Iyk

∣∣/ |E|∑
yk=1

∣∣Iyk

∣∣),

where C0 is a constant, while ukup and uklow are the upper and lower boundaries of
xis, respectively.

(2) Diffusion motion

(a) The diffusion motion Dis for sth dimension of particle xi in Iyk is determined as
Dis = Ak · random(0, 1).

(b) The magnitude of advection-diffusion for each particle decreases as the number of
iterations increases:

xis = (Dis + Ak) · [1− (t/maxgen · β)]α + xis, xi ∈ Iyk (4)

where t is the number of iterations; maxgen is the maximum number of iterations;
and α (α = 1.5) and β (β ∈ (0, 1)) are adjustment indices. When t ≥ maxgen · β, this
operator should not be employed.
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Figure 2. Advection-diffusion of particles in an induced set.

2.4. Algorithmic Steps

2.4.1. Initialize

(a) Initialize the particle’s velocity v0
i = 0, particle’s position x0

i , personal best position pbest0
i = x0

i
and iteration counter t = 0

(b) Evaluate f (x0
i )

(c) Initialize the external repository E0, storing the non-dominated solutions found in particle
population in to E

(d) Initialize the gbest0 in accordance with Section 2.2.1.
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2.4.2. Repeat Until the Maximum Number of Iterations Is Reached

(a) Compute the new velocity of each particle using the following formula:

vt+1
i = wvt

i + c1r1
(

pbestt
i − xt

i
)
+ c2r2

(
gbestt − xt

i
)

where the weight parameter w is equal to 4. The values of the cognitive parameter c1 and social
parameter c2 are both 0.5; while r1 and r2 are random numbers from 0 to 1. Compute the new
position of xt

i :
xt+1

i = xt
i + vt+1

i

(b) Use the advection-diffusion operator on each particle, as stated in Section 2.3.
(c) Maintain the particles within the search space. If decision variable xi goes beyond its boundaries,

the reflection should be used.
(d) Evaluate f (xt+1

i )

(e) Update the external repository using the Pareto dominant relationship. If the external repository
is full, reduce the non-dominated solutions in the external repository as follows: First, sort the
cardinality of the induced set of particles in the external repository in ascending order. Second,
a non-dominated solution in the external repository is randomly selected and removed from the
specified bottom portion, such as the bottom 10%. It is likely that the non-dominated solutions in
dense areas are replaced.

(f) Update the gbestt in accordance with Section 2.2.1. Update the pbestt
i of each particle in accordance

with Section 2.2.2.
(g) Increment the iteration counter t.

The computational complexity of the algorithm is dominated by calculating the non-dominated
relation of the particles, working out the induced set for particles and sorting the particle cardinality.
The objective function computation has O(MN) complexity if there are N particles and M objective
functions. Therefore, the complexity of non-dominated relation computation is O(MN2) with N
particles in archive. The main complexity of working out the induced set for particles involves
the search of the minimum Mahalanobis distance, which requires a computational cost of O(N2).
The complexity of sorting the particle cardinality is O(Nlog2N). In summary, the overall complexity
of the proposed algorithm is O(MN2), which is the same as the MOPSO-CD [39] and NSGA-II
algorithms [23] and being slightly more complex than MOPSO [28].

3. Results and Discussion

The proposed approach is tested by four cases. Case I is based on several test functions that have
a true Pareto front. Several performance metrics from the standard literature are also shown, such as
generational distance, error ratio and spacing. Case II adds noise of different strengths in test functions
to test our approach’s ability to reduce the influence of noise. The applicability of our approach is
further tested in Case III, which is the O’Connor model, and Case IV, which is the Crops Engineers
Integrated Compartment Water Quality Model (CE-QUAL-ICM) in Chaohu Lake.

3.1. Case I

Multi-objective optimization test problems are crucial in determining the effectiveness of the
detection algorithm in solving the multi-objective optimization problems. Currently, some well-known
test functions have been widely used in the testing of various multi-objective algorithms, such as
ZDT [66], DTLZ [67] and so on. ZDT was proposed by Zitzler et al. and contains six problems
(ZDT1–ZDT6). These problems have different characteristics of the Pareto front. ZDT1–ZDT6
are based on two objective functions to reflect essential aspects of multi-objective optimization.
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DTLZ1–DTLZ7were proposed by Deb et al., which can have more than two objective functions
to test the ability of algorithms to optimize objective functions.

Several test functions, such as ZDT1–ZDT3, ZDT6, DTLZ1 and DTLZ2, were adopted to test
the performance of algorithms in this present paper. ZDT1 has a convex Pareto front, while ZDT2
has a non-convex Pareto front. The Pareto front of ZDT3 is characterized by five discontinuous
convex regions. ZDT6 has a complex Pareto front, which is a discontinuous non-convex region with
a non-uniform distribution of the solution. Therefore, the test problem for ZDT6 is more difficult
than that for ZDT1–ZDT3. DTLZ1 has a linear Pareto front with more than two objective functions.
Furthermore, the search space contains multiple local Pareto fronts, which makes it difficult for the
multi-objective optimization algorithm to achieve the global optimization. DTLZ2 has a spherical
non-linear Pareto front. These test functions have different characteristics of Pareto fronts, which
examine the capability of multi-objective algorithms to find and produce a quality distribution of the
Pareto front.

There are three performance metrics (generational distance, spacing and error ratio) for
multi-objective optimization, which are selected to compare the performance of the proposed algorithm
to other popular multi-objective algorithms, such as MOPSO [28], NSGA-II [23] and MOPSO-CD [39].
The parameter setting for each algorithm is shown in Table 1. The parameter dimensions for
ZDT1–ZDT3, ZDT6 were set to 30 and the number of objective functions was 2. For the DTLZ1 and
DTLZ2, the parameter dimensions and the number of objective functions were 10 and 3, respectively.

Table 1. Parameter setting of the multi-objective algorithms.

Parameter MOPSO NSGA-II MOPSO-CD Proposed Algorithm

Population size 100 100 100 100
Size of external repository 250 250 250 250

Mutation rate 0.5 1/n 0.5 N/A
Cross-over rate N/A 0.9 N/A N/A

Cell division 30 N/A N/A N/A
Advection-diffusion operator particles N/A N/A N/A 100

The following are the results of 30 independent runs of each algorithm. The true Pareto front and
median results with respect to the generational distance metric produced by the proposed algorithm
for the six test functions are shown in Figure 3. The comparison of results of the different performance
metrics of four algorithms are shown in Table 2.

The generational distance (GD) [68] is used to estimate how far the members in the non-dominated
set are from their nearest members in the Pareto optimal set. It is measured in objective space and is
defined as:

GD =

√
∑s

i=1 di

s
(5)

where s is the number of members in the non-dominated set found thus far; and di is the Euclidean
distance between the members in the non-dominated set and their nearest members in the Pareto
optimal set. If GD is 0, all non-dominated solutions obtained are in the Pareto optimal set. In Table 2,
the average performance of the MOPSO-CD and our approach with respect to GD is far better than that
of NSGA-II and MOPSO for the six test functions. For ZDT1 and ZDT2, the average performance of our
approach is equivalent to that of MOPSO-CD with respect to GD. For ZDT3 and ZDT6, our approach
has the best average performance of the four algorithms, with GDs of 0.0011 and 0.0181, respectively.
The results of our approach are also best for all test functions with three objects, especially DTLZ1.
Furthermore, Table 2 and Figure 3 shows that our approach is able to find good solutions that are
accurate estimates of the true Pareto optimal set. The GD can be applied to estimate the convergence
of the optimal iterations [28,68]. When there is a small difference of GD values between the front and
back generation, the results can be considered as having converged. The threshold of this difference is
set to be 5% times the GD of this generation. Overall, the convergence of proposed algorithms is about
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the same as MOPSO-CD, while it is slightly better than MOPSO and NSGA-II. This is especially the
case in complexity test functions, such as ZDT6, DTLZ1 and DTLZ2.

The error ratio (ER) [28] indicates the percentage of solutions (from the non-dominated set
obtained so far) that are not members of the Pareto optimal set and is defined as:

ER =

√
∑s

i=1 ei

s
(6)

where s is the numbers of members in the non-dominated set found thus far. If ei = 1, it indicates
that the solution i is the member of the Pareto optimal set, while ei = 0 otherwise. A value of 0 for
ER indicates that all non-dominated solutions obtained by an algorithm belong to the Pareto optimal
set. Table 2 shows that all the non-dominated solutions obtained by the proposed approach so far
are almost in the Pareto optimal set within a certain precision (<0.01) for most of the test functions.
The average performance of NSGA-II and MOPSO with respect to ER is equal to 1 for the six test
functions. Essentially, these two algorithms may fail to find the true Pareto optimal set for the six test
functions. For ZDT1–ZDT3 and DTLZ2 the ER evaluation of our approach is 0. In addition, for ZDT6,
the ER evaluation of our approach is 0.0094, while MOPSO-CD has a value of 0.0124. These results
indicate that MOPSO-CD is better than NSGA-II and MOPSO for evaluating ER, but is slightly inferior
to our proposed approach. This is also seen in the ER results of DTLZ1. These results indicate that our
approach has better performance than the other three algorithms because they have relatively larger
ER values than our approach inmost test functions.Water 2018, 10, 32  8 of 23 
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Table 2. Algorithm performance metrics for the six test functions.

Test Metrics NSGA-II MOPSO MOPSO-CD Proposed Algorithm

ZDT1

GD
Average 0.1052 0.0615 0.0003 0.0005
Std. Dev. 0.0738 0.0153 <0.0001 0.0006

ER
Average 1 1 0 0
Std. Dev. 0 0 0 0

SP
Average 0.0131 0.0072 0.0051 0.0079
Std. Dev. 0.0024 0.0013 0.0008 0.0012

ZDT2

GD
Average 0.1273 0.0859 0.0003 0.0003
Std. Dev. 0.0106 0.0127 <0.0001 <0.0001

ER
Average 1 1 0 0
Std. Dev. 0 0 0 0

SP
Average 0.0074 0.0016 0.0035 0.0083
Std. Dev. 0.0063 0.0014 0.0002 0.0021

ZDT3

GD
Average 0.1425 0.1104 0.0016 0.0011
Std. Dev. 0.0036 0.0049 <0.0001 <0.0001

ER
Average 1 1 0.0002 0
Std. Dev. 0 0 0.0005 0

SP
Average 0.0127 0.0131 0.0036 0.0054
Std. Dev. 0.0026 0.0028 0.0003 0.0028

ZDT6

GD
Average 0.8325 0.5462 0.0200 0.0181
Std. Dev. 0.0127 0.0243 0.0166 0.0140

ER
Average 1 1 0.0124 0.0094
Std. Dev. 0 0 0.0066 0.0051

SP
Average 0.1532 0.1472 0.0871 0.0985
Std. Dev. 0.1260 0.0911 0.0881 0.0991

DTLZ1

GD
Average 0.1673 0.1263 0.0771 0.0195
Std. Dev. 0.6756 0.6332 0.5746 0.0573

ER
Average 1 1 0.2211 0.2087
Std. Dev. 0 0 0.3751 0.3957

SP
Average 0.2805 0.2501 0.0606 0.1291
Std. Dev. 0.8314 0.8178 0.2305 0.5983

DTLZ2

GD
Average 0.1121 0.1293 0.0763 0.0731
Std. Dev. 0.0352 0.0455 0.0022 0.0025

ER
Average 1 1 0 0
Std. Dev. 0 0 0 0

SP
Average 0.6356 0.5911 0.3505 0.4203
Std. Dev. 0.3176 0.1687 0.0335 0.0544

Spacing (SP) [69] is used to measure the distribution of solutions throughout the set of
non-dominated solutions and is defined as:

SP =

√
1

s− 1

s

∑
i=1

(
d− di

)2
(7)

where di = minj
(
∑m

k=1
∣∣ f i

m − f i
m
∣∣), i, j = 1, 2, · · · , s; s is the number of members in the non-dominated

set found so far; m is the numbers of objectives; and d is the mean of di. If SP is 0, it indicates that all of
the currently available members of the Pareto front are equidistantly spaced. In Table 2, although the
average performance of the proposed algorithm for SP is better than those of NSGA-II and MOPSO in
some of the test functions, including DTLZ1 and DTLZ2, the results of our approach for the ranking
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of SP are lower than the results of MOPSO-CD. The reason for this difference may be because our
approach is based on the Mahalanobis distance for measuring the degree of similarity between the
solutions. Therefore, there is a natural inconsistency with SP, which is based on the Euclidean distance
for measuring the equidistance of the solutions. In addition, if the non-dominated solutions produced
by the algorithm are not part of the true Pareto front, the SP metric is irrelevant [28]. For an example,
the SP for the MOPSO is 0.0016, which is better than the SP value of our algorithm (0.0083) in ZDT2.
However, the ER for the MOPSO is 1, which indicates that the non-dominated solutions obtained by
MOPSO are far from the true Pareto front.

Based on the above discussion, it is shown that the proposed approach can generate a better set of
non-dominated solutions for the six test functions.

3.2. Case II

For testing the ability of the proposed approach in minimizing the influence of noise, different
noise strengths from Gaussian distributions N(0, 0.05) and N(0, 0.15) were added to the test functions
in Case II. The setting of the algorithm-related parameters is the same as in Case I. The comparison of
the algorithm results is shown in Tables 3 and 4.

Table 3 shows that the average performance of the two algorithms in all of the test functions with
noise N(0, 0.05) is inferior to that without noise, which is shown in Table 2. However, the proposed
algorithm has an overwhelming advantage compared to MOPSO-CD in all of the performance tests.
The average performance of our approach with respect to GD and ER for ZDT1 is 0.0079 and 0.0127,
respectively, which is 5.4–5.8 times better than that of MOPSO-CD. For ZDT2, the average performance
of MOPSO-CD with respect to GD and ER is 0.0571 and 0.1302, which is approximately 158% and
350% more than the GD (0.0221) and ER (0.0290) of our approach, respectively. The GD and ER of the
MOPSO-CD for ZDT3 are approximately 6 and 7 times that of our approach, respectively. Compared
to other ZDT series test functions, the superior performance of our approach is not as significant in
ZDT6, but its corresponding GD, SP and ER are also approximately 1/3–7/8 of those of MOPSO-CD.
In addition, the average performance of our approach with respect to SP for all of the test functions
are better than those of MOPSO-CD. The SP is 0.0521 in our approach and 0.1571 in MOPSO-CD for
ZDT3, which is 70% higher than ours. For DTLZ1 and DTLZ2 test functions, the performance of our
algorithm is far better than MOPSO-CD with the results of the MOPSO-CD approach being 2–5 times
our results.

Table 3 shows that our approach has better stability compared to MOPSO-CD in all test functions.
The standard deviation of the GD values from the MOPSO-CD for ZDT1 and ZDT3 is approximately
6 times that of our approach, while this difference is around 2–9 times for DTLZ1 and DTLZ2. The above
results show that when noise N(0, 0.05) is added to the test functions, our approach has better results
than MOPSO-CD in terms of the average performance metrics and standard deviation, which means
that proposed algorithm can effectively reduce the influence of noise on the optimization results.

To test the performance of the algorithm under stronger noise, noise according to N(0, 0.15) was
added to the test functions. The test results of the performance of the two algorithms can be seen in
Table 4. The advantages of our approach are not as obvious as in Table 3, but are 1.5–6 times better than
the results of MOPSO-CD. This may be because the signal-to-noise ratio decreases with the increase
in the disturbance intensity, causing the value to become submerged by noise. Nevertheless, our
approach is still superior to MOPSO-CD in almost all of the test functions in Table 4. For instance,
the ER of MOPSO-CD for DTLZ2 is 1, while the ER of our algorithm is only about 0.5. This indicates
that the MOPSO-CD algorithm is hardly to obtain the true Pareto optimal set, while our algorithm was
able to obtain this set even under the stronger noise.

The convergence of the proposed algorithm under noise is better than MOPSO-CD. There are
1500–2000 fewer function evaluations from our algorithm compared to MOPSO-CD for ZDT1, ZDT2,
ZDT3 and ZDT6 under N(0, 0.05) noise. For DTLZ1 and DTLZ2, this difference is 1200. The lead of the
proposed algorithm is slightly larger under the stronger noise.
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Our approach has a good performance compared to MOPSO-CD with respect to GD, SP and ER
almost in all of the test functions with different noise strengths. This result indicates that our approach
can produce a well-distributed non-dominated solution set even under different strengths of noise.
The stability of our approach, which has a smaller standard deviation with respect to GD, SP and
ER, is also better than that of MOPSO-CD. Under different noise strengths, our approach has a good
performance for convergence, distribution and anti-noise.

Table 3. Algorithm performance metrics for the six test functions with noise N(0, 0.05).

Test Metrics MOPSO-CD Proposed Algorithm

ZDT1

GD
Average 0.0463 0.0079
Std. Dev. 0.0571 0.0098

ER
Average 0.0693 0.0127
Std. Dev. 0.0705 0.0150

SP
Average 0.1070 0.0484
Std. Dev. 0.1094 0.0599

ZDT2

GD
Average 0.0571 0.0221
Std. Dev. 0.0806 0.0357

ER
Average 0.1302 0.0290
Std. Dev. 0.1890 0.0331

SP
Average 0.1120 0.0652
Std. Dev. 0.1196 0.0788

ZDT3

GD
Average 0.0864 0.0115
Std. Dev. 0.0892 0.0153

ER
Average 0.0985 0.0152
Std. Dev. 0.1052 0.0226

SP
Average 0.1571 0.0521
Std. Dev. 0.2331 0.0716

ZDT6

GD
Average 0.1670 0.0702
Std. Dev. 0.2418 0.0474

ER
Average 0.0999 0.0716
Std. Dev. 0.1364 0.0430

SP
Average 0.3485 0.2985
Std. Dev. 0.2438 0.2190

DTLZ1

GD
Average 1.4542 0.5897
Std. Dev. 4.3173 0.7555

ER
Average 0.3263 0.0627
Std. Dev. 0.3699 0.0428

SP
Average 3.2972 1.0251
Std. Dev. 9.9006 4.9083

DTLZ2

GD
Average 0.2443 0.1854
Std. Dev. 0.0223 0.0129

ER
Average 0.1413 0.0489
Std. Dev. 0.0762 0.0023

SP
Average 1.0686 0.5932
Std. Dev. 0.3935 0.0782
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Table 4. Algorithm performance metrics for the six test functions with noise N(0, 0.15).

Test Metrics MOPSO-CD Proposed Algorithm

ZDT1

GD
Average 0.1616 0.0371
Std. Dev. 0.1309 0.0294

ER
Average 0.3446 0.2587
Std. Dev. 0.1069 0.0945

SP
Average 0.1905 0.0935
Std. Dev. 0.1631 0.0947

ZDT2

GD
Average 0.1639 0.0533
Std. Dev. 0.1528 0.0597

ER
Average 0.3788 0.2701
Std. Dev. 0.1961 0.1490

SP
Average 0.1600 0.1212
Std. Dev. 0.1468 0.1206

ZDT3

GD
Average 0.1234 0.0419
Std. Dev. 0.1134 0.0656

ER
Average 0.3336 0.2465
Std. Dev. 0.1178 0.0998

SP
Average 0.1797 0.1399
Std. Dev. 0.2479 0.1692

ZDT6

GD
Average 0.3846 0.1803
Std. Dev. 0.2948 0.0984

ER
Average 0.3838 0.2858
Std. Dev. 0.1550 0.0882

SP
Average 0.4545 0.3082
Std. Dev. 0.2788 0.2264

DTLZ1

GD
Average 6.9200 0.9517
Std. Dev. 7.1328 1.8960

ER
Average 0.6430 0.5162
Std. Dev. 0.5618 0.3785

SP
Average 12.0001 2.8862
Std. Dev. 14.8153 5.7169

DTLZ2

GD
Average 0.3847 0.2747
Std. Dev. 0.0466 0.0247

ER
Average 1 0.5323
Std. Dev. 0 0.1236

SP
Average 2.1736 0.6745
Std. Dev. 0.5832 0.0955

3.3. Case III

The O’Connor model is a one-dimensional steady-state river model based on the Streeter-Phelps
model, which takes into account the degradation, sedimentation, oxygen consumption of organic
matter decomposition oxygen demand (CBOD) and nitrification oxygen demand (NBOD), as well
as the role of dissolved oxygen (DO) re-oxygenation [70]. It contains four parameters: the CBOD
degradation coefficient K1, re-oxygenation coefficient K2, CBOD settlement coefficient K3 and NBOD
degradation coefficient KN. The four parameters are a good measure of the performance of the
algorithm in model applications, in which these values vary widely. These values have a range of
0.9–4. According to the measured results of a river section on the Taihu Plain in China, the value of the
initial conditions and parameters are shown in Table 5.
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Table 5. The values of the parameters and initial conditions of a river section.

Parameter (/d) Initial Condition (mg/L)

K1 K2 K3 KN CBOD NBOD Oxygen Deficit (OD)

0.950 3.530 0.100 0.125 0.305 0.100 0.000

In the following section, the two algorithms are used for parameter estimation of the O’Connor
model. The three objection functions, which are the relative errors of CBOD, NBOD and OD, are
optimized by MOPSO-CD and the proposed algorithm. The population size, number of iterations and
size of the external repository are set to 40, 50 and 100, respectively. The calibration initially occurs in
regard to the variables CBOD, NBOD, and OD without noise, with the results shown in Table 6.

Table 6. Calibration results of the O’Connor model without noise.

Parameter
MOPSO-CD Proposed Algorithm

Range Mean Std. Deviation Range Mean Std. Deviation

K1 0.959–1.060 1.009 0.028 0.946–1.043 0.978 0.025
K2 3.303–4.006 3.652 0.168 3.304–4.399 3.570 0.153
K3 0.070–0.096 0.081 0.008 0.090–0.118 0.105 0.011
KN 0.063–0.080 0.072 0.006 0.071–0.147 0.127 0.023

In Table 6, although the range and standard deviation of the parameters obtained by MOPSO-CD
are small, which shows more stability than ours, the K1, K3 and KN obtained do not cover the true
parameter values. This means that the parameters from MOPSO-CD are unreliable and cannot be
used in modeling. Compared with the MOPSO-CD results, the parameters generated by the proposed
algorithm cover these true values and the means of the parameters obtained by our algorithm are close
to the true values. For example, the mean of KN obtained by our algorithm is 0.127, while it is 0.072 for
MOPSO-CD. The relative error for the true values (0.125) are 1.6% and 42.4%, respectively. Since the
means of the parameters are often used for calculating the model in practice, the above results indicate
the advantage of our algorithm.

Taking OD as an example, the changes in OD (0–100 km) are shown in Figure 4, which correspond
to different non-dominated solutions obtained. The line generated by the balance solution (BS) is also
shown, which has the smallest sum of the distance to the true parameters.
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Since the relationship between the variables and parameters is non-linear and they have complex
correlations with each other, the range of OD values obtained by our approach is narrower than that of
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MOPSO-CD even if the parameter range of our approach is larger than that of MOPSO-CD. This result
indicates that there is less uncertainty in the results worked by our approach. Although the result of
the true parameters is covered by the results of two algorithms, the OD curve generated by the BS of
our approach is closer to the true value curve. The maximum error of the curve from the BS of our
approach is 1.2%, while the maximum error is approximately 15.6% in MOPSO-CD. The maximum OD
position calculated by MOPSO-CD is different from the true position. These results showed that there
would be a large ecological risk if the MOPSO-CD results were applied to water quality predictions.
Our results are almost identical with the true position at the same time.

The noise according to the N(0, 0.05) and N(0, 0.15) are added to the observed values and the
optimum objection functions are the same as the condition without noise. The estimation of the
parameters is conducted according to the relative errors of CBOD, NBOD and OD. The calibration
results of the two algorithms are shown in Tables 7 and 8. The OD curves with different noise levels
are shown in Figures 5 and 6.

Table 7. O’Connor model results with noise N(0, 0.05) multiplied by the calculated values.

Parameter
MOPSO-CD Proposed Algorithm

Range Mean Std. Deviation Range Mean Std. Deviation

K1 0.889–0.941 0.919 0.013 0.924–1.073 1.000 0.043
K2 2.378–2.930 2.779 0.088 3.526–4.351 3.846 0.185
K3 0.084–0.096 0.093 0.003 0.094–0.137 0.118 0.013
KN 0.096–0.164 0.133 0.015 0.089–0.135 0.118 0.011

Table 8. O’Connor model results with noise N(0, 0.15) being used to multiply the calculated values.

Parameter
MOPSO-CD Proposed Algorithm

Range Mean Std. Deviation Range Mean Std. Deviation

K1 0.819–1.211 1.053 0.086 0.605–1.170 0.962 0.139
K2 2.138–4.081 2.935 0.517 2.846–4.269 3.609 0.345
K3 0.108–0.143 0.126 0.007 0.074–0.134 0.091 0.013
KN 0.080–0.130 0.096 0.011 0.094–0.182 0.126 0.025
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The range of K1, K2 and K3 obtained by MOPSO-CD still does not cover the true value, while
the range of parameters obtained by our method covered the true values. In the case of adding noise
according to N(0, 0.05) being used to multiply the calculated values, there are only 8 non-dominated
solutions generated by MOPSO-CD. The range of OD values obtained by MOPSO-CD does not cover
the true value curve and has large errors (Figure 5). The position and value of the maximum OD for
the BS curve are very different from the true value curve with an error of 23%. The shape of the curve
determined by BS also diverges from the true value curve. These parameters can hardly be used for
model prediction due to the large risk. By contrast, our approach generates more non-dominated
solutions and the OD curves completely cover the true value. The BS curve is not as good as that
without noise, but the errors of the value and phase are much smaller than those of the MOPSO-CD.
Therefore, our approach can be applied in a practical environment with noise.

Due to the increase in noise strength, the range of parameters obtained by MOPSO-CD and our
approach expanded, while the range of K3 by MOPSO-CD failed to cover the true value. The range
of the maximum OD calculated by MOPSO-CD is 0.038–0.082, which is significantly larger than that
from our approach (0.035–0.059; Figure 6). This result indicates that the uncertainty of the maximum
OD generated by MOPSO-CD is higher. The OD curves obtained by the two algorithms cover the true
value curve. However, the true value curve is at the lower edge of the OD curve area of MOPSO-CD
(Figure 6a). The shape of the OD curves and position of the maximum OD of the MOPSO-CD results
have large discrepancies from the true values. By contrast, the true value curve is located in the central
region of the OD curves produced by our approach (Figure 6b). For both the shape and position of
the maximum OD, the OD curves of our approach are very close to the true value curve. In addition,
the curve of BS obtained by MOPSO-CD is very different from the true value curve at the position of
the maximum OD. This shows that the results from our approach are better. This also shows that our
approach has more advantages in the case of noise.

In general, the O’Connor model calibration results from our approach are consistent with the true
parameter values in a water ecosystem with noise, even if the range of parameters is quite different. Its
performance and calibration results are superior to those of the classic MOPSO-CD.

3.4. Case IV

CE-QUAL-ICM is used in the fourth case. It was developed by the U.S. Army Corps of Engineers
Engineer Research Development Center [71]. The model computes physical properties, multiple forms
of algae, nitrogen, phosphorus, carbon, silica, chemical oxygen demand, salinity, temperature, metal
and dissolved oxygen cycles. It involves interactions between various algae and various nutrients,
which takes into account the process of algal growth, metabolism, predation and settling. At present,
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CE-QUAL-ICM has been successfully applied to the study of eutrophication processes of various water
bodies [72,73]. However, it is considered to be difficult to calibrate due to inevitable data noise and the
high dimensionality of the parameter space.

A lake is an open system for material and energy exchange with the environment. We used
Chaohu Lake in eastern China as an example to study the parameter optimization problem of the
CE-QUAL-ICM model. Chaohu Lake is approximately 780 km2, with a depth of 1–7 m. As it has
been seriously polluted, it is one of the most eutrophic lakes in China and has suffered from frequent
outbreaks of algae in recent decades. Therefore, the eutrophication of Chaohu Lake is a significant
concern [74–76]. Nine major rivers around Chaohu Lake were considered in the model calibration.
Although the lake is large, a proper water quality model can capture the main characteristics of the
water quality changes over time in Chaohu Lake, even when ignoring spatial heterogeneity and
hydrodynamic influences [77,78].

The cyanobacteria and DO are two important water quality indicators and were selected for
use in the model parameter estimation in the Chaohu Lake water quality model. All data for the
modeling were collected from 25 sites that were monitored about weekly in July–September in 2009. It
is necessary to select the parameters for the model calibration. The 15 parameters with the greatest
influence on the model variables were identified, with their names and ranges provided in Table 9.
The other parameters used the default values [71].

Table 9. Parameters in the CE-QUAL-ICM model.

Parameter Value Unit Range 1 Range 2 Description

NitM 0.008 G Nm−3day−1 0.004–0.012 0.007–0.011 maximum nitrification rate

KRP 0.005 day−1 0.0025–0.0075 0.0032–0.0069 minimum hydrolysis rate of RPOP

KDN 0.015 day−1 0.007–0.023 0.008–0.021 minimum mineralization rate of DON

KHP 0.006 GPm−3 0.003–0.009 0.004–0.007 half-saturation constant for
phosphorus uptake for cyanobacteria

BMR 0.15 day−1 0.08–0.23 0.08–0.017 basal metabolism rate at reference
temperature for cyanobacteria

KTB 0.060 ◦C−1 0.030–0.090 0.031–0.086 effect of temperature on metabolism
for cyanobacteria

KTHDR 0.069 ◦C−1 0.035–0.102 0.036–0.095 effect of temperature on hydrolysis
of particulate organic matter

KTCOD 0.052 ◦C−1 0.026–0.077 0.029–0.071 effect of temperature on oxidation
of COD

KR 0.36 day−1 0.18–0.54 0.20–0.38 reaeration coefficient

PRR 0.038 day−1 0.019–0.057 0.019–0.035 reference predation rate for
cyanobacteria

KLN 0.052 day−1 0.026–0.078 0.029–0.068 minimum hydrolysis rate of LPON

KRN 0.005 day−1 0.0025–0.0075 0.0027–0.0074 minimum hydrolysis rate of RPON

KDP 0.18 day−1 0.09–0.27 0.15–0.22 minimum mineralization rate of DOP

KLP 0.10 day−1 0.05–0.15 0.07–0.14 minimum hydrolysis rate of LPOP

KRPALG 0.20 m3(gC)−1day−1 0.10–0.30 0.14–0.28 constant that relates hydrolysis of
RPOP to algal biomass

Footnote: Range 1 refers to the calculation range of parameter. Range 2 refers to the range of non-dominated
solutions that have been obtained.

The CE-QUAL-ICM model in Chaohu Lake is calibrated with a daily time resolution to estimate
the cyanobacteria and DO over three months. The two objection functions, OF1 and OF2, which
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are the root mean square error (RMSE) of DO and cyanobacteria, respectively, are optimized by the
proposed algorithm.

RMSE = OFi =

√√√√ D

∑
d=1

(Od − Pd)
2/D, i = 1, 2 (8)

where O are the observations; P are the predictions; and D is the total number of observations.
The ranges of the parameters for the Pareto set is shown in Table 9. The population size, number of
iterations and size of the external repository are set to 20, 30 and 50 here, respectively. Table 9 shows
that the range 2 obtained for most of the parameters by calibration is significantly less than the original
range 1. Hence, the uncertainty in most of the parameters can be reduced by our approach.

The Pareto front in the objective space is shown in Figure 7. There are 15 non-dominated solutions
that are obtained by our approach. From the definition of the non-dominated solution set, none
of the corresponding tradeoffs can be considered to be better than the others if there is a lack of
information by which to judge. However, a decision-maker can choose an appropriate solution based
on the importance of the objectives for their own interests. The leftmost point of the Pareto front
corresponding to the parameter vector assigns the highest fit to the cyanobacteria calibration at the
expense of the weakest DO calibration fit. The rightmost point indicates that the highest importance is
assigned to DO. The solution with the solid circle in Figure 7 is a better tradeoff of the calibration of
the cyanobacteria and DO. The objection functions OF1 and OF2 for the selected solution are equal to
0.80 mg/L and 1.79 µg/L, respectively.
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The selected solution is used to simulate the DO and cyanobacteria in summer in Chaohu Lake
(Figure 8). Comparing the simulated results of the model with the observed values, the average
relative errors of cyanobacteria and DO were approximately 29% and 28%. The Pearson correlation
coefficients between the simulated and observed values of cyanobacteria and DO are 0.59 and 0.64,
respectively. The simulation results are consistent with the observed values and trends in Chaohu Lake.
These correlation coefficients were not very large, suggesting the trade-off between RMSE of DO and
cyanobacteria and the possibility of a non-linear relationship between simulated and observed values.

Figure 9 presents the simulation results of phosphate (PO4) and nitrate (NO3), which are the
parameters of the selected solution. Their average relative errors and Pearson correlation coefficients for
PO4 and NO3 were approximately 24% and 0.62 as well as 27% and 0.66, respectively. The simulation
trends of PO4 and NO3 are also consistent with the observed values. This result shows that the
parameters obtained by the calibration of the cyanobacteria and DO can also be used to simulate other
environmental variables, such as PO4 and NO3. This result indicates that there are correlations among
variables in the water quality model.
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The above results show that our approach has the ability to obtain good results in the
multi-objective calibration of a complex water quality model, even though there is unavoidable
observation noise in the ecosystem model.
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4. Conclusions

The water quality models involve problems with multiple objectives and parameters, which
increase the difficulty of model calibration. Furthermore, models are often affected by noise in the data.
This paper presents a novel algorithm (MCAD-MOPSO) to reduce the impact of noise on the parameter
estimation of water quality models. The proposed approach is based on the Mahalanobis distance
operation, mechanism of cardinality preference and advection-diffusion operator. The Mahalanobis
distance operation can effectively reduce the influence of data noise on the calibration of a water quality
model. The mechanism of cardinality preference can use more populated information to enhance the
search ability of the algorithm and force the particles to move toward the sparse regions of the search
space. The advection-diffusion operator can prevent the solutions from falling into the local optimum,
explore potentially better solutions and maintain the diversity of solutions in the external repository.

The first two cases are based on test functions and metrics from the literature, with addition
of noise to the test functions. In the absence of noise, the average performance of our approach
is significantly better than that of NSGA-II and MOPSO, while it is even better than MOPSO-CD
regarding most test functions. This result shows that our approach can produce a good approximation
with a good distribution of the true Pareto front in all test functions. When adding the different noise
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strengths from the Gaussian distribution to the test functions, the results show that the ability of our
approach to reduce noise is better than that of MOPSO-CD. It has a good performance with respect to
GD, SP and ER in all of the test functions. The average performance with respect to GD, ER and SP
of MOPSO-CD for all of the test functions is approximately 1.3–7.5, 1.4–6.4 and 1.2–3.0 times that of
our approach corresponding to the noise of N(0,0.05), while this is approximately 1.4–7.0, 1.2–1.8 and
1.2–4.3 times for the noise of N(0,0.15), respectively. Even if the effect of noise is larger, our approach
has the ability to accurately approximate the true Pareto front with a good distribution.

The application of the proposed algorithm is further tested on two frequently used models,
the O’Connor model and CE-QUAL-ICM model, in the ecosystem. The four parameters of the
O’Connor model were calibrated by MOPSO-CD and our approach. The results show that regardless
of different noise strengths, the range of parameters obtained by our approach covered the true
parameter values. The means of the parameters calculated by the proposed approach were closer to
their true values. The OD prediction of our approach had less uncertainty, while the BS curve was
closer to the true value curve. Moreover, the error of the maximum OD value and position obtained by
our approach was much smaller than that of the MOPSO-CD. The performance and calibration results
of our approach were superior to those of the classic MOPSO-CD. Finally, in a shallow lake, a complex
water quality model (CE-QUAL-ICM) was calibrated using our approach. The results show that our
approach performed well in the calibration of the lake ecosystem model with added noise from natural
observations. The selected non-dominated solution obtained good results for the simulation of the
cyanobacteria biomass, DO as well as the PO4 and NO3 concentrations.

In summary, our approach can effectively reduce the influence of noise in data on the
multi-objective calibration of the models, which the traditional algorithm does not take into account.
We conclude that our approach is a highly competitive algorithm for optimization problems, regardless
of the standard test function or the complex model in the ecosystem. Our approach provides a useful
exploration for parameter estimation of water quality models.
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