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Abstract: Water reservoirs planned or constructed to meet the burgeoning energy and irrigation
demands in Pakistan face a significant loss of storage capacity due to heavy sediment load from the
upper Indus basin (UIB). Given their importance and the huge investment, assessments of current
UIB sediment load and possible future changes are crucial for informed decisions on planning of
optimal dams’ operation and ensuring their prolonged lifespan. In this regard, the daily suspended
sediment loads (SSLs) and their changes are analyzed for the meltwater-dominated zone up to the
Partab Bridge and the whole UIB up to Besham Qila, which is additionally influenced by monsoonal
rainfall. The gaps between intermittent suspended sediment concentration (SSC) samples are filled
by wavelet neural networks (WA-ANNs) using discharges for each site. The temporal dynamics of
SSLs and discharges are analyzed using a suite of three non-parametric trend tests while the slope is
identified using Sen’s slope estimator. We found disproportional spatio-temporal trends between
SSLs and discharges caused primarily by intra-annual shifts in flows, which can lead to increased trap
efficiency in planned reservoirs, especially upstream of Besham Qila. Moreover, a discernible increase
in SSLs recorded at Partab Bridge during summer is being deposited downstream in the river channel.
This is due to a decrease in river transport capacity in the monsoonal zone. These findings will not
only help to identify these morphological problems, but also accurately anticipate the spatio-temporal
changes in the sediment budget of the upper Indus River. Our results will help improve reservoir
operational rules and sediment management strategies for existing and 30,000-MW planned dams in
the UIB.

Keywords: sediment pattern; sediment load trend; sediment transport estimation; upper Indus River;
wavelet neural network; Mann–Kendall test; Sen’s slop test; April sediment load

1. Introduction

Estimation of the suspended sediment loads (SSLs) is important in the design and operation of
water structures and in the planning of sediment management (yield reduction, routing and removal)
to preserve their live storage capacities [1–5]. The temporal variations and changes in SSLs are also
an important indicator of the effectiveness of existing watershed management practices or tectonic
and land-sliding activities in the catchment area. Being a water stressed country amongst the top
ten most climate-affected countries [6,7], Pakistan has a total water storage capacity of only 30 days
(equal to 10% of the annual available water), which has been depleting due to heavy sedimentation
transported through the Indus River system from the young Hindukush-Karakoram-Himalaya (HKH)
ranges [8]. For example, amongst three big reservoirs, the Tarbela dam has lost 35% of its storage
capacity since 1974 due to trapping of approximately 8 km3 of sediment in the reservoir ponding
area [9]. The Warsak dam constructed on Kabul River has filled with 60 Mt of SSL annually in the
30 years after its construction, and no structural or non-structural remedies can reverse its depleting
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storage capacity [10]. Mangla dam, the second largest Pakistani water storing facility, had an initial
storage of 7.1 billion m3 (BCM), which was reduced to 5.6 BCM in 2005 due to sedimentation. In 2009,
an additional 9 m rise of the dam increased the storage to 9.1 BCM, which cost one billion USD over
five years. However, the rise created technical problems such as an increase of seepage through the
dam embankment in addition to the displacement of 45,000 people living in the vicinity of the dam [11].
In view of the transboundary nature of the source of water, such a decrease in water storage capacity in
Pakistan exacerbates the instability and geopolitical tensions of the region [12]. Hence, the assessment
of prevalent sediment patterns and their projected changes are vital for the optimization of sediment
management processes to ensure the water and food security in the country and to regulate the
transboundary water availability pressures.

Although there are many studies assessing the climate-induced adverse impacts on the UIB river
flow patterns [13–19], few have investigated the impact of flow pattern changes on the sediment load
capacity [20,21]. Furthermore, the studies conducted in this regard differ widely in their suggested
estimates. For instance, the SSL to Tarbela Dam (the country’s largest) or at the immediately upstream
Besham Qila discharge gauge is reported to range from 200 Mt year−1–675 Mt year−1 over the past
50 years (Table 1). Such uncertainty leads to poor design quality of the operating rules for existing
dams and those under construction. Moreover, the studies have generally estimated the SSL by using
empirically-developed sediment rating curves (SRCs), whose accuracy is limited as they oversimplify
the relationship between the suspended sediment concentration (SSC) samples and the observed
discharges [22–24].

Table 1. Estimates published on the suspended sediment load (SSL) of the upper Indus River.

Suspended Sediment Yield (Mt year−1) Estimated by

480 [25]
400 [26]
475 [27]
200 [28] reported by [29]
675 [30]
300 [31]
200 [32]

197 * [33]
138 ** [33]

200 [2]

Note: * Besham Qila; ** Partab Bridge.

The accuracy of SRCs is also limited since it does not model the complex sediment transport
processes related to hysteresis phenomena and marked hydrological variations within the UIB, such as:
(a) the fluvial erosion and transport processes, which interact with other sediment-producing processes;
(b) temporary sediment storage in the main river channel [34]; (c) aggradation and degradation phases
of landslides [35]; (d) on average, 5–10 high flow waves of an average 10–12-day duration during the
monsoon period; (e) different transit times of discharge and sediment and their different lag times
from several sources to the gauge stations. Given that SRCs are employed in the estimation process,
there may be a marked compromise in the design quality of reservoir sedimentation prevention
measures, as apparent from the current sedimentation rate of the Tarbela and Mangla dams. Since the
assessment of the SSL patterns is important for the management of water-related structures, watershed
management practices and the sediment budget of the Indus, it is necessary to detect the temporal
changes in sediment transport, which are influenced by the river discharge responses and hysteresis
phenomena, requiring frequent discharge and SSC observations.

As opposed to the discharge time-series typically available on a daily resolution, the SSCs are
intermittently sampled, which can affect the trend outcome needed to reconstruct the non-observed
days. However, to deal with the non-linear nature of the time series, the wavelet transform coupled
artificial neural networks (WA-ANNs) outperform SRCs, since they are able to model theoretically
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any kind of relationship between the dependent and independent variables without having to know
their physical relationship [36–41]. The wavelet transform decomposes the data time series up-to
J levels in the time, space and frequency domains and reveals the information from a given data
scenario [42]. The temporal scale of the decomposition provides information on temporary storage,
aggradation and degradation phases, high flow waves and transit time of the sediment load in the
detail coefficients. Given these details, i.e., the detail coefficients along with the approximation
coefficient, ANN precisely models the hysteresis phenomena. WA-ANNs have been used successfully
over the last decade for reconstructing the missing data by adjusting the hysteresis phenomena in
sediment load processes [43–46].

In assessing temporal dynamics of SSLs and discharges, non-parametric tests are assumed to be
more robust as compared to their parametric counterparts, in view of the fact that the sediment load
data are not normally distributed, owing to the highly nonlinear nature of the sediment transport
processes. However, several non-parametric tests may also result in distinct estimates, which requires
employing a suite of successful non-parametric methods and then quantifying their associated
uncertainty to build more confidence in the results.

Analyzing discharges and SSCs at two different sites over the past 50 years, this study for the first
time shows how changes in the flow patterns are affecting the sediment transport capacity of the UIB
for the meltwater-dominated zone (up to Partab Bridge site) and for the whole UIB (up to Besham
Qila), which is additionally influenced by the summer monsoonal rainfall regime. The gaps between
intermittently sampled SSCs are filled using the wavelet transforms coupled with the artificial neural
networks (WA-ANNs). The temporal discharge and SSL dynamics are robustly assessed using a suite
of three widely-used non-parametric approaches, including: (1) the innovative trend analysis (ITA),
which can analyze the trends in low, medium and high annual SSLs without requiring any assumptions,
such as serial correlation, non-normality, sample numbers and others [47]; (2) the Mann–Kendall (MK)
and the seasonal Kendall (SK) tests together with Sen’s slope method; the MK test detects a trend in a
time series without requiring normally-distributed input data [48,49]; Sen’s slope method estimates
its true slope, while SK analyzes annual trends by removing the seasonal cycles in a time series;
(3) a change point detection test, which reveals the changing tendency in the SSL series on monthly and
annual scales [50,51]; (4) mean monthly variations, which detect monthly changes based on differences
from the (a) first and last decades and (b) monthly regression equations of the analyzed records.

2. Study Area and Data Description

With a total length of 2880 km and a drainage area of 912,000 km2, the Indus River is one of
the largest in south Asia. It starts from China and then travels through India and across the whole
of Pakistan, finally draining into the Arabian Sea. The drainage of the Indus River is divided into
upper and lower parts, typically at the Besham Qila discharge gauge or around 65 km downstream at,
so far, its only reservoir, Tarbela, which is one of the largest earth-filled dams in the world (Figure 1).
The Besham Qila site located at an elevation of 580 masl drains the mostly high-altitude area of
165,515 km2, 12% of which is covered with the Hindukush-Karakoram-Himalaya (HKH) glaciers and
permanent ice, while the seasonal snow cover varies between 3 and 67% [18,52,53]. Mean annual
discharge of the UIB at Besham Qila is 2405 m3/s, which constitutes roughly half of the annual surface
water availability in Pakistan [18,53]. More than 70–80% of such discharge is generated from the
melting of snow and glaciers, making the Indus River amongst the most melt-water-dependent rivers
in the world [12].
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Figure 1. Locations of study gauges in the study area. Modified from [2].

The second study site at Partab Bridge is located at an elevation of 1250 masl about 300 km
upstream of Besham Qila, draining around 95% of the cryospheric region and contributing around 75%
of the Besham Qila flows. The rest of the Besham Qila flows are mostly received from the monsoonal
rainfall from July–September. This 300-km river reach, Partab Bridge to Besham Qila, has gained in
importance due to the many planned hydraulic structures. For example, the tenders for three major
hydropower projects, Bunji 7100 MW (190 m high), Bhasha dam 4500 MW (272 m) and Dasu 5400 MW
(242 m), have been completed for construction located downstream of the Partab Bridge gauge [54].
In addition, the river reach contains huge sediment deposits due to landslides and tectonic activities.

Since both gauges feature large drainage areas, overall variations in their discharges and SSCs are
not as abrupt as in the small catchments, but such variations are still large (Table 2), indicating the
occurrence of frequent hydrological events within the UIB. For instance, 1973, 1988 and 1994 were the
exceptional flow years at Besham Qila with a total volume of 98.95, 95.31 and 94.88 billion m3 (BCM),
respectively (Figure 2). The year with the highest peak flow was 1984 with a volume of 89.33 BCM.
In contrast, only a 61.54 BCM flow volume was observed in 1982, distinguishing it as an extremely
low flow year. For Partab Bridge, the exceptional flow years were 1973, 1994 and 1990 with a total
volume of 76.5, 69.7 and 69.6 BCM, respectively. On the other hand, 1965 and 1982, with a volume of
42.16 and 46.8 BCM, respectively, were the extremely low flow years. Based on flow patterns, the UIB
can be classified into a low flow cycle of 1974–1977 (dry period) and a high flow cycle of 1988–1992
(wet period) with their annual average volume being 71 and 85 BCM, respectively. In drought years,
with wet winter and dry summer, the share of glacier melt increases, maintaining the water supply to
the Indus River [12].
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Table 2. Hydrological and sedimentological characteristics at the Besham Qila and the Partab Bridge gauges.

Parameter
Besham Qila Partab Bridge

Q (m3/s) SSC (ppm) Q (m3/s) SSC (ppm)

Duration 1969–08 (daily) 1969–08 (samples) 1962–08 (daily) 1962–08 (samples)
Max discharge 13,910 3770 (at Qmax) 9599 5780 (at Qmax)
Min discharge 325 132 (at Qmin) 168 221 (at Qmin)
Max sediment 12,401 8660 1101 25,040
Min sediment 456 1 1200 1
Mean sediment - 1071 - 1947
SD of sediment - 1456 - 2847
Mean discharge 3000 - 2231 -
SD of discharge 2923 - 2191 -
Q-10,000 at Dasu damsite [2] 21,218 - - -
Q-100 at Dasu damsite [2] 15,078 - - -
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Figure 2. Hydrograph showing actual and smoothed flows with 10-year moving average (dashed lines)
in billion m3 (BCM).

The specific suspended sediment load (SSL) from the drainage area of the Indus at Besham Qila
is estimated to be 1197 Mt km−2 year−1, more than 90% of which reaches the Partab Bridge and
Besham Qila during the high flow period that spans May–September. Such a heavy sediment load
is mainly due to glacial bedrock erosion from a large number of small, but steep catchments that
directly discharge into the Indus [55]. Generally, the peak SSL correlates well with the peak discharge
with a short time lag, particularly for Besham Qila during the monsoon season when discharge varies
significantly within a short span of a few days, accompanied by an immediate and large increase in
the sediment concentration [56]. The SSC average grain size distribution for the UIB is about 45.7%
sand, 39.9% silt and 14.4% clay [2].

The daily discharges and the discontinuous suspended sediment concentration (SSC) samples
were collected for Partab Bridge over the period 1962–2008 and for Besham Qila over the period
1969–2008. Following the U.S. Geological Survey (USGS) guidelines, discharges at these gauges are
measured using AAcurrent meter, while the SSC samples are taken once a week in winter and twice a
week in summer, depending on the availability of labor and sampling feasibility [57–59]. The total
SSC samples within the collection periods on record were 3213 and 2117, representing around 22%
and 14% of the daily time series for the Besham Qila and the Partab Bridge sites respectively. Due to
low sampling frequency at Partab Bridge, we decided to use all available data samples. The long
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length of these samples improves the learning of the WA-ANN model, which in turn leads to better
reconstruction of missing SSLs. The outliers in sediment data samples were excluded by examining
the general behavior of the river and river catchment. More details on data collection, data quality and
period of records for the Indus River can be found in [33].

3. Methods

We analyze how changes in the flow patterns are affecting the sediment transport capacity of the
UIB specifically for the meltwater-dominated zone (up to the Partab Bridge site) and for the whole UIB
(up to the Besham Qila), which is additionally influenced by the summer monsoonal rainfall regime.
In order to do this, we analyze the observed discharges and SSCs over the past 50 years. Since the SSCs
are intermittently sampled and thus represent only a fraction of the daily discharge series of the study
gauges, we reconstructed the SSCs for the non-observed days using the wavelet transforms coupled
with the artificial neural networks (WA-ANNs). We then employ three non-parametric statistical
approaches to analyze the monthly-to-annual scale temporal dynamics of the reconstructed SSLs
and observed discharges. These methods include: (1) innovative trend analysis; (2) Mann–Kendall
(and seasonal-Kendall) trend test and Sen’s slope method; (3) the Pettitt change point test. We also
analyzed temporal dynamics by performing decadal and regressional comparisons.

3.1. Wavelet Neural Network

Artificial neural networks are widely used in hydrology and water resources studies for data
optimization, reconstruction of missing sediment load and prediction of sediment load trends.
The ANN architecture acts as an information processing system containing several non-linear and
interconnected elements in the form of layers connected via weights. The multi-layer perceptron (MLP)
is a typical ANN, which consists of a number of nodes that are organized according to a particular
arrangement. The layers process the information from the input layer to the hidden layer and further
the hidden layer to the output layer for the generation of results. Generally, the hidden layers contain
non-linear transfer functions to process the non-linear or linear information in order to build a relation
between input and output variables. The output layer normally contains a linear transfer function
to produce the output outside of the range of −1–1. Moreover, the hidden layers can also vary from
single to multiple layers using different numbers of neurons. The size of a hidden layer and neurons
within the hidden layer also affect the model performance. Less neurons in the hidden layer may affect
the learning process, while more neurons in the hidden layer or the number of hidden layers restrict
the efficiency in terms of computational time. The increase of neurons may also cause a network over
fitting problem. The work in [60] suggested that the neurons for optimal generalization should be in
the range from

√
2n + m to the value 2n + 1, where n and m represent the number of input and output

nodes, respectively.
Wavelet transform (WT) decomposes signals into successive wavelet components corresponding

to a time-domain signal within a frequency range. The original signal can be represented in terms of
a wavelet expansion that utilizes the coefficients of the wavelet functions. Several wavelets can be
constructed from a function Ψ known as a “mother wavelet”, which is confined in a finite interval.
That is, WT decomposes a given signal into frequency bands and then analyses them in time. WT are
broadly classified into continuous wavelet transform (CWT) and discrete wavelet transform (DWT).
CWT is defined as the sum over all time of the signal to be analyzed multiplied by the scaled and
shifted versions of the transforming function Ψ. The CWT of a signal f (t) is defined as follows:

Wa,b =
1√
a

∞∫
−∞

f (t)Ψ∗
(

t− b
a

)
dt (1)

where ‘*’ denotes the complex conjugate. CWT searches for correlations between the signal and wavelet
function. This calculation is done at different scales of a and locally around the time of b. The result is
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a wavelet coefficient Wa,b contour map. However, computing the wavelet coefficients at every possible
scale (resolution level) necessitates a large amount of data and computation time. DWT analyzes a
given signal with different resolutions for different frequency ranges. This is done by decomposing the
signal into coarse approximation and detail coefficients. For this, the scaling and wavelet functions are
employed. Choosing the scales a and the positions b based on the powers of two (dyadic scales and
positions), DWT for a discrete time series fi becomes:

Wm,n = 2−
m
2

N−1

∑
i=0

fiΨ∗
(
2−mi− n

)
(2)

where i is integer time steps (i = 0, 1, 2, ..., N − 1 and N = 2M); m and n are integers that control,
respectively, the scale and time; Wm,n is the wavelet coefficient for the scale factor a = 2m and the time
factor b = 2mn. The original signal can be reconstructed using the inverse discrete wavelet transform
as follows:

fi = AM,i +
M

∑
m=1

(2M−m−1)

∑
n=0

Wm,n2
m
2 Ψ
(
2−mi− n

)
(3)

or in a simple form as:

fi = AM,i +
M

∑
m=1

Dm,i (4)

where AM,i is called an approximation sub-signal at level M and Dm,i are detail sub-signals at levels
m = 1, 2, ..., M. The approximation coefficient AM,i represents the high scale low frequency component
of the signal, while the detail coefficients Dm,i represent the low scale high frequency component of
the signal.

There is a variety of mother wavelets such as the Haar wavelet, Daubechies wavelet, Coiflet
wavelet and biorthogonal wavelet. Normally, the Daubechies wavelet, which also belongs to the
Haar wavelet, has been performing better in sediment transport processes due to its ability to detect
time localization information. Time localization information is useful in handling the seasonality and
hysteresis phenomenon in flow discharge and sediment load processes. The Coiflet wavelet is more
symmetrical than the Daubechies wavelet. Similarly, the biorthogonal wavelet has the property of a
linear phase, which is needed for signal reconstruction [61]. The selection of an appropriate mother
wavelet depends on the type of application and data characteristics.

Before applying an ANN, the input discharge time series are decomposed using pre-selected
wavelets. After data decomposition, a portion of the signal associated with certain frequency bands
need to be eliminated if there is a poor correlation between the decomposed signal and the observation
data. Only the decomposed signals that have significant correlation with the observation signal
are used in the forecast model. Furthermore, on decomposed signals, the permutation of the
logsig, tansig, radbas and purelin transfer functions was tested for the hidden and output layers.
The Levenberg–Marquardt algorithm was used to train the networks due to its simplicity. The neurons
in the hidden layer were selected based on the criteria described by [60]. The stopping criteria of the
models was a maximum of 1000 epochs. The final networks were saved for later use to reconstruct the
missing SSCs in the daily time series. Due to the different data time series at both gauges, we developed
two different WA-ANN models. Figure 3 shows the methodology of coupling WT with ANN for
forecasting SSC in the study area.
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Figure 3. Schematic diagram of a wavelet transform coupled to an artificial neural network (WA-ANN).
SSC, suspended sediment concentration.

The performance of the model was assessed employing the correlation coefficient (R), root mean
square error (RMSE), mean absolute error (MAE) and the Nash–Sutcliffe efficiency (NSE). The correlation
coefficient indicates a perfect fit at 1 and otherwise at 0. Similarly, RMSE and MAE indicate the best
model performance when close to 0. The NSE ranges from −∞–1, where 1 represents a perfect match
and 0 indicates that the model is no better than simply representing the mean value. The simulated
results are normally considered ‘good’ when the NSE is higher than 0.75 and ‘satisfactory’ when it lies
between 0.36 and 0.75 [62].

3.2. Trend Analyses

3.2.1. Innovative Trend Test

The innovative trend analysis (ITA) [47] divides a time series into two halves, where the latter
half is plotted against the first, after being sorted in ascending order. Given both halves are identical to
each other, the plot shows a scatter of points along a 1:1 (45°) line on the Cartesian plane. The scatter
of points falling above (below) the 1:1 line indicates a monotonically-increasing (decreasing) trend.
ITA does not require pre-whitening, a specific sample size, a serial correlation structure of the time
series or a normal probability distribution. ITA can easily identify the variations and trends in the
lower, medium or higher hydrological processes [63,64]

3.2.2. Mann–Kendall Test

The Mann–Kendall (MK; [65,66]) test can detect a trend in a time series without being affected by
the outliers. With the use of normal approximation, the MK test statistic S is calculated as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(Xj − Xi) (5)

where Xi and Xj are the adjacent data values, S is the sum of positive or negative signs, n is the number
of observations and:

sgn(Xj − Xi) =


+1 (Xj − Xi) > 0

0 i f (Xj − Xi) = 0

−1 (Xj − Xi) < 0

(6)

The two important parameters of the MK test are the significance level and the slope. The former
indicates the strength, while the latter indicates the magnitude and direction of a trend. If there are
many tied data values, then the method specified for the number of data values greater than 40 is used
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([66], as reported by [67]). The variance of S (Equation (7)) takes into account these ties, where q is the
number of tied groups and tp is the number of data in the p group.

VAR(S) =
1

18
[
n(n− 1)(2n + 5)−

q

∑
p=1

tp(tp − 1)(2tp + 5)
]

(7)

After calculating S and its variance, an MK statistic Z is computed using Equation (8). A positive
value of Z indicates an upward tend, whereas its negative value indicates a downward trend. If there
is no detectable trend, then the MK statistic Z has a standard normal distribution.

Z =


S−1√
VAR(S)

S > 0

0 i f S = 0
S+1√
VAR(S)

S < 0

(8)

To detect the season-wise monotonic trends, a slightly modified version of the MK test, namely
seasonal Kendall (SK), is used, which runs the original MK test on each season (k) separately, where k
can refer to any period of time within a year (e.g., months or four quarters of a year). The overall S
statistic is then computed by adding each SK statistic (Sk) for m number of seasons, and the statistical
significance of the trend can be assessed using the outcome of Equations (10) and (11) in Equation (8).

Sk =
nk−1

∑
i=1

nk

∑
j=i+1

sgn(Xk,j − Xk,i) (9)

S =
m

∑
i=k

Sk (10)

and:

VAR(S) =
m

∑
k=1

VAR(Sk) (11)

Based on sets of Monte Carlo simulations, [68] show that the presence of a positive serial
correlation increases the variance of the distribution of S and thus increases the possibility of rejecting
the null hypothesis of no trend; the same was also found by [69]. By contrast, negative serial correlation
diminishes the variance of the distribution and results in underestimation of the significant trend
detection probability. To limit the influence of serial correlation, we applied a correction factor,
described by [70] in Equation (8), as follows;

Z∗ =
Z√
ηk

(12)

ηk =


1 + m

2

m−1
∑

i=1
(m− j)ρj for j > 1

1 + 2 ρm+1
1 −mρ2

1+(m−1)ρ1
m(ρ1−1)2 for j = 1

(13)

Normally, the population serial correlation coefficient ρj is replaced with the sample serial
correlation coefficient rj;

rj =

1
m−j

m−j
∑

i=1
(Xi − X̄)(Xi+j − X̄)

1
m

m
∑

i=1
(Xi − X̄)2

where j = 2, 3, ..., m− 1. (14)
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X̄ =
1
m

m

∑
i=1

Xi (15)

The correction factor ηk shrinks (expands) the MK statistics in the presence of positive (negative)
serial correlation.

An estimate of trend magnitude, which is closely related to the MK test procedure, is known as
Sen’s slope estimator [71]. The slope estimates of Nk pairs of data of the k-season are first computed by:

Pk,l =
Xk,j − Xk,i

j− i
(16)

for all 1 ≤ i ≤ j ≤ nk and 1 ≤ l ≤ Nk. The median of these Pk,l values is Sen’s slope estimator Pk:

Pk =


P

k,
( Nk+1

2

) if Nk is odd

1
2

[
P

k,
( Nk

2

) + P
k,
( Nk

2 +1
)] if Nk is even

(17)

Finally, Pk is tested by a two-sided test at the (1− α)× 100% confidence interval, and the true slope
can be obtained. More details about the Mann–Kendall and Sen’s slope tests can be found in [67,72].

3.2.3. Change Point Detection

We used the Pettitt test [50] to detect the qualitative and quantitative changes in SSL and discharge
series. The Pettitt change point test is non-parametric and based on a version of the Man-n-Whitney
statistics Uj,n as follows:

Uj,n = Uj−1,n +
n

∑
i=1

sgn(Xj − Xi) where j = 2, 3, ..., n (18)

whereas Xi and Xj are the adjacent data values, n is the number of observations and sgn can be
quantified using Equation (6). The statistics Kj and corresponding significance testing are given by:

Kj,n = Max|Uj,n| where 1≤ j≤ n (19)

and:

p ∼= 2exp
[−6(Kj,n)

2

(n3 + n2)

]
(20)

If p ≤ 0.05, a significant change point exist.

3.2.4. Decadal Analyses and Linear Regressions

Similar to the innovative trend method of [47], we divided the suspended sediment load (SSL) and
discharge data into two time series of one decade each. The first time series consists of the initial decade
of the dataset, and the second time series consists of the last decade of the dataset. To determine the
mean annual and mean monthly changes, we compared the SSL and discharge shares of pre-selected
spatial resolution for both gauges.

At the upper Indus River, the effect of high discharge events is influential; they transport a
considerable amount of SSL [55]. Therefore, we also explored the mean monthly changes in most
effective discharges during the initial and last decades of the datasets. The work in [73] defined
the most effective discharge as the midpoint of the range of flows, which over a certain period
can transport a considerable proportion of the SSL. The effective discharge can be computed using
sediment transport formulae and regional flow duration curves. In the present study, we used the
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effective discharge (Q/Qavg) of 2.0-times the average discharge (Qavg) for Besham Qila and 5.0-times
the average discharge (Qavg) for the Partab Bridge gauge as per the classifications formulated by [56].

To obtain the linear changes in each month during past 50 years, we developed linear regression
equations of the reconstructed SSLs and observed discharges. Using these equations, we also
quantitatively and qualitatively analyzed the changes.

4. Results

To analyze the trends in suspended sediment loads (SSLs) of the upper Indus River, we reconstructed
the missing SSC data using wavelet neural networks (WA-ANNs) and then estimated corresponding
SSLs using measured discharges, i.e., SSC × Q. The reconstructed daily data series in the form of
monthly and annual SSLs were used in four different trend analysis techniques, namely: (1) innovative
trend test; (2) Mann–Kendall and Sen slope tests; (3) Pettitt change point test; (4) decadal analyses and
linear regressions. The study findings are described below.

4.1. Reconstruction of Daily Sediment Load Time Series

Based on several preliminary simulations for both gauges, we eventually trained both networks
using 70% of the data for the training, 15% for testing and 15% for validation on a random basis. In a
similar way, we also decomposed Qt, Qt−1, Qt−2, for Besham Qila and Qt, Qt−1 for Partab Bridge
up to seven levels using the Daubechies (db1) wavelet. The best performing WA-ANN architectures
reconstructed SSLs with a correlation coefficient R = 0.92 for both sites (Table 3). The RMSE and
MAE for Partab Bridge were approximately two times more than Besham Qila; likewise, the standard
deviation (SD) and mean in the actual SSC samples (Table 2). This difference shows the complexity in
the transport process in the glacier influence zone of the upper Indus River at the Partab Bridge gauge.
The NSE, which is used to analyze the model performance, was 0.85 for both stations. Therefore,
we consider the WA-ANNs reconstructed suspended sediment load (SSL) series good as the NSE is
higher than 0.75 [39,62,74]. In addition, both WA-ANN models reconstructed SSLs with a cumulative
difference of±1% with the measurements. Thus, according to another comparison criterion, the models
that led to an error between ±10% and ±15% are considered as accurate models [37]. A comparison
between the mass of suspended sediment sampled daily and computed results using WA-ANN models
is also shown in Figure S1 of the Supplementary Material.

The reconstructed results showed a higher mean annual SSL of 171 Mt for Partab Bridge compared
to 160 Mt at the downstream Besham Qila site (Figure 4). Moreover, the annual SSLs appear to have
been rising at Partab Bridge since 1993 and causing the 10-year moving average to increase. In contrast,
the annual SSLs have been decreasing at Besham Qila since 1993 (Figure 4). The similar changes in SSLs
are also shown in linear and quadratic trends for both gauges (Figure 5). The statistical parameters of
linear and quadratic line fittings are shown in Table S1 (supplementary part).

Table 3. Statistics of the best performing WA-ANN architectures for the Besham Qila and the Partab
Bridge sites.

Location Neurons
Transfer Function

R RMSE (ton/day) MAE (ton/day) NSE
First Output

Besham Qila 24 tansig purelin 0.92 3.94× 105 1.75× 105 0.85
Partab Bridge 30 logsig tansig 0.92 6.12× 105 2.87× 105 0.85
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Figure 4. WA-ANN reconstructed annual suspended sediment loads (SSLs) for Besham Qila and Partab
Bridge gauge stations showing an increase after 1993 at Partab Bridge (the dashed lines represent the
10-year moving average).
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Figure 5. Linear and quadratic annual trends of reconstructed SSLs and observed discharges (legends
for (b) also apply for (a)).

4.2. Innovative Trend Test for Annual Loads

The innovative trend test (ITA) shows a decreasing trend in low annual SSLs at Besham Qila
against an increasing trend in high annual SSLs at the Partab Bridge site (Figure 6a,b). The frequencies
have been increasing at both gauge sites. On the other hand, the overall annual flows at Partab Bridge
show an increasing trend, while there are diverse trends at Besham Qila, where, apart from medium
annual flows, the low and high flows have no discernible trend (Figure 6a,b). Contrary to Besham
Qila, the increase in flows has also been causing an increase in SSLs at Partab Bridge. However,
in the absence of hydraulic structures, urbanization or industrialization along the upper Indus River
or within the UIB, this increase in annual SSLs noticed at the Partab Bridge did not appear at the
downstream gauge, i.e., Besham Qila (Figure 6).
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1 
 

 

1 
 

 

Figure 6. Results of innovative trend test showing a decreasing trend in low and high annual SSLs and
flows at the Besham Qila and an increasing trend in high annual SSLs at Partab Bridge, along with an
increase in all flows (legends for (a) also apply for (b)).

4.3. MK Test for Annual and Monthly Loads

The MK trend analyses show that the annual SSLs at Besham Qila have been decreasing at a rate
of 0.634 Mt year−1 (Table 4). Calculating according to the same rate, this indicates a maximum decrease
of 34 Mt from the estimate made by [28] (reported by [29]) for the Tarbela dam in 1982 (Table 1). Due to
a negative slope of 0.634 Mt year−1, it is possible that the estimates published in 1970s and 1980s
show higher sediment loads compared to our estimate (160 Mt year−1) at Besham Qila. In contrast
to the results of the MK test, the seasonal Kendall (SK) test showed an annual statistically-significant
increasing trend at the Besham Qila (Z = 3.2) and Partab Bridge (Z = 4.1) gauges. This contrast in both tests
results arises due to the addition of each season’s trend in the SK test (Equations (10) and (11)). In addition,
the results of the SK test are similar either using seasons as four quarters of a year (December–February,
March–May, June–August and September–November) or each month as a season.

The monthly SSLs show a significant increasing trend in the winter months (November–February)
at Besham Qila with a cumulative magnitude of 0.004 Mt year−1. This is a slight cumulative magnitude,
which is unbalanced by the decreasing trend of−0.24 Mt year−1 alone in August (Table 4). Surprisingly,
sandwiching increasing trends, April at Besham Qila shows a declining trend only in SSLs. The monthly
SSLs at Partab Bridge, in contrast to Besham Qila, show a declining trend of 0.33 Mt year−1 only in
August. This trend is balanced by 0.36 Mt year−1 rise in June and September (Table 4). Despite the
diversified trends at both gauges, May showed a statistically increasing and August a statistically
decreasing trend, whereas in summer, only August at Besham Qila and June, August and September
at Partab Bridge show any trends. However, their contribution (33% and 83%) is still higher than the
magnitudes of the trends in the remaining months of the year. In summer (July–September), the mean
SSL recorded at Partab Bridge is 141 Mt year−1, while during the same period or even until October,
only 125 Mt passed through the Besham Qila gauge; this apparently indicates a durable deposition of
SSLs between both gauges in summer.

Table 4. Mann–Kendall’s (MK) annual and monthly SSL and discharge trends for the Besham Qila and
the Partab Bridge sites. The minus symbol for the MK statistics indicates a downward trend, whereas
the (-) symbol without numbers means no trend.

SSL Discharge

Period MK Statistic * Sen’s Slope Average SSL MK Statistic * Sen’s Slope Average Flow
(Mt year−1) (Mt year−1) (BCM y−1) (BCM y−1)

Besham Qila
Annual −1.21 −0.6345 160 - - 76.41
January 2.74 0.0011 0.16 5.60 0.0081 1.25
February 2.76 0.0016 0.12 4.71 0.0068 1.08
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Table 4. Cont.

SSL Discharge

Period MK Statistic * Sen’s Slope Average SSL MK Statistic * Sen’s Slope Average Flow
(Mt year−1) (Mt year−1) (BCM y−1) (BCM y−1)

March 1.08 0.0020 0.22 2.39 0.0061 1.40
April −1.14 −0.00280 0.48 - - 2.25
May 2.66 0.0769 4.61 2.60 0.0471 5.98
June - - 28.04 - - 13.21
July - - 61.55 - - 19.69
August −1.00 −0.2414 53.80 - - 17.53
September - - 9.90 - - 7.77
October - - 0.74 1.55 0.0067 3.01
November 2.16 0.0013 0.22 3.51 0.0075 1.80
December 1.05 0.0004 0.15 3.71 0.0071 1.44

Partab Bridge
Annual - - 171 1.77 0.1299 56.62
January 3.81 0.0007 0.07 2.11 0.0018 0.94
February - - 0.08 - - 0.77
March - - 0.12 - - 0.83
April 1.01 0.0009 0.25 2.81 0.0045 1.08
May 3.41 0.0476 3.09 4.64 0.0506 3.37
June 1.39 0.2308 25.25 1.55 0.0380 9.32
July - - 64.14 1.00 0.0299 15.08
August −1.26 −0.3333 65.59 −1.02 −0.0274 14.15
September 1.86 0.1304 12.20 0.95 0.0181 6.26
October 2.90 0.0041 0.33 2.85 0.0100 2.33
November 3.33 0.0008 0.09 3.50 0.0060 1.38
December 2.59 0.0003 0.06 2.65 0.0034 1.10

Note: * Significant trend at 95% significance level (critical value = 1.96).

4.4. Change Point Detection Test

The test results show discernible change points in the monthly SSLs after 1982, whereas no change
point was detected in annual SSLs at both gauges (Figure 7). Therefore, it might be possible that
the peaks in annual SSLs recorded after 1993 at Partab Bridge gauge in Figure 4 in the absence of
an increase in corresponding discharges may have been caused by degradation of landslides, which
may have previously blocked the sediments [35]. On the other hand, the interventions of landslides
are marginal for river flow due to a mean discharge of about 2600 m3/s. Thus, the change points in
monthly discharges are similar at both gauge stations (Table 5). As the Besham Qila site is located in a
monsoon rainfall and snowmelt zone, no change in annual flows indicates a decrease in contribution
from these sources (Table 5).

Interestingly, the magnitude of the increasing trend in SSLs over May at Partab Bridge was higher
than Besham Qila’s SSLs, which makes their mean loads approximately the same after 1997 (Figure 7).
After 1997, there was no detectable increase in either parameter at either gauge station. Furthermore,
September showed a significant increase of 60% no earlier than 1982, which is the highest magnitude
or in the change in SSLs of the analyzed record. Compared to a noticeable increase in SSLs at Partab
Bridge, surprisingly, the increasing loads are not being received at the downstream gauge (Figure 7).

Table 5. Significant change points in river flows determined using the Pettitt test.

Period Annual January February March April May October November December

Besham Qila - 1987 1987 1986 - 1997 1985 1986 1985
Partab Bridge 1987 1986 1987 1987 1987 1987 1985 1986 1985
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Figure 7. Significant change points in monthly SSLs determined using Pettitt test; black denotes Partab
Bridge, and blue denotes Besham Qila.

4.5. Decadal Analyses and Linear Regressions

The decadal analyses only show decreasing trends in SSLs during peak summer (June and July) at
Besham Qila and only over August at Partab Bridge (Figures 8ab, S2 and S3 (Supplementary Material)).
The directions of changes in monthly SSLs are similar to their corresponding discharges except for
July at Partab Bridge and August at Besham Qila. It might be possible that the high SSLs recorded in
July at Partab Bridge have been causing the SSLs in the following month of August at the downstream
gauge to increase, as shown in Figure 8. Similar deviations can be seen in effective discharges, where
the SSL transport capacity of the river has been decreasing in summer (June, August and September)
at Besham Qila and only over August at Partab Bridge (Figure 9).

The linear regressions also showed identical directions in the changes of the monthly SSLs and
their corresponding discharges, except for April at Besham Qila (Table 6), where SSLs are decreasing
against the increase in discharges. Nevertheless, there is a certain sensitive linear correlation between
mean monthly SSLs and their corresponding discharges for the months in the effective discharges
zone, depicted in Figure 10, where the axes represent the change in mean monthly discharges and
SSLs (since 1969 and 1962) determined by linear regression equations (Figures S2 and S3 in the
Supplementary Material). As can be seen from Figure 10, the change in SSLs is sensitive to the change
in discharges, where a 1% change in discharges, on average, can cause a change of 3% in SSLs in the
study area. However, compared to Besham Qila, the transport capacity of the river is more sensitive to
the discharge change at Partab Bridge, where, for example, an 11% change in mean monthly discharges
caused a 65% change in corresponding SSLs over September (Table 6). This may be due to the location
of the major source of eroded sediments in the Karakoram parts of the basin that contributes SSLs
disproportionate to its drainage area at Partab Bridge [59]. On the other hand, the river slope is mild
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from Partab Bridge to Besham Qila, which causes substantial sediment storage of the incoming SSLs,
particularly in summer.
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Figure 8. Monthly share of SSL and flow volume in the first and last decade of the analyzed record.
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Figure 9. Monthly Q/Qavg in first and last decade of the analyzed record following the monthly
decadal trend of SSLs.
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Table 6. Mean monthly linear variations in SSLs and discharges (flows) at both gauges (each month’s
regression plots are presented in Figures S2 and S3 in the Supplementary Material).

Period
Besham Qila * Partab Bridge **

SSL (%) Flow (%) SSL (%) Flow (%)

Annual −7.40 3.90 13.50 16.00
January 44.64 29.49 93.56 12.85
February 77.58 29.8 10.27 6.28
March 59.43 20.8 3.36 5.01
April -8.11 7.29 398.18 36.32
May 141.22 38.75 365.07 138.87
June −13.41 −3.7 48.72 20.54
July −9.04 −1.45 17.86 7.37
August −12.79 −3.12 −8.16 −4.07
September 8.02 6.63 65.73 11.68
October 16.77 11.52 107.15 24.27
November 29.48 16.47 50.99 20.88
December 19.43 15.17 40.68 15.8

Note: * From 1969–2008; ** from 1962–2008.

To gain an overall qualitative overview of the trends, we compared the results in Table 7.
The comparison reveals that SSLs have been increasing in May and decreasing in August in the
study area. Apart from that, they have been monotonically increasing during winter months from
November–February and also March and May. Although the annual SSLs at both gauge sites showed
minor trends, they are statistically insignificant (Table 7).

Table 7. Qualitative comparison of the trends in SSLs using different methods (blue triangles imply
an upward trend, whereas red triangles imply a downward trend; a “-” represents statistically
insignificant/no trend). ITA, innovative trend analysis.

Besham Qila Partab Bridge
Period ITA MK C.P * D.C ** Regression ITA MK C.P * D.C ** Regression
Annual H H - H H N - - N N
January N N N N N N N N N N
February N N N N N N - - N N
March N N - N N N - - N N
April H H - N H N N - N N
May N N N N N N N N N N
June H - - H H N N - N N
July H - - H H N - - N N
August H H - N H H H - H H
September N - - N N N N N N N
October N - - N N N N N N N
November N N N N N N N N N N
December N N - N N N N N N N

Note: * Change point detection test; ** decadal comparison.

5. Discussion

The WA-ANN models with a decomposition level of 7 (256 days) and a lag time of two and
one day for Besham Qila and Partab Bridge, respectively, can precisely find the missing suspended
sediment load for a given circumstance of hydrological data of the study area. Our findings show that
the variation in flow patterns have been causing a significantly increasing trend in suspended sediment
loads (SSLs) in May and a significantly decreasing trend in August at both Besham Qila and Partab
Bridge gauges in the upper Indus River (Table 7). Contrary to the increase in high frequencies in low
annual SSLs and river flows at Besham Qila (which is additionally influenced by monsoon rainfall),
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the frequencies in high SSLs and river flows are increasing at the Partab Bridge gauge, which is located
just downstream of high elevation glacierized areas of the Karakoram and Himalayas (Figures 1 and 6).
Even in the absence of hydraulic structures between both gauges, the high SSLs recorded at Partab
Bridge during summer are not being transported to the downstream gauge. Furthermore, the mean
monthly linear variations show that an average 1% change in monthly flows can cause a 3% change in
SSLs (Figure 10). However, the sediment transport capacity of the river is more sensitive to discharge
change from May–August at Besham Qila and in September at Partab Bridge.

The sediment transport processes at the upper Indus River are influenced by hysteresis
phenomenon and alternative cycles of dray and wet seasons. Applying simple relationship between
water discharge and sediment concentration in the modeling process cannot adjust and model these
impact factors. Therefore, a temporal resolution of approximately one year with a lag time of one day
in the glacier-influenced zone and two days in the rainfall-influenced zone can reduce the variations in
sediment load reconstruction. The reconstruction variations, in particular, increase when for example
in conventional methods (sediment rating curves and ANN), temporary sediment storage in the main
river channel and different transit times of discharges and sediment from their sources to the gauges
are not included. Therefore, the quality of hydraulic design and sediment load trends based on poor
sediment load estimation ultimately can affect the accuracy of subsequent studies and the efficiency of
the overall hydraulic structure and associated benefits.

Partab Bridge gauge is located just downstream of the snow-fed and glacial melt zone of the
upper Indus River. Therefore, the results indicate two types of patterns at Partab Bridge: (1) snowmelt-
and (2) glacial melt-dependent SSLs. The former (snowmelt dependent) SSLs have been shifting to the
spring months (April, May and June) due to an increase in early snowmelts at low altitudes [15,17,75].
Particularly in May, the significant increasing effect of early snowmelt has increased the SSL from
3.3 Mt year−1–5.6 Mt year−1, over the last 50 years (Figure 7). The effect of early snowmelt has
also been noticed by [53], where they determined a 50 million m3 increasing rate in May’s flow at
Partab Bridge. Interestingly, in comparison to Besham Qila (47 million m3), the rate of increase in
flow (50 million m3) is higher at Partab Bridge and vice versa in SSLs (Tables 4 and 6). However,
this increasing trend in flows extraordinarily increased SSLs at Partab Bridge, where after 1993, SSLs
are identical to those of Besham Qila. The identical loads at both gauges point out either no increase in
SSLs at Besham Qila’s catchment or deposition downstream of Partab Bridge.

On the other hand, retrieval of glacial size depreciates the SSLs in August due to less water
availability [14,19,56,76]; the SSLs have decreased to 34% (from 43%) over the past 50 years. It seems
that glacial melt has shifted to July and September (Table 4). Although the increasing trend in both
months is similar (Table 6), September’s flow has remarkably increased the SSL from 9 Mt–15 Mt
(similar to regressions where increase is 65%) at Partab Bridge (Figure 7). This significant increasing
trend may be caused by the small increase in most effective discharge. It also shows the degree of
sensitivity where only an 11% change in discharge caused a 66% change in SSL (Table 6). Furthermore,
the remarkable increase in SSLs in September may reduce the reservoirs’ life by increasing trap
efficiency, where according to existing operation rules, the dams are normally filled to the maximum
conservation level as late as 31 of August, such as at Tarbela dam.

Contrary to monotonically-increasing trends in SSL at Partab Bridge (except August), the Besham
Qila gauge, located in the snow and rain-fed zone, has diversified mean monthly trends from winter
to spring (Table 7). The rise in spring’ SSLs at Besham Qila might be due to early snowmelt as at
Partab Bridge [53]. However, the most surprising trend outcome is the decrease in SSLs during April
in contrast to the increase in discharges revealed by regressions (Table 6). In the MK test, April’s
SSLs also showed a decreasing trend, despite an increasing trends in proceeding and immediately
succeeding months (Table 4). In April, half of the flow volume recorded at Besham Qila comes from
Partab Bridge [77]; however, corresponding to a 36% linear mean monthly increase at Partab Bridge
(Table 6), the increase in flow at Besham Qila is only 7%. Therefore, the corresponding increase in SSLs
recorded at Partab Bridge during April may be deposited (due to less SSL transport capacity of the
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river) between Besham Qila and Partab Bridge, causing high SSLs during the succeeding month (May)
at Besham Qila, when the river flows show a significant increasing trend at both gauges. Over August,
on the contrary, the declining trend in SSLs at Besham Qila is statistically insignificant and seems to be
associated with the decrease in the contribution of SSLs (Table 4) and flow volume (from which 84% of
flow comes) from Partab Bridge.

As can be seen in Figure 2, over the past 40 years, at Besham Qila, the average annual volume
of water was about 76 billion m3 (BCMs), while the same average was 56 BCMs at Partab Bridge.
That means the catchment at Partab Bridge (denoted by Zone 1) contributes 74.2% of the annual flow
volume at Besham Qila. The remaining 25.8% in annual flow volume is contributed from the catchment
between Partab Bridge and Besham Qila (denoted by Zone 2). The flow volume in Zone 2 is mostly
generated from rainfall and snowmelt [17]. The linear trend from 1969–2008 in Figure 5 shows an
increase in flow volume at Besham Qila of around 3.90% (denoted by ∆Q), while the same increase
at Partab Bridge is around 13.50% (denoted by ∆Q1). The variation of water availability in the area
between Partab Bridge and Besham Qila (denoted by ∆Q2) can be approximated using the following
mass balance equation:

100× ∆Q = 74.2× ∆Q1 + 25.8× ∆Q2 (21)

From this equation, we obtain the variation in flow in Zone 2 ∆Q2 = −38%. As Zone 2 is
influenced by rainfall and snowmelt, it seems that the negative variation is attributable to trends of
these parameter. These parameters (snowmelt and rainfall) have further been causing a decrease in
water availability (between both gauges) required to transport the increased SSLs coming from Partab
Bridge. Thus, the annual SSL trends at Besham Qila have shown a decreasing tendency since 1969
(Figure 5). Similar results have also been noted by [12], where the decrease in rainfall in the study area
has been buffered by the increase in glacier melts. Additionally, the rise in glacier melt or precipitation
over the western region of the upper Indus Basin noted by [16] might have been the cause of the 60%
increase in SSLs during September at Partab Bridge. However, this increase has not been received at
the downstream gauge, possibly due to a statistically insignificant increase in discharge downstream
of the same gauge till Besham Qila (Table 4).

In the future at the upper Indus River, the overall increase in flow volume is expected to reach
7–12% [15]. This increase will mostly increase the flow share for the pre and post summer months,
which will not be enough (it will be less than the most effective discharges) to transport an additional
sediment load. Consequently, the annual SSLs will remain the same or will decrease slightly at
Besham Qila. Therefore, in keeping with the current trends, the published sediment load estimates
indicate an ongoing decline at Besham Qila (Table 1), since 1970 to the present. Regardless of the
increase or decrease in the flow volume, the researchers agree on the shift in flow patterns at the upper
Indus River [14,33,78]. Since there are neither hydraulic structures at the upper Indus River/basin,
nor land use changes that might have affected the situation, in contrast to [79,80] studies for the East
or Thames River, the temporal changes in SSLs can only be due to climate change factors. In addition,
the statistically-significant monthly SSL trends contradict the previous reservoir sedimentation studies,
which simply used the past SSCs without modification to the future predictions, particularly for the
hydraulic structures planned upstream of Besham Qila [2,3,29,81]. Thus, using modified boundary
conditions for reservoir sedimentation studies in the presence of trends can improve the overall quality
of hydraulic designs and reservoirs’ lives in the study area.

Nevertheless, the variations in SSLs, overall, may have serious implications for water storage,
as well as the management of peak supply, peak demand and dam safety, which will require certain
changes in the existing reservoirs’ operational rules. These changes may include the use of additional
(increased) water for power generation during low flows (winter months) and for irrigation or flushing
operations in May when more water is available. Flushing in May when crops are at a mature stage
and do not require irrigation will also provide the opportunity to re-fill the reservoirs in the succeeding
high flow months (June–July). Although the overall flow volume at Besham Qila has been increasing
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slightly, the flow contribution of the catchment between Partab Bridge and Besham Qila (Zone 2) has
been decreasing and causing substantial sediment deposition and an overall decrease in the SSLs
received at Besham Qila. Despite the fact that we did not include the impact of landslides on sediment
deposition, the current findings are of crucial importance for 143 existing or planned dams and other
construction projects in the upper Indus River, especially upstream of the Partab Bridge, which has a
glacier-fed catchment and is sensitive to change in river discharges.

6. Conclusions

Reconstructed suspended sediment load (SSL) time series using wavelet neural networks
(WA-ANNs) along with the innovative trend test, the Mann–Kendall test, Sen’s slope estimator,
the change point detection test and linear regressions have shown a shifting trend from the summer
(June, July and August) to the spring and winter months due to a change in water availability at the
upper Indus River over the past 50 years. The spatio-temporal trends between discharges and SSLs are
disproportionate. This disproportional behavior and the significant trends strongly disconfirm the
hypothesis that future inflows and SSLs are similar to the previous ones for reservoir sedimentation
studies for the upper Indus River. In addition, the SSLs recorded at Partab Bridge are depositing in
the river channel between both gauges. This deposition process has led to a long-term decrease in
SSLs, in contrast to a long-term increase in flow volume at the Tarbela dam. For future water and food
security along the Indus River command area, it is necessary to estimate the impact of long-term SSL
variations on the existing and planned water storage capacities of the reservoirs. Moreover, the impact
of planned construction activities along the upper Indus River, which contains enormous sediment
deposits, should be evaluated.
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quadratic trends of reconstructed SSLs and observed discharges for the Besham Qila and the Partab Bridge sites.
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Bridge (1962 ≤ y ≤ 2008).
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