

Supplementary Traffic-related Particulate Matter and Cardiometabolic Syndrome: A Review

C. M. Sabbir Ahmed, Huanhuan Jiang, Jin Y. Chen and Ying-Hsuan Lin

Table S1: Results of databases with subsequent keywords "Traffic related air pollution"— "Particulate matter"—"Human health"—"Metabolic syndrome", grouped by various time intervals.

	Time interval							
Search database with keywords	1980-1990	1991-2000	2001-2010	2011-2018	Total			
Google Scholar								
Traffic related air pollution	9	299	4490	12800	17598			
Particulate matter	1	103	2840	8870	11814			
Human health	1	48	1270	4040	5359			
Metabolic syndrome	0	0	39	205	244			
Web of Science								
Traffic related air pollution	0	28	285	586	899			
Particulate matter	0	5	73	273	351			
Human health	0	0	2	11	13			
Metabolic syndrome	0	0	1	2	3			
PubMed								
Traffic related air pollution	0	15	180	499	694			
Particulate matter	0	2	59	212	273			
Human health	0	0	0	3	3			
Metabolic syndrome	0	0	0	0	0			
JSTOR								
Traffic related air pollution	1	18	268	168	455			
Particulate matter	0	7	200	122	329			
Human health	0	1	53	26	80			
Metabolic syndrome	0	0	0	4	4			

Type of study	Reference	Study period	Exposure dose/concentration	Study subject	Gender/Age	Major health outcomes
Epidemiological	Riediker, 2007 [1]	2001	In-vehicle $PM_{2.5:}$ an average of 24 $\mu g/m^3$	Human	Highway patrol troopers/23-30 years	In-vehicle exposure to $PM_{2.5}$ may cause pathophysiologic changes that involve inflammation, coagulation, and cardiac rhythm.
Epidemiological	Alexeeff et al., 2018 [2]	2010-2015	BC: 0.36 µg/m ³ , NO: 4.9 ppb and NO ₂ : 9.9 ppb	Human	Adults	Street-level differences in long-term exposure to traffic- related air pollutants were associated with higher risk of cardiovascular events among the elderly, indicating that within-neighborhood differences in TRAP are important to cardiovascular health. Associations among the general population were consistent with results found in previous studies, though not statistically significant.
Epidemiological	Riediker et al., 2018 [3]	N/A	PM _{2.5} at work: 88.48 μ g/m ³ , PM _{2.5} at home: 48.17 μ g/m ³ , and PM _{2.5} at night: 21.5 μ g/m ³	Human	Male Swiss highway maintenance workers	Found reduced modulation of HRV with the exposure of $PM_{2.5}$.
Epidemiological	Mazidi & Speakman, 2018 [4]	CVD: 2011-2013; Obesity: since 1984	PM _{2.5} : 11.9±1.7 μg/m3, ozone: 0.06±0.01 ppm	Human	Female and male/age>35 years for cardiovascular disease study	There was a spatial association between $PM_{2.5}$ exposure and the leading causes of death and disability in United States. The effect of $PM_{2.5}$ was considerably greater in areas where obesity is more prevalent. Hypertension is a possible mediator of the association of $PM_{2.5}$ and both CVD and stroke.
Controlled human exposure	Peretz et al., 2008 [5]	N/A	Diesel exhaust associated fine PM: 100 or 200 µg/m ³	Human	Male and female/18– 49 years	Short-term exposure to DE is associated with acute endothelial response and vasoconstriction of a conductance artery.
Epidemiological	Wu et al., 2011 [6]	2008-2009	PM ₂₅ and CO in car	Human	Nonsmoking, young, and healthy taxi drivers	Results support the association of exposure to traffic-related air pollution with altered cardiac autonomic function in young healthy adults free of cardiovascular compromises. Negative associations of HRV with PM _{2.5} were observed.
Epidemiological	Gan et al., 2011 [7]	1994-2002	BC: $(1.49 \pm 1.10) \times 10^{-5}$ /m, PM _{2.5} : 4.08 ± 1.63 µg/m ³ , NO ₂ : 32.1 ± 8.0 µg/m ³ and NO: 32.0 ± 11.9 µg/m ³	Human	45–85 years	There was a clear linear exposure-response relationship between BC and coronary events (hospitalization and mortality).
Epidemiological	Hou et al., 2012 [8]	N/A	Personal PM _{2.5} : average 94.6 µg/m ³	Human	Male and	Short-term exposure to ambient PM is associated with

Table S2: Sı -1-1-J DM بالمعاملة الم ata in th • c 4: atabali **c** . . 1 . . . 1 . . 1

						artery.
Epidemiological	Wu et al., 2011 [6]	2008-2009	PM _{2.5} and CO in car	Human	Nonsmoking, young, and healthy taxi drivers	Results support the association of exposure to traffic-related air pollution with altered cardiac autonomic function in young healthy adults free of cardiovascular compromises. Negative associations of HRV with PM _{2.5} were observed.
Epidemiological	Gan et al., 2011 [7]	1994-2002	BC: $(1.49 \pm 1.10) \times 10^{-5}$ /m, PM _{2.5} : 4.08 ± 1.63 µg/m ³ , NO ₂ : 32.1 ± 8.0 µg/m ³ and NO: 32.0 ± 11.9 µg/m ³	Human	45–85 years	There was a clear linear exposure–response relationship between BC and coronary events (hospitalization and mortality).
Epidemiological	Hou et al., 2012 [8]	N/A	Personal PM _{2.5} : average 94.6 μ g/m ³ (office workers), average 126.8 μ g /m ³ (truck drivers); Personal EC: average 13.1 μ g/m ³ (office workers), average 17.3 μ g/m ³ (truck drivers); ambient PM ₁₀ : average 116.7 μ g/m ³ (office workers), average 123.5 μ g/m ³ (truck drivers)	Human	Male and female/average 30.27 years (office workers), average 33.5 years (truck drivers)	Short-term exposure to ambient PM is associated with increased blood telomere length, consistent with telomere roles during acute inflammatory responses. Longer exposure may shorten telomere as expected after prolonged pro-oxidant exposures. The observed telomere alterations may participate in the biological pathways of short- and long-term PM effects.
Epidemiological	Steenhof et al., 2014 [9]	2009	PM ₁₀ : 76 (18–450) μg/m ³ , PM _{2.5} : 39 (8–167) μg/m ³ , EC, OC, Cu, Ni, V, NO ₂ : 20 (9–34) ppb	Human	N/A	PM was associated with changing in total WBC counts, number of neutrophils, monocytes and, inflammatory response.
Toxicological	Wagner et al., 2014 [10]	2011	$PM_{2.5}; 356 \pm 87 \ \mu g/m^3, O_3; 0.485 \pm 0.042 \ ppm from highway and industry site$	Sprague- Dawley rat	Male/8 weeks	Cardiovascular depression like heart rate, HRV, and blood pressure in O_{3} - and $PM_{2.5}$ -exposed rats was enhanced and prolonged in rats with HFrD-induced metabolic syndrome.

4 of 7

Table S2 (Continued)

Type of study	Reference	Study period	Exposure dose/concentration	Study subject	Gender/Age	Major health outcomes
Epidemiological	Chen et al., 2013 [11]	1996-2010	Annual estimates of PM _{2.5} exposure by assigning the 6-year mean concentration of PM _{2.5} at each annual postal code	Human	35 years or older	Long-term exposure to $PM_{2.5}$ may contribute to the development of diabetes.
Epidemiological	Dijkema et al., 2011 [12]	2007	Traffic-related PM and NO ₂	Human	50-75 years	No consistent associations between type 2 diabetes prevalence and exposure to TRAP was found, though there were some indications for a relation with traffic in a 250 m buffer.
Epidemiological	Ruckerl et al., 2014 [13]	2007-2008	NO, NO ₂ , CO, BC, PM _{2.5} , PM _{2.5-10} , and PM ₁₀	Human	Slightly more males, with a mean age of approximately 62 years	Subjects with certain genes involved in the detoxification process render these people more susceptible to effects of PM mass on inflammation. Pre-diabetics were slightly more responsive to air pollution than diabetics, which might be explained by anti-diabetic medication that attenuates the effects of ambient air pollution on blood markers.
Epidemiological	Hou et al.,2016 [14]	N/A	Detected PAHs in the urine sample	Human	N/A	Urinary OH-PAHs levels were positively associated with type 2 diabetes among participants with impaired lung function. Higher levels of urinary OH-PAHs and reduced lung function had an additive effect on diabetes
Epidemiological	Ponticiello et al., 2015 [15]	N/A	Metal and PAHs	Human	Male traffic police: 48.2 years, female traffic policemen:45.6 years, male indoor workers: 48.2 years, female indoor workers: 44.9 years	Outdoor workers may be subject to an additional risk of developing obesity as a result of exposure to urban air pollution.
Epidemiological	Hu et al., 2015 [16]	2001-2008	PAHs	Human	18 years or older	Environmental exposure to PAHs independent of cigarette smoking is associated with insulin resistance, β -cell dysfunction, and increased prevalence of metabolic syndrome.
Epidemiological	Yang et al., 2017 [17]	2006–2008	Ambient PM_{10} , SO_2 , NO_2 and O_3 from monitoring stations	Human	Adults/18–74 years	There were significant associations between air pollutants $(PM_{10}, SO_2, NO_2, and O_3)$ and prehypertension and increased arterial BPs in adults. The associations were found to be stronger for females and the elderly.
Epidemiological	Chung et al., 2015 [18]	2009-2011	Particle number concentration: 17,000 number/cm ³ , PM _{2.5} : 7.30 µg/m ³ , BC: 0.68 µg/m ³ within 7 km from a major highway	Human	Male and female/average 58.5 years	Particle number concentration levels are associated with increased blood pressure.
Epidemiological	Thiering et al., 2013 [19]	N/A	$NO_2:21.2-24.0 \ \mu g/m^3, PM_{10}:20.3-25.5 \ \mu g/m^3, PM_{2.5}: 13.3-17.5 \ \mu g/m^3$ from traffic-related air pollution	Human	Children/10 years	Long term exposure of traffic-related air pollution may increase the risk of insulin resistance in children.
Epidemiological	Brook et al., 2013 [20]	2009-2010	$PM_{2.5}$ from urban: 11.5 \pm 4.8 $\mu g/m^3$	Human	both male and female/18–50 years	PM _{2.5} , even at low levels, may reduce metabolic insulin sensitivity.
Controlled human exposure	Cosselman el al.,2012 [21]	N/A	Fine PM from diesel exhaust: 200 $\mu g/m^3$	Human	Male and female/18- 49 years	Diesel exhaust inhalation was associated with a rapid, measurable increase in systolic but not diastolic BP in young nonsmokers, independent of perception of exposure.

Table S2 (Continued)

Type of study	Reference	Study period	Exposure dose/concentration	Study subject	Gender/Age	Major health outcomes
Toxicological	Matsuda et al., 2013 [22]	N/A	Concentrated PM _{2.5} : 600 μg/m ³	C57BL6 male mice	Male	No difference in body weight was observed across groups exposed to RC or HF diet and FA or EXP air exposure. Obese mice exposed to $PM_{2.5}$ (EXP-HF) had significantly higher fasting glycemia levels than FA-FH group (the group exposed to filtered air) The gene expression profile of adhesion molecules (E- selectin, VCAM-1, ICAM-1, cytokine IL-6, and MMP-9 (extracellular matrix metalloproteinase) was differently affected by $PM_{2.5}$.
Toxicological	Brocato et al., 2014 [23]	N/A	PM ₁₀ : 100µg/m ³ , heavily concentrated with S, Al, Fe, Ni, Va, As, Pb, Cd, Mn, Ti, and Mg	FVB/N mice	Male/11 weeks	PM_{10} -induced genes involved in inflammation, cholesterol, lipid metabolism, and atherosclerosis.
Toxicological	Xu et al., 2016 [24]	N/A	PM _{2.5} from road: 101.5±2.3 μg/m ³	C57BL/6J mice	Male/6-8 weeks	PM _{2.5} inhalation results in the development of metabolic disorders and systemic inflammation through the NF-κB and Nrf2 signaling
Toxicological	Wang et al., 2017 [25]	N/A	Concentrated ambient PM _{2.5} from University of Maryland, Baltimore area: 17-24 µg/m ³	Drosophila	Male and female	Drosophila developed systemic inflammation-like responses and dysregulated insulin signaling and have a markedly increased premature mortality in response to exposure to CAP.

¹. N/A: information not available

References

- 1. Riediker, M. Cardiovascular effects of fine particulate matter components in highway patrol officers. *Inhal. Toxicol.* **2007**, *19*, 99-105.
- 2. Alexeeff, S.E.; Coull, B.A.; Gryparis, A.; Suh, H.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Mediumterm exposure to traffic-related air pollution and markers of inflammation and endothelial function. *Environ. Health* **2011**, *119*, 481-486.
- 3. Riediker, M.; Franc, Y.; Bochud, M.; Meier, R.; Rousson, V. Exposure to fine particulate matter leads to rapid heart rate variability changes. *Front. Environ. Sci.* **2018**, *6*, 1-9.
- Mazidi, M.; Speakman, J.R. Impact of obesity and ozone on the association between particulate air pollution and cardiovascular disease and stroke mortality among US adults. *J. Am. Heart Assoc.* 2018, 7.
- Peretz, A.; Sullivan, J.H.; Leotta, D.F.; Trenga, C.A.; Sands, F.N.; Allen, J.; Carlsten, C.; Wilkinson, C.W.; Gill, E.A.; Kaufman, J.D. Diesel exhaust inhalation elicits acute vasoconstriction *in vivo*. *Environ. Health Persp.* 2008, *116*, 937-942.
- 6. Wu, S.; Deng, F.; Niu, J.; Huang, Q.; Liu, Y.; Guo, X. The relationship between traffic-related air pollutants and cardiac autonomic function in a panel of healthy adults: A further analysis with existing data. *Inhal. Tox.* **2011**, *23*, 289-303.
- 7. Gan, W.Q.; Koehoorn, M.; Davies, H.W.; Demers, P.A.; Tamburic, L.; Brauer, M. Long-term exposure to traffic-related air pollution and the risk of coronary heart disease hospitalization and mortality. *Environ. Health Persp.* **2011**, *119*, 501-507.
- 8. Hou, L.; Wang, S.; Dou, C.; Zhang, X.; Yu, Y.; Zheng, Y.; Avula, U.; Hoxha, M.; Díaz, A.; McCracken, J., *et al.* Air pollution exposure and telomere length in highly exposed subjects in beijing, China: A repeated-measure study. *Environment international* **2012**, *48*, 71-77.
- 9. Steenhof, M.; Janssen, N.A.H.; Strak, M.; Hoek, G.; Gosens, I.; Mudway, I.S.; Kelly, F.J.; Harrison, R.M.; Pieters, R.H.H.; Cassee, F.R., *et al.* Air pollution exposure affects circulating white blood cell counts in healthy subjects: The role of particle composition, oxidative potential and gaseous pollutants the raptes project. *Inhal. Toxicol.* **2014**, *26*, 141-165.
- Wagner, J.G.; Allen, K.; Yang, H.Y.; Nan, B.; Morishita, M.; Mukherjee, B.; Dvonch, J.T.; Spino, C.; Fink, G.D.; Rajagopalan, S., *et al.* Cardiovascular depression in rats exposed to inhaled particulate matter and ozone: Effects of diet-induced metabolic syndrome. *Environ. Health Persp.* 2014, 122, 27-33.
- Chen, H.; Burnett, R.T.; Kwong, J.C.; Villeneuve, P.J.; Goldberg, M.S.; Brook, R.D.; D.A, v.; Jerrett, M.; Martin, R.V.; Brook, J.R., *et al.* Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. *Environ. Health Persp.* 2013, 121, 804-810.
- 12. Dijkema, M.B.A.; Mallant, S.F.; Gehring, U.; van den Hurk, K.; Alssema, M.; van Strien, R.T.; Fischer, P.H.; Nijpels, G.; Stehouwer, C.D.A.; Hoek, G. Long-term exposure to traffic-related air pollution and type 2 diabetes prevalence in a cross-sectional screening-study in the Netherlands. *Environ. Health* **2011**, *10*, 76.
- Ruckerl, R.; Hampel, R.; Breitner, S.; Cyrys, J.; Kraus, U.; Carter, J.; Dailey, L.; Devlin, R.B.; Diaz-Sanchez, D.; Koenig, W., *et al.* Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. *Environment Int.* 2014, 70, 32-49.
- 14. Hou, J.; Sun, H.; Xiao, L.; Zhou, Y.; Yin, W.; Xu, T.; Cheng, J.; Chen, W.; Yuan, J. Combined effect of urinary monohydroxylated polycyclic aromatic hydrocarbons and impaired lung function on diabetes. *Environ. Res.* **2016**, *148*.

- Ponticiello, B.G.; Capozzella, A.; Di Giorgio, V.; Casale, T.; Giubilati, R.; Tomei, G.; Tomei, F.; Rosati, M.V.; Sancini, A. Overweight and urban pollution: Preliminary results. *Sci. Total Environ.* 2015, *518-519*, 61-64.
- 16. Hu, H.; Kan, H.D.; Kearney, G.D.; Xu, X.H. Associations between exposure to polycyclic aromatic hydrocarbons and glucose homeostasis as well as metabolic syndrome in nondiabetic adults. *Sci. Total Environ.* **2015**, *505*, 56-64.
- 17. Yang, B.Y.; Qian, Z.M.; Vaughn, M.G.; Nelson, E.J.; Dharmage, S.C.; Heinrich, J.; Lin, S.; Lawrence, W.R.; Ma, H.; Chen, D.H., *et al.* Is prehypertension more strongly associated with long-term ambient air pollution exposure than hypertension? Findings from the 33 communities Chinese health study. *Environ. Pollut.* **2017**, *229*, 696-704.
- Chung, M.; Wang, D.D.; Rizzo, A.M.; Gachette, D.; Delnord, M.; Parambi, R.; Kang, C.M.; Brugge, D. Association of PNC, BC, and PM_{2.5} measured at a central monitoring site with blood pressure in a predominantly near highway population. *Int. J. Env. Res. Pub. He.* 2015, *12*, 2765-2780.
- Thiering, E.; Cyrys, J.; Kratzsch, J.; Meisinger, C.; Hoffmann, B.; Berdel, D.; Von Berg, A.; Koletzko, S.; Bauer, C.P.; Heinrich, J. Long-term exposure to traffic-related air pollution and insulin resistance in children: Results from the giniplus and lisaplus birth cohorts. *Diabetologia* 2013, 56, 1696-1704.
- Brook, R.D.; Xu, X.H.; Bard, R.L.; Dvonch, J.T.; Morishita, M.; Kaciroti, N.; Sun, Q.H.; Harkema, J.; Rajagopalan, S. Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution. *Sci. Total Environ.* 2013, 448, 66-71.
- 21. Cosselman, K.E.; Krishnan, R.M.; Oron, A.P.; Jansen, K.; Peretz, A.; Sullivan, J.H.; Larson, T.V.; Kaufman, J.D. Blood pressure response to controlled diesel exhaust exposure in human subjects. *Hypertension* **2012**.
- 22. Matsuda, M.; Krempel, P.G.; André, P.A.; Freitas, J.R. Traffic-related air pollution effect on fast glycemia of aged obese type 2 diabetic mice. **2013**.
- 23. Brocato, J.; Sun, H.; Shamy, M.; Kluz, T.; Alghamdi, M.A.; Khoder, M.I.; Chen, L.C.; Costa, M. Particulate matter from Saudi Arabia induces genes involved in inflammation, metabolic syndrome and atherosclerosis. *J. Toxicol. Env. Health A* **2014**, *77*, 751-766.
- 24. Xu, M.X.; Zhu, Y.F.; Chang, H.F.; Liang, Y. Nanoceria restrains PM_{2.5}-induced metabolic disorder and hypothalamus inflammation by inhibition of astrocytes activation related NF-κB pathway in Nrf2 deficient mice. *Free Radical Bio. Med.* **2016**, *99*, 259-272.
- 25. Wang, X.K.; Chen, M.J.; Zhong, M.H.; Hu, Z.Y.; Qiu, L.L.; Rajagopalan, S.; Fossett, N.G.; Chen, L.C.; Ying, Z.K. Exposure to concentrated ambient PM_{2.5} shortens lifespan and induces inflammation-associated signaling and oxidative stress in drosophila. *Toxicol. Sci.* **2017**, *156*, 199-207.