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Abstract: The development and application of operational polarimetric radar (PR) in China is still in
its infancy. In this study, an operational PR quantitative precipitation estimation (QPE) algorithm is
suggested based on data for PR hydrometeor classification and local drop size distribution (DSD).
Even though this algorithm performs well for conventional rainfall events, in which hourly rainfall
accumulations are less than 50 mm, the capability of a PR to estimate extremely heavy rainfall remains
unclear. The proposed algorithm is used for nine different types of rainfall events that occurred in
Guangzhou, China, in 2016 and for an extremely heavy rainfall event that occurred in Guangzhou
on 6 May 2017. It performs well for all data of these nine rainfall events and for light-to-moderate
rain (hourly accumulation <50 mm) in this extremely heavy rainfall event. However, it severely
underestimated heavy rain (>50 mm) and the extremely heavy rain at stations where total rainfall
exceeded 300 mm within 5 h in this extremely heavy rainfall event. To analyze the reasons for
underestimation, a rain microphysics retrieval algorithm is presented to retrieve Dm and Nw from
the PR measurements. The DSD characteristics and the factors affecting QPE are analyzed based on
Dm and Nw. The results indicate that compared with statistical DSD data in Yangjiang (estimators are
derived from these data), the average raindrop diameter during this rainfall event occurred on 6 May
2017 was much smaller and the number concentration was higher. The algorithm underestimated
the precipitation with small and midsize particles, but overestimated the precipitation with midsize
and large particles. Underestimations occurred when Dm and Nw are both very large, and the severe
underestimations for heavy rain are mainly due to these particles. It is verified that some of these
particles are associated with melting hail. Owing to the big differences in DSD characteristics, R(KDP,
ZDR) underestimates most heavy rain. Therefore, R(AH), which is least sensitive to DSD variations,
replaces R(KDP, ZDR) to estimate precipitation. This improved algorithm performs well even for
extremely heavy rain. These results are important for evaluating S-band Doppler radar polarization
updates in China.

Keywords: quantitative precipitation estimation; drop size distribution; extremely heavy rain;
error analysis
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1. Introduction

Polarimetric radar (PR) can provide both backscatter and differential propagation phase
information; therefore, this type of radar has significant advantages over single polarization radar.
One of the advantages of PR is quantitative precipitation estimation (QPE) by using the PR variables.
Previous studies have shown that polarimetric precipitation estimation (PPE) techniques are more
robust with respect to drop size distribution (DSD) variations and the presence of hail than are
the conventional Z–R relationship (here, R is the radar rainfall rate and Z is the radar-reflectivity
factor) [1–5]. However, DSD variability and hail contamination can still introduce QPE errors when
only a single polarimetric variable is used in the PPE [6]. To avoid large observational errors in ZDR

and KDP at lower signal-to-noise ratios (SNRs) and to reduce the impact of DSD variability on the
precipitation estimation, multiple relationships between polarimetric variables and rainfall (e.g., R(ZH),
R(ZH, ZDR), and R(KDP)) are often used depending on the type of radar echo. By combining the merits
of these different relationships for various rain intensities, Ryzhkov et al. [6] developed a “synthetic”
algorithm that uses different combinations of radar variables depending on the rain rate estimates by
using the conventional Z–R relationship; their synthetic algorithm was evaluated during the 2002–2003
JPOLE experiment conducted in Oklahoma. Cifelli et al. [7] developed a synthetic algorithm based on
the thresholds of ZH, ZDR, and KDP and this algorithm was tested on the Colorado State University
(CSU)–CHILL radar.

Although relationships between R and polarimetric variables are less prone to DSD variability,
they must still be modified according to DSD data in different regions owing to cloud and precipitation
microphysical processes that are regionally dependent [6,8–10]. Even in the same region, DSD can
vary in terms of precipitation type (e.g., stratus clouds or convective clouds) and rainfall rate. Wu and
Liu [11] statistically analyzed the DSD–R relationship in the Tibetan Plateau and in Southern China
and found that DSD varies significantly with R. Wu et al. [12] and Zhang et al. [13] suggest that Z–R
relationships derived from the DSD vary significantly with R even for one rainfall event. Despite many
attempts to change the Z–R relationship in real time to improve QPE accuracy, the QPE performance
remains unsatisfactory for heavy rain [13–15].

QPE for heavy rainfall is a challenge we may meet. Another challenge is the estimation of rain
mixed with hail. Conventional radar rainfall estimates that were obtained from Z–R relationships
deteriorate in the presence of mixed-phase and frozen hydrometeors. The R(ZH, ZDR) relationship
is less prone to DSD variability but is not immune to hail contamination. Rainfall algorithms based
on KDP are more robust in the presence of hail but are not optimal for light rain in the S-band [16,17].
Wang et al. [18] attempted to use HDR to determine a hail region and then estimate the liquid
precipitation in the associated rain area. However, small mixtures of hail and rainfall are difficult to
identify with radar reflectivity alone. Misidentification of rain and precipitation ice often leads to
poorly estimated rainfall and has important implications for flood forecasting [7]. The challenges of
high-plain meteorological environments have led to the development of an algorithm guided by the
precipitation ice fraction in the radar volume. Golestani et al. [19] developed the CSU–ICE optimization
algorithm in which ZDR is used to calculate the ice-fraction index, but unfortunately it performs poorly
for 38 dBZ < ZH < 45 dBZ [7]. Therefore, a new rainfall algorithm was developed using hydrometeor
identification (HID) to guide the choice of a particular QPE algorithm [7]. Precipitation is classified
as rain, mixture, and ice. Drizzle, moderate rain, and heavy rain are included in the rain category;
the mixture category includes wet snow and a rain–hail mixture; and the ice category includes dry
snow, graupel, and hail. QPE is conducted in a rain and mixture area.

Despite all the progress in polarimetric rainfall measurements, an algorithm that can resolve all
these issues for any scenario does not exist. A synthetic algorithm that uses ZH, ZDR, and KDP can
theoretically capture the full range of local DSD variability. However, when the DSD characteristics
become significantly different from previous characteristics, the QPE performance will be unpredictable.
As a possible radar variable for rainfall estimation, specific attenuation (for horizontal polarization) AH

is more directly related to rain rate and liquid water content compared with ZH, and it is immune to
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radar miscalibration, partial beam blockage, and impacts of wet radomes. Compared with algorithms
based on ZH, ZDR, and KDP, rainfall estimations utilizing AH are less sensitive to DSD variations [20,21].
The use of R(AH) was originally X-band and C-band motivated, but it has applied to the S-band as well,
which was verified by Ryzhkov [22]. R(AH) was first used for X-band radars during the NASA Iowa
Flood Studies field campaign, and was found to have excellent performance [23]. A new estimator
R(AH, ZDR) was proposed by Keenan [24] for C-band estimation and proposed by Thurai et al. [25]
for X-band estimation, respectively. This has also been extended to S-band by Thomposon et al. [26].
Even though these estimators only offer significant skill at S-band for R(AH) or at X band for R(AH,
ZDR), Thomposon et al. [26] states that the utility of R(AH) or R(AH, ZDR) provide the possibility of
solving the problems discussed above.

In 2016, the new-generation S-band weather radar in Guangdong Province in China was updated
to PR. On 6 May 2017, an extremely heavy rainfall event (here after this rainfall event) was observed in
the low-latitude summer. During this heavy rainfall event, rain-gauge observations broke the historical
record for 3-h rainfall accumulation in Guangdong and the historical record for single-day rainfall
accumulation in Guangzhou City, in Guangdong Province. According to PR observations, hail and
graupel melted completely and became liquid water before reaching the ground, thereby altering
the DSD structure. Therefore, the QPE algorithm for this rainfall event should differ significantly
from those used for previous events. The PPE performance must be examined for this extremely
heavy rainfall.

So far, eight S-band PRs have been built in Guangdong Province. By 2020, more than 100 S-band
PRs will be built or upgraded in China. The evaluation of PR capability to estimate rain, especially
heavy rain, is an important avenue for future research. In this study, an operational QPE algorithm
based on a local DSD and mixed-phase precipitation identification is proposed and applied to some
rainfall events. This algorithm performs well for most rainfall events investigated in this study.
However, rainfall characteristics of this event are so different from the conventional rainfall events
occurred in Guangdong, in which hourly rainfall accumulations are less than 50 mm. The main
motivation for this study is to analyze the PR capability for estimating severe precipitation, such as this
rainfall event and to study the main factors affecting QPE. The performance of PPE and the possible
reasons for biases in precipitation estimation (i.e., DSD variations, precipitation phase, and other
factors) are analyzed in detail. The method to improve QPE performance on the basis of the reasons
for QPE errors is also discussed in this study.

In Section 2, we introduce the measurement instruments and analysis of the rainfall event.
In Section 3, we introduce our PPE algorithm, evaluation method, and the rain microphysics retrieval
algorithm. In Section 4, we analyze the performance of nine rainfall events and the extremely heavy
rainfall event introduced in this study, respectively. In Section 5, we explore possible reasons for biases
in the precipitation estimation for this heavy rainstorm. In Section 6, we improve the algorithm and
verify its effect. Finally, in Section 7, we present our conclusions.

2. Measurement Instruments and Rainfall Event

A heavy rainfall event occurred throughout Guangdong Province on 6 May 2017, and severe
rain occurred in Guangzhou City during 1900–2400 UTC. The rainfall observed at many automatic
weather stations (AWSs) broke historical records and caused numerous flooding disasters. Figure 1a
shows the distribution of total rainfall during 1900–2400 UTC based on AWS observations. During this
period, 78, 38, and 3 AWSs observed rain accumulations in excess of 50, 100, and 300 mm, respectively.
The maximum total rainfall was 401.6 mm (station 3 in Figure 1c), whereas the maximum hourly
rainfall accumulation was 184.4 mm (again station 3). Figure 1b shows the average radar reflectivity
for 1900–2400 UTC, and Figure 1c shows the average reflectivity enlarged on a local scale. The average
reflectivities exceeded 35 dBZ in many places, exceeding 45 dBZ in a narrow area near the radar station.
Figure 1a,b clearly show the relatively concentrated spatial and temporal distributions of heavy rain
and strong echoes. The locations of those AWSs where the total rainfall exceeded 300 mm are marked
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with plus signs in Figure 1c, along with the disdrometer (square) at Luogang and the S-band PR
(triangle) at Guangzhou.Atmosphere 2018, 9, x FOR PEER REVIEW  4 of 23 

 

 
Figure 1. Distributions of (a) total rainfall observed at the automatic weather stations (AWSs) and (b) 
the average radar reflectivity for 1900–2400 UTC on 6 May 2017; (c) the enlarged area denoted by the 
square in (b). In (a), precipitation within the area enclosed by circles is evaluated. In (b), the small 
square indicates the location of the Yangjiang disdrometer (21.84° N, 111.98° E, 90 m above mean 
sea level). In (c), the triangle denotes the radar location (23.00° N, 113.36° E, 179 m), the “+” symbols 
indicate the three AWSs (23.28° N, 113.57° E, 75 m; 23.23° N, 113.60° E, 48 m; 23.28° N, 113.62° E, 50 
m) where total rainfall exceeded 300 mm, and the small square indicates the location of the 
disdrometer; LG denotes the Luogang disdrometer (23.22° N, 113.48° E, 71 m). 

The laser disdrometer (produced by Beijing Metstar Radar Co., Ltd., Beijing, China) can 
measure the precipitation particle diameter and terminal fall velocity simultaneously. The particle 
diameter is divided into 64 classes ranging from 0.2 to 30 mm, and the velocity is divided into 32 
classes ranging from 0.2 to 20 m/s. The temporal resolution is 1 min. Note that the disdrometer was 
not located in the area of heaviest precipitation. 

Updated in 2016, the S-band PR deployed in Guangzhou can measure multiple polarimetric 
variables such as ZH, ZDR, and ΦDP (differential phase). The radar was calibrated in the factory 
according to the criterion proposed by China Meteorological Administration (CMA) [27]. After 
radar construction, a series of tests, such as built-in testing, sun-calibration, and vertical pointed 
calibration were conducted by the Meteorological Observation Center of CMA. The results of the 
tests indicated that ZH accuracy is better than 1 dB and ZDR accuracy is better than 0.4 dB. The radar 
operates in the conventional VCP21 volume-scan mode and completes a volume scan using nine 
specific elevation angles (0.5°, 1.5°, 2.4°, 3.3°, 4.3°, 6.0°, 9.9°, 14.6°, and 19.5°) in 6 min, with a 0.95° 
beam width, a 0.25 km radial resolution and a 460 km maximum detection range. Figures 2 and 3 
show the evolution of reflectivity and radial velocity at 0.5° elevation during 1900–2400 UTC. At 
2000 UTC, strong echoes reached the three AWSs and developed rapidly. During 2000–2300 UTC, 
echoes larger than 50 dBZ remained there and changed little in reflectivity, location, and influence 
area. The radial velocities at 0.5° and 1.5° elevations (not shown) indicate that gradually intensifying 
northerly and southerly winds converged at around 560 m above the ground at 2000 UTC. The 
convergence area evolved gradually into a convergence belt and reached its maximum convergence 
at 2200 UTC, resulting in persistent ascending motion leading to persistent strong echoes and heavy 
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Figure 1. Distributions of (a) total rainfall observed at the automatic weather stations (AWSs) and
(b) the average radar reflectivity for 1900–2400 UTC on 6 May 2017; (c) the enlarged area denoted by
the square in (b). In (a), precipitation within the area enclosed by circles is evaluated. In (b), the small
square indicates the location of the Yangjiang disdrometer (21.84◦ N, 111.98◦ E, 90 m above mean sea
level). In (c), the triangle denotes the radar location (23.00◦ N, 113.36◦ E, 179 m), the “+” symbols
indicate the three AWSs (23.28◦ N, 113.57◦ E, 75 m; 23.23◦ N, 113.60◦ E, 48 m; 23.28◦ N, 113.62◦ E, 50 m)
where total rainfall exceeded 300 mm, and the small square indicates the location of the disdrometer;
LG denotes the Luogang disdrometer (23.22◦ N, 113.48◦ E, 71 m).

The laser disdrometer (produced by Beijing Metstar Radar Co., Ltd., Beijing, China) can measure
the precipitation particle diameter and terminal fall velocity simultaneously. The particle diameter is
divided into 64 classes ranging from 0.2 to 30 mm, and the velocity is divided into 32 classes ranging
from 0.2 to 20 m/s. The temporal resolution is 1 min. Note that the disdrometer was not located in the
area of heaviest precipitation.

Updated in 2016, the S-band PR deployed in Guangzhou can measure multiple polarimetric
variables such as ZH, ZDR, and ΦDP (differential phase). The radar was calibrated in the factory
according to the criterion proposed by China Meteorological Administration (CMA) [27]. After radar
construction, a series of tests, such as built-in testing, sun-calibration, and vertical pointed calibration
were conducted by the Meteorological Observation Center of CMA. The results of the tests indicated
that ZH accuracy is better than 1 dB and ZDR accuracy is better than 0.4 dB. The radar operates in the
conventional VCP21 volume-scan mode and completes a volume scan using nine specific elevation
angles (0.5◦, 1.5◦, 2.4◦, 3.3◦, 4.3◦, 6.0◦, 9.9◦, 14.6◦, and 19.5◦) in 6 min, with a 0.95◦ beam width, a 0.25 km
radial resolution and a 460 km maximum detection range. Figures 2 and 3 show the evolution of
reflectivity and radial velocity at 0.5◦ elevation during 1900–2400 UTC. At 2000 UTC, strong echoes
reached the three AWSs and developed rapidly. During 2000–2300 UTC, echoes larger than 50 dBZ
remained there and changed little in reflectivity, location, and influence area. The radial velocities
at 0.5◦ and 1.5◦ elevations (not shown) indicate that gradually intensifying northerly and southerly
winds converged at around 560 m above the ground at 2000 UTC. The convergence area evolved
gradually into a convergence belt and reached its maximum convergence at 2200 UTC, resulting in
persistent ascending motion leading to persistent strong echoes and heavy rain.
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3. Methods

3.1. QPE Algorithm and Evaluation Method

In this study, we propose a localized PR QPE algorithm that accounts for hydrometeor phase
classification (a flowchart is shown in Figure 4). This algorithm is designed for the operational PRs in
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Guangdong, which is practical and easy to implement. Based on data quality, hydrometeor phase type,
and polarimetric data threshold, the QPE algorithm is conducted for poor-quality data, mixed-phase
precipitation, and liquid precipitation, respectively.
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An analysis of the PR data from China [27] indicates that noise can easily affect ZDR and KDP

when the SNR is <20 dB, leading to large spatiotemporal variations. Therefore, under these SNR
conditions, ZDR and KDP are not appropriate for precipitation estimation, and R1(ZH) is used instead.
For mixed-phase precipitation (e.g., hail contamination), because the backscattering cross-section of hail
is much larger than that of raindrops, ZH can be extremely large. Hail rolling results in ZDR being close
to 0 dB, and hail melting results in ZDR being very large [28]. However, hail makes little contribution
to rain accumulation. Previous studies have shown that precipitation estimation used ZH and ZDR are
not efficient in situations of hail contamination [3,6,17]. Because KDP is immune to hail contamination,
rainfall algorithms based on KDP are more robust in the presence of hail [3,16]. In the present study,
the mixed-phase precipitation is determined by ZH > 50 dBZ, KDP ≥ 1◦/km, and ρHV ≤ 0.97, and its
rainfall rate is estimated with KDP only. The QPE algorithm for liquid precipitation is similar to the
CSU–HIDRO algorithm [7], which is denoted by the dashed frame in Figure 4.

The rainfall estimators shown in Figure 4 are expressed by:

R1, 2(ZH) = aZH
b, (1)

R1, 2(KDP) = aKDP
b, (2)

R(ZH, ZDR) = aZH
b10cZDR , (3)

R(KDP, ZDR) = aKDP
b10cZDR , (4)

where ZH is in units of mm6/m3, ZDR is in dB, KDP is in ◦/km, and R is in mm/h.
The coefficients of R1(ZH) and R2(ZH) are different. R1(ZH) is used for light rain, and R2(ZH)

is used for moderate rain with low ZDR and KDP. The coefficients of R1(KDP) and R2(KDP) are
also different. R1(KDP) is applied to mixed-phase precipitation, whereas R2(KDP) is applied to
liquid precipitation.

The coefficients used in Equations (1)–(4) were obtained from the DSD data for 27 April to
11 June 2014 from Yangjiang in Guangdong (shown in Figure 1b) [7,29]. Note that the DSD data used
for fitting should be chosen according to the thresholds used for the rainfall estimators. For example,
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DSD data that satisfy ZH > 50 dBZ and KDP ≥ 1◦/km are used to fit R1(KDP). The coefficients of the
rainfall estimators shown in Figure 4 are given in Table 1.

Table 1. Coefficients of quantitative precipitation-estimation algorithm.

Coefficient a b c

R1(ZH) 0.0082 0.7490
R2(ZH) 0.0154 0.7681
R1(KDP) 30.30 0.9298
R2(KDP) 34.56 0.9496

R(ZH, ZDR) 0.0084 0.9284 −0.4055
R(KDP, ZDR) 51.16 0.9311 −0.0852

Radar bins within 20–35, 35–60, and 60–180 km from the radar station in the plan position indicator
(PPI) at elevation angles of 2.4◦, 1.5◦, and 0.5◦, respectively, are used to estimate the precipitation.
To avoid the influences of the melting layer and the ground clutter, for evaluation, we used 558 AWSs
that are within 20–180 km from the radar location. They are distributed between the two circles shown
in Figure 1a.

We used the rain rate produced by the S-band PR at a temporal resolution of 6 min to calculate
hourly rainfall accumulations, taking the rainfall accumulations measured at the AWSs as true
accumulations. We used the average radar-estimated precipitation of the nine radar bins nearest
to an AWS to evaluate the QPE performance. Because the AWS resolution is 0.1 mm, only rainfall
measurements that exceeded 0.1 mm were used for evaluation. As statistical indicators of algorithmic
performance, we obtained the correlation coefficient (CC), root mean square error (RMSE), normalized
relative bias (NB), normalized absolute error (NE), the bias ratio of radar-estimated rainfall to
AWS-observed rainfall (bias ratio), and Nash–Sutcliffe efficiency score (Eff ), which are defined as:

CC =

n
∑

i=1
(RAradar

i − RAradar
i )(RAgauge

i − RAgauge
i )√

n
∑

i=1
(RAradar

i − RAradar
i )

2 n
∑

i=1
(RAgauge

i − RAgauge
i )

2
, (5)

RMSE =

√√√√√ n
∑

i=1
(RAradar

i − RAgauge
i )

2

n
, (6)

NB =

n
∑

i=1
(RAradar

i − RAgauge
i )

n
∑

i=1
RAgauge

i

× 100, (7)

NE =

n
∑

i=1

∣∣∣RAradar
i − RAgauge

i

∣∣∣
n
∑

i=1
RAgauge

i

× 100, (8)

bias ratio =

n
∑

i=1
RAradar

i

n
∑

i=1
RAgauge

i

, (9)
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E f f = 1 −

n
∑

i=1
(RAgauge

i − RAradar
i )

2

n
∑

i=1
(RAgauge

i − RAgauge
i )

2 , (10)

where RA is accumulation from either radar or an AWS gauge, an overbar represents a mean value,
n is the number of RAi

gauge–Ri
radar pairs, RMSE is in millimeters, and NE and NB are both percentages.

A bias ratio larger (resp. smaller) than one indicates overestimation (resp. underestimation). Eff is a
statistical measure of the variability of the error normalized by the natural variability of the estimated
parameter and is scaled from −∞ to 1. A value of one indicates that the estimate is perfect. An efficiency
value equal to 0 or negative indicates that the estimation is, respectively, no better or even worse than
using simply the mean value of the observations [30].

3.2. Rain Microphysics Retrieval Algorithm

To analyze the factors affecting QPE, several rain variables need to be derived from PR
observations. The DSD model used in the simulations is the normalized gamma distribution
N(D) [31,32]:

N(D) = Nw f (µ)
(

D
Dm

)µ

exp
[
−(u + 4)

D
Dm

]
, (11)

f (µ) =
6
44

(4 + µ)µ+4

Γ(µ + 4)
, (12)

where the parameter µ is a measure of the shape of the gamma DSD, and f (µ) is a unitless function of
µ. Γ is the gamma function. Nw (mm–1m–3) is a normalized intercept parameter, and the parameter
Dm (mm) is the mass-weighted mean diameter. Nw and Dm can be expressed as

Nw =
44

πρw

(
103W
D4

m

)
, (13)

W =
π

6000

32

∑
i=1

N(Di)D3
i ∆Di, (14)

Dm =
E(D4)

E(D3)
, (15)

where the water content W is in g m–3, the water density ρw is in g cm–3, and E represents the
expected value. Moment methods have been widely used to estimate these parameters for cloud and
precipitation in numerical models [33]. The third, fourth, and sixth moments of the DSD data are used
to estimate µ, Nw, and Dm.

Bringi et al. [34] proposed using polarimetric radar measurements of ZH, ZDR, and KDP to retrieve
a normalized gamma DSD. However, Brandes et al. [35] showed that this approach is sensitive to
KDP noise. In addition, KDP is derived from measurements made over many range gates and does
not always match ZH and ZDR measurements well at every range gate. Therefore, the addition of
KDP may result in a deterioration of the DSD retrieval at a specific range gate, especially if it is not
used optimally [36]. Because the three parameters of the gamma DSD distribution are not mutually
independent, two PR variables can be used to retrieve the rain variables (Dm and Nw) [36]. In this
study, only ZH and ZDR are used to retrieve rain variables. Cao et al. [37] and Brandes et al. [35] used
a constraining µ-Λ relation to derive the relationships between rain variables and radar variables.
However, errors may propagate through this procedure [36]. Fitting directly with observations can
reduce error propagation. According to the method described by Cao et al. [36], a sorting and averaging
procedure based on two parameters (SATP) is introduced to mitigate the effects of sampling errors
on DSD fitting. Based on Yangjiang historical DSD data processed with the SATP method, ZH, ZDR,
Dm, and Nw were calculated for each data point. Using a three-order polynomial fit described by
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Cao et al. [36] for all data points, rain variables were expressed in terms of radar variables as (see also
Figure 5a,b):

Dm = 0.0834Z3
DR − 0.391Z2

DR + 1.425ZDR + 0.39, (16){
Nw = ZH × 10−3.4026Z3

DR+8.1785Z2
DR−8.8336ZDR+4.2035

Nw = ZH × 10−0.1416Z3
DR+0.9153Z2

DR−3.0924ZDR+2.4730
ZDR < 1
ZDR ≥ 1

, (17)

where ZH is in mm6 m–3, and ZDR is in dB. CC and NB between retrieval values and observed values
were calculated based on Equations (5) and (7), respectively, which are shown in Figure 5. The two
variables have a small NB and a CC close to 1. These results indicate that the relationships between
the rain variables (Dm and Nw) and radar variables (ZH and ZDR) in Equations (16) and (17) are valid
for the rain DSD retrieval.
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Figure 5. Scatterplots of rain variables (Dm and Nw) and radar variables (ZH and ZDR) calculated
from drop size distribution (DSD) data. The red points are mean data value, which are fitted to the
black data points by using a three-order polynomial fit with the least-squares method. (a) Dm vs. ZDR

(Equation (16)), and (b) ratio of Nw to ZH vs. ZDR (Equation (17)). Correlation coefficient (CC) and
normalized relative bias (NB) for the retrieved rain variables versus the observations are shown in
this figure.

4. Result

In this section, nine rainfall events that occurred in Guangzhou in 2016 were chosen to examine
the QPE algorithm for the operational PRs in Guangdong. The extremely heavy rainfall event that
occurred in Guangzhou on 6 May 2017 was used to test the capability of the algorithm to estimate
heavy precipitation.

4.1. Algorithm Performance for the Nine Rainfall Events

Table 2 shows the nine rainfall events that occurred in Guangzhou. These events include
stratocumulus and convective precipitation, and several convective precipitation events are squall
line events.

The evaluated statistical scores for QPE of the nine rainfall events are shown in Table 3. For all nine
rainfall events, NE ranges from 35.20% to 43.75%, NB ranges from −17.20% to 15.19%, and Eff ranges
from 0.68 to 0.78. Although some underestimations or overestimations of rainfall occurred in some
rainfall events, the performance of the algorithm is good for all 24,755 RAi

gauge–Ri
radar pairs from all nine

rainfall events in terms of NB, which is close to zero (shown in Table 4). Besides NB, the other evaluated
statistical scores shown in Table 4 are also satisfied for the total data pairs. The algorithm performance
is also good for light-to-moderate rain. However, the algorithm severely underestimated heavy rain
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(hourly rainfall accumulation >50 mm). Fortunately, heavy rain pairs are very few, accounting for only
0.26% of the total pairs.

Table 2. A list of the nine rainfall events analyzed in this study.

# Date (UTC)
Total
Time

(h)

No. of
Valued
Gauges

Mean Gauge
Accumulation

(mm)

Max Gauge
Accumulation

(mm)

Precipitation
Type

1 6 May 2016 12 284 19.60 52.4 squall line
2 9–10 May 2016 34 383 43.92 134.8 convective
3 15 May 2016 10 380 16.79 67.2 squall line
4 19–21 May 2016 43 384 70.01 223.5 stratocumulus
5 27–28 May 2016 24 382 37.19 207.5 squall line
6 4–5 June 2016 24 386 33.84 90.2 stratocumulus
7 9 June 2016 8 143 13.02 80.2 stratocumulus
8 11–14 June 2016 86 396 59.04 237.4 stratocumulus
9 15 June 2016 6 211 13.64 45.2 squall line

Table 3. Evaluated statistical scores for quantitative precipitation estimation (QPE) of the nine
rainfall events.

# CC RMSE (mm) NE (%) NB (%) Eff NUM

1 0.87 4.57 35.20 3.85 0.75 722
2 0.88 4.59 37.90 −6.36 0.77 2795
3 0.86 4.16 38.85 1.35 0.74 1097
4 0.88 3.33 38.44 −17.20 0.75 6176
5 0.89 3.65 40.65 0.12 0.78 3380
6 0.87 2.89 41.02 15.19 0.71 3357
7 0.85 3.08 43.07 3.62 0.68 498
8 0.87 3.60 43.75 10.92 0.75 6212
9 0.85 3.57 39.05 7.00 0.70 518

Table 4. Evaluated statistical scores for QPE of the nine total rainfall events.

Hourly Accumulation CC RMSE (mm) NE (%) NB (%) Eff Bias Ratio NUM

total 0.87 3.63 40.02 −0.33 0.76 1.00 24,755
<50 mm 0.87 3.42 40.26 0.57 0.75 1.01 24,691
>50 mm 0.29 24.12 33.31 −30.58 −6.60 0.69 64

The operational algorithm presented in this study was also compared with two mature operational
radar systems. Multi-Radar Multi-Sensor (MRMS) is a comprehensive system operated by the
American National Weather Service that combines data streams from multiple radars, satellites, surface
observations, upper air observations, lightning reports, rain gauges, and numerical weather prediction
models to produce a suite of decision-support products. MRMS polarimetric radar QPE product
performance was evaluated for the data collected east of the Rockies during the 2014 warm season [38].
Below the melting layer, the bias ratio is 1.06, which is slightly larger than that of the algorithm
presented in this study. The other operational radar system is from France. For the evaluation at
S-band, two precipitation events observed by the Nimes radar in 2010 are analyzed [39]. NB and RMSE
for the optimal polarimetric algorithm are −9% and 8.46 mm, respectively, for the intense rain (hourly
accumulations > 5 mm). Compared with it, the algorithm presented in this study is slightly better in
terms of identical NB (−9%) and lower RMSE (6.55 mm) for the intense rain. These comparisons show
that the performance of the operational algorithm in this study is good.

4.2. Algorithm Performance for This Extremely Heavy Rainfall Event

The maximum total rainfall of the heaviest rainfall event listed in Table 2 was 207.54 mm within
24 h. However, the maximum total rainfall of the rainfall event that occurred on 6 May 2017 was
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401.6 mm in only 5 h. It is a great challenge to estimate this rainfall with PR. To examine the capability
to estimate extremely heavy rain, the algorithm presented in this study was applied to estimate
precipitation during this extremely heavy rainfall event. Table 5 lists the evaluated statistical scores
for the QPE at various hourly accumulations. There are 1341 samples of data pairs in all. Data pairs
are divided into two classes to evaluate light-to-moderate rain (<50 mm) and heavy rain. The results
indicate that the algorithm performs well for the light-to-moderate rain in terms of NB, which is close
to 0. However, the performance for heavy rain is poor and the algorithm heavily underestimated the
heavy rain.

Table 5. Evaluated statistical scores for the QPE of this rainfall event.

Hourly Accumulation CC RMSE (mm) NE (%) NB (%) Eff NUM

total 0.88 7.48 37.61 −7.20 0.77 1341
<50 mm 0.84 5.67 39.81 −0.40 0.67 1301
>50 mm 0.68 28.84 30.40 −29.43 −0.21 40

Figure 6 shows the hourly radar or gauge rainfall accumulations at the three AWSs where the total
rainfall exceeded 300 mm. Hours 1–5 correspond to 1900–2000 UTC, 2000–2100 UTC, 2100–2200 UTC,
2200–2300 UTC, and 2300–2400 UTC, respectively. A similar scenario occurred at all three stations.
The QPE algorithm underestimated the rainfall for hourly rainfall accumulations >50 mm, especially
at station 2 where the maximum hourly rainfall accumulation occurred.
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observed. (a–c) show the QPE results of the algorithm at stations 1–3, respectively. The column in blue
indicates an AWS observation, and the column in red indicates the radar estimate.

In general, regarding NB, the QPE algorithm performs better for light-to-moderate rain, but it
underestimates heavy rain. The same pertains to the three stations where the heaviest rainfall occurred.

5. Analysis of Factors Affecting QPE

5.1. DSD Characteristics in This Rainfall Event and Their Effects on QPE

As shown in Figure 7, we obtained the occurrence frequencies of ZDR versus ZH and KDP versus
ZH based on a statistical analysis of the ZH–ZDR and ZH–KDP observations below 3 km (for ZDR > 1 dB,
SNR > 20 dB and KDP > 1◦/km, SNR > 20 dB). To analyze the DSD characteristics in this rainfall event,
besides DSD data collected at Yangjiang during April–June 2014, we also used another set of DSD data
collected at Luogang during this rainfall event from 1600 UTC, 6 May 2017 to 1600 UTC, 7 May 2017.
DSD data collected during April–June 2014 were compared with DSD data collected during the target
rainfall event. We calculated ZH, ZDR, and KDP based on these DSDs and then averaged them to obtain
the curves shown in Figure 7, which represent the statistical (i.e., average) microphysical properties of
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precipitation in this region (black curve) and the specific microphysical properties of precipitation for
this rainfall event (red curve). Note that the black curve and the QPE estimators are from the same
DSD sources.
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Figure 7. Occurrence frequencies of (a) ZDR versus ZH and (b) KDP versus ZH from polarimetric radar.
The average ZDR–ZH and KDP–ZH relationships were calculated from DSDs at the Yangjiang (black
curves) and Luogang stations (red curves) for this rainfall event.

Comparing the curves in Figure 7, ZDR is smaller and KDP is slightly larger for the same ZH in this
rainfall event, indicating there is a slightly higher concentration of smaller raindrops in this rainfall
event than the statistical microphysical properties of precipitation in Yangjiang. Theoretically, the closer
the high occurrence frequencies in Figure 7a,b are to the black curve, the less-biased the precipitation
estimates, and vice versa. The large difference between the high frequencies of ZH–ZDR and the black
curve suggests that compared with the statistical microphysical properties of precipitation in Yangjiang,
the average reflectivity is larger, the raindrops are smaller, and the number concentration is higher in
this rainfall event. The large difference also suggests that there probably are some large QPE biases.

The average values of Dm and log10Nw represent the DSD characteristics more directly. According
to the rain microphysics retrieval algorithm presented in Section 3.2, Dm and log10Nw are retrieved
from PR observations. They are also compared with those retrieved from the DSD data observed
at the Luogang disdrometer station (Figure 8). Even though there are some slight underestimations
or overestimations of Dm and log10Nw, the mean biases are small, namely −0.03 mm and 0.15 dB,
respectively. This indicates that the Dm and log10Nw retrieved from the PR observations are reliable.
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The occurrence frequencies of log10Nw versus Dm retrieved from PR observations above the AWSs
are shown in Figure 9a. The maritime and continental convective clusters reported by Bringi et al. [40]
are also shown in Figure 9a with two black rectangles. Yangjiang DSD data for convective precipitation
are used to calculate the average values of Dm and log10Nw, which is shown in Figure 9a with the red
“x” symbol. The method to separate stratiform and convective rain types is based on the standard
deviation of rain rate over 5 consecutive DSD samples, which are 2-min averaged DSD samples [40].
If this standard deviation is ≤ 1.5 mmh−1 then it is classified as stratiform, otherwise it is assumed to
be convective. Finally, the average log10Nw (3.54) and Dm (1.90 mm) of data retrieved from Yangjiang
DSD data for convective precipitation are obtained. Relatively higher values of Dm but lower values
of log10Nw are observed compared with the maritime-like cluster. This is likely associated with high
moisture contents and sea salt aerosols.Atmosphere 2018, 9, x FOR PEER REVIEW  14 of 23 
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Figure 9. (a) Occurrence frequencies of log10Nw versus Dm. Two black rectangles correspond to the
maritime and continental convective clusters, respectively, reported by Bringi et al. [40]. The red “+”
symbol indicates the average value of log10Nw (4.06) and Dm (1.44 mm) retrieved from radar data
and the red “×” symbol indicates the average value of log10Nw (3.54) and Dm (1.90 mm) retrieved
from Yangjiang DSD data for convective precipitation. (b) The bias between rain rate retrieved from
radar data and rain rate observed at AWSs of log10Nw versus Dm for hourly accumulation <50 mm.
(c) Biases for hourly accumulation >50 mm. (d) Rain rate observed at AWSs of log10Nw versus Dm.
The pink rectangles indicate rain rate observed at station 1 during 2000–2400 UTC on 6 May 2017 and
the red rectangles indicate rain rate observed at station 2 during 2100–2300 UTC on 6 May 2017 and that
observed at station 3 during 2200–2300 UTC on 6 May 2017, during which underestimations occurred
in each corresponding station. (e) Rain rate observed at AWSs of log10Nw versus Dm for hourly
accumulation <50 mm. (f) Rain rate observed at AWSs of log10Nw versus Dm for hourly accumulation
>50 mm. Note that all these data are averaged from two adjacent data in time (average time: 12 min).

However, Dm and Nw in this rainfall event are different compared with Yangjiang data. Dm and
Nw are retrieved from the polarimetric parameters ZH and ZDR based on Equations (16) and (17).
Dm mostly ranges from 0.75 mm to 2.5 mm and log10Nw mostly ranges from 2.5 to 5.5. The average
values of Dm and log10Nw are 1.44 mm and 4.06, respectively. Compared with the values of data
derived from the Yangjiang DSD data, the average value of Dm in this rainfall event decreased by
24.21%, and the average value of log10Nw in this rainfall event increased by 14.69%. Relatively lower
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values of Dm but higher values of log10Nw are observed compared with those data derived from
the Yangjiang DSD data for convective precipitation. It indicates raindrops are smaller, but they
have a higher number concentration in this rainfall event. The different DSD characteristics of this
extremely heavy rainfall event provide a more challenging task when attempting to obtain accurate
rainfall estimates.

Data pairs are divided into two classes according to the different hourly accumulations.
The light-to-moderate rain (<50 mm) and heavy rain (>50 mm) are shown in Figure 9b,c, respectively.
The corresponding rain rate observed at AWSs is also shown in Figure 9e,f, respectively. As shown
in Figure 9b, the light-to-moderate rain data can be easily divided into two parts according to the
results. Most data in part 1 are underestimations, whereas most data in part 2 are overestimations.
This is the reason that NB is close to 0 for the light-to-moderate rain (Table 5). The two parts listed
above are observable in Figure 9c, whereas some data fall into part 3, where severe underestimations
occurred. The algorithm underestimated the precipitation with small and midsize particles but
overestimated the precipitation with midsize and large particles. When both Dm and Nw have large
values, underestimations occurred. Severe underestimations for heavy rain are mainly due to these
data categorized into part 3.

5.2. Analysis of Factors Affecting QPE at the Three Stations

Figure 10 shows the values of RQPE (rain rate calculated with the QPE algorithm) minus RGauge

(rain rate measured at the AWS) at the three stations characterized by the heaviest rainfall. The colors
represent the estimators used during this rainfall event; R1(KDP) was used for a certain period at station
2, thus indicating that mixed precipitation existed during this period. Unfortunately, underestimations
still occurred. R(KDP, ZDR) is used most frequently, especially for stations 2 and 3. However, R(KDP,
ZDR) underestimated the rain rate most often because it is not capable of adapting to large DSD
variations that characterize severe rain; i.e., the principle reason for underestimations at each station.
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Figure 10. RQPE (rain rate calculated with the QPE algorithm) minus RGauge (rain rate measured at the
AWS) at the three stations with the heaviest rainfall. (a–c) show the values for stations 1–3, respectively.
The different colors represent the various estimators used during this rainfall event.

Figure 11 shows time series of the vertical profiles of ZH, ZDR, KDP, ρHV, and Hcl (Hydrometeor
classification result) at the three stations where the heaviest rainfall occurred. Hcl is obtained according
to the Hydrometeor classification algorithm described in Wu et al. [27]. This algorithm has been
verified with the Zhuhai radar, the first operational PR in Guangdong, China. Following the approach
of Mohr and Vaughan [41], radar observations (except Hcl) with SNR > 20 dB at the nine PPIs above
the stations were linearly interpolated to obtain the profiles of the polarimetric variables. The vertical
resolution was 0.5 km, and the temporal resolution was 6 min. The time shown on the horizontal axis
is identical to Figure 6. The black lines in Figure 11 denote the heights of radar observations used for
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precipitation estimation, namely 1.23, 1.17, and 1.34 km at stations 1–3, respectively. The different
heights correspond to the different distances between the radar and the three stations.
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Figure 11. Time series of polarimetric radar (PR) variables at the three stations where the heaviest
rainfall occurred. The columns from left to right represent stations 1–3, and the rows from top to bottom
show ZH (a–c), ZDR (d–f), KDP (g–i), ρHV (j–l), and Hcl (m–o). The panels (p–r) in the bottom (sixth)
row show the time series of rain rate observed (solid lines) at each station and those derived from the
radar data (red and blue dash lines: estimated by using algorithms presented in Sections 3.1 and 6,
respectively). The black lines denote the observation heights used for precipitation estimation.
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The sounding data obtained near the precipitation area indicate that 0 ◦C was located around
5600 m. However, the vertical profiles of the polarimetric variables show no significant signs of the
melting layer, which is consistent with the characteristics of strongly convective precipitation. Figure 11
shows that the heavy precipitation at stations 1–3 was caused by four, two, and three convective
cells, respectively.

At station 1, the four cells had similar ZH, but cells 1 and 2 had larger ZDR and smaller KDP

compared with the other two cells, corresponding to a lower concentration of larger raindrops.
The opposite is true for cells 3 and 4. Rain rate derived from the radar data at 1.4 h is 0, which is not
correct. It is due to non-meteorological echoes at 1.4 h (Figure 11).

At station 2, the largest reflectivity (>60 dBZ) appeared at a height of 2.5 km during hours 2.4–2.5
(Figure 11b), below which were large values of ZDR and KDP and small values of ρHV, indicating an
area of mixed graupel particles, hail particles, liquid water, and larger raindrops. In Figure 10, R1(KDP)
is used to estimate precipitation at hour 2.5, which means rain mixed with hail existed at this time.
This is verified by Hcl in Figure 11n. Most of the mixed precipitation detection results from both
algorithms are consistent. It indicates the result of the mixed precipitation detected by the algorithm
presented in this study is credible. According to the results of the two algorithms, hail existed during
hours 2–3. The underestimations of R(KDP, ZDR) at hours 2–3 (Figure 10) can probably be attributed to
the abnormally large ZDR, which corresponds to larger raindrops produced by hail melting.

Compared with KDP at station 1, that at station 3 was larger most of the time during this rainfall
event, especially for hours 2–3.2 (Figure 11i). The strong echo at station 3 was caused mainly by
the high concentration of raindrops, which also led to the large KDP. The larger KDP mitigates the
underestimations caused by R(KDP, ZDR), which is used most of the time during this rainfall event
(Figure 10c). This is the main reason why underestimation is not obvious at station 3.

Underestimations occurred at the three stations when hourly rainfall accumulation was quite large.
PR data at station 1 during 2000–2400 UTC on 6 May 2017, data at station 2 during 2100–2300 UTC
on 6 May 2017 and data at station 3 during 2200–2300 UTC on 6 May 2017 are used to calculate Dm

and Nw, which are shown in Figure 9d. Pink rectangles indicate data at station 1, and red rectangles
indicate data at stations 2 and 3. There are the mixtures of rain and hail at 1–1.5 km during these
periods at stations 2 and 3 according to Hcl shown in Figure 11n,o. These red rectangles are found at
the edge of the clusters that have relatively large Dm and Nw. It is probably due to the melting hail.
It indicates large concentrations of big rain drops in part 3 (Figure 9c) are probably associated with the
melting hail. Considering that these particles in part 3 lead to severe underestimations, the melting
hail is a reason for severe underestimations.

6. The Improved Algorithm and Its Performance

Analyses show that DSD characteristics in this rainfall event are significantly different from that
of the average DSD in Yangjiang (estimators are derived from these DSD data), which is clearly evident
at the three stations where the heaviest rainfall occurred. R(KDP, ZDR) underestimates the rain rate
most often at the three stations. It indicates R(KDP, ZDR) is still sensitive to DSD variations when the
extremely heavy rain occurs. In view of this problem, specific attenuation AH is a good substitution
variable for QPE. The low sensitivity of R(AH) relation to DSD variability is well known and pointed
out by Atlas and Ulbrich [20] and Matrosov [21]. A method that using Nw and ZH to estimate AH is
used in this study [22]. The relationship between x = log10(ZH/Nw) and y = log10(AH/Nw) can be
expressed as

y = a0 + a1x + a2x2 + a3x3, (18)

where
a0 = −6.12 − 0.012t, a1 = 0.622 − 0.0002t, a2 = 0.0250, a3 = 0.00424,

at S-band and t is temperature (◦C). Equation (18) was obtained from long-term disdrometer data,
as described by Ryzhkov [22]. Ryzhkov [22] considers AH calculated from Equation (18) as the “true”
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value, and we use ZH and Nw derived from the radar data to calculate AH according to Equation (18).
First, R-AH relation is fitted by using R and AH derived from Yangjiang DSD data with the least-squares
method, which is expressed as

R = 2521A0.9302
H

, (19)

where R is in mm/h and AH is in dB km–1. In the improved algorithm, AH is derived from PR data
and R(AH) replaces R(KDP, ZDR) to estimate heavy rainfall. Table 6 lists the evaluated statistical scores
for the QPE estimated by algorithm before and after improvement. The improved algorithm performs
better for total rain in term of NB, which is close to 0. For heavy rain, the performance of the improved
algorithm is much better than the previous algorithm in terms of all the statistical indicators. After the
improvement, RMSE and NE decreased by 40.29% and 37.70%, respectively. In particular, Eff changes
from −0.21 to 0.57, indicating that, the QPE is worse and significantly better than the mean value of
rain observed before and after improvement, respectively.

Table 6. Evaluated statistical scores for the QPE estimated by algorithm before and after improvement.

Algorithm
Improvement

Hourly
Accumulation CC RMSE (mm) NE (%) NB (%) Eff NUM

before total 0.88 7.48 37.61 −7.20 0.77 1341
before >50 mm 0.68 28.84 30.40 −29.43 −0.21 40
after total 0.89 7.44 37.85 0.29 0.77 1341
after >50 mm 0.83 17.22 18.94 −9.62 0.57 40

As shown in Figure 12, most high rain rate data are distributed in the red circle. The extremely
heavy rain data observed at the three stations and the data in part 3 (Figure 9c) are also in the
red circle. After algorithm improvement, NE corresponding to the heavy rain rate data decreased
dramatically. Figure 12b shows NE decreased percentage ((NEbefore − NEafter)/NEbefore × 100%) after
algorithm improvement of log10Nw versus Dm. Most large value data are distributed in the red circle,
which explains why NE decreased significantly when hourly accumulation was > 50 mm. The same
situation occurred for RMSE (not shown).
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Figure 12. (a) Rain rate observed at the AWSs of log10Nw versus Dm derived from the PR
data. Most high rain rate data are distributed in the red circle. (b) NE decreased percentage
((NEbefore − NEafter)/NEbefore × 100%) after algorithm improvement of log10Nw versus Dm derived
from the PR data. Note that all these data are averaged from two adjacent data in time (average time:
12 min).

Figure 13 shows the hourly radar or gauge rainfall accumulations at the three stations with the
heaviest rainfall. The corresponding rain rate, which was estimated using the improved algorithm,
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is also shown in Figure 11p–r with blue dash lines. At the three stations, the performance of the
improved algorithm also becomes better in terms of both rainfall accumulations and rain rate.
Even though the improved algorithm overestimates rainfall during certain periods, most hourly
rainfall accumulations are close to the AWS observations. At station 2, the new algorithm significantly
improves compared with previous algorithm calculations during hours 3 and 4 when the DSD is
affected by hail.
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Figure 13. Hourly rainfall accumulations at stations where the largest rainfall accumulations were
observed. (a–c) show the results of the algorithms at stations 1–3, respectively. The column in blue
indicates an AWS observation, the column in red indicates the radar estimate based on the unimproved
algorithm, and the column in green indicates the radar estimate based on the improved algorithm.

After improvement, the algorithm performs much better than before because of the help of
R(AH). Rainfall estimation utilizing AH has many advantages compared with algorithms based on ZH,
ZDR, or KDP. It is least sensitive to DSD variations and immune to radar miscalibration, partial beam
blockage, and the impacts of wet radomes [22]. Based on DSD-simulated data test, Thompson et al. [26]
concluded that the R(AH) estimator performed as well as the top-ranking R(KDP, ZDR) estimator at
S-band. However, despite recent attempts to improve ΦDP processing, reliable and robust routines
for KDP estimations do not exist at the moment [22]. The extremely heavy rain may make KDP more
unreliable than does moderate rain in this rainfall event; therefore, R(AH) could be better than R(KDP,
ZDR) when estimating the extremely heavy rain.

The improved algorithm performs well for heavy rain. How is the performance of this algorithm
when it is used for light-to-moderate rainfall cases? The improved algorithm is used for the nine
rainfall events listed in Table 2 to test its performance for light-to-moderate rainfall cases, and the
evaluated statistical scores for these nine rainfall events are shown in Table 7.

Table 7. Evaluated statistical scores for light-to-moderate rain estimated using the improved algorithm.

# CC RMSE (mm) NE (%) NB (%) Eff NUM

1 0.87 4.61 34.77 4.80 0.74 722
2 0.86 4.86 39.19 −7.33 0.74 2795
3 0.87 4.14 38.76 3.49 0.75 1097
4 0.86 3.62 43.08 −24.67 0.71 6176
5 0.88 3.78 41.89 −6.72 0.76 3380
6 0.86 2.92 40.83 11.55 0.70 3357
7 0.85 3.05 43.56 −1.52 0.69 498
8 0.86 3.84 44.65 10.47 0.71 6212
9 0.85 3.62 38.77 4.61 0.69 518
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For all nine rainfall events, NE ranges from 34.77% to 44.65%, NB ranges from −24.67% to 11.55%,
and Eff ranges from 0.69 to 0.75. This improved algorithm presented for solving the heavy rain problem
performed slightly worse than the original algorithm for the nine light-to-moderate rainfall cases.
The performance for some rain cases becomes worse but for some becomes better. This is because the
performance of R(AH) is unstable when estimating light-to-moderate rain. ZDR biases are larger for
light rain than for heavy rain and the biases may propagate when AH is estimated by using Nw(ZH,
ZDR) (Equations (17) and (18)). The value of AH at S-band is very small for light-to-moderate rain
and the small bias of AH may bring a big bias of rain estimated by using R(AH). These make the
performance of R(AH) unstable when estimating light-to-moderate rain. Considering that we have not
yet figured out what kind of light-to-moderate rainfall is this new improved algorithm suitable for,
this new algorithm is not suggested for light-moderate rain cases for now.

7. Conclusions and Discussion

In this study, we proposed a localized PR QPE algorithm that accounts for hydrometeor phase
classification. The algorithm is used for nine different types of rainfall events as well as an extremely
heavy rainfall event occurred in Guangzhou, China, on 6 May 2017, which is significantly different from
conventional rainfall events, in which hourly rainfall accumulations are less than 50 mm. Estimates
were made for total rain, light-to-moderate rain (hourly accumulation <50 mm), and heavy rain
(>50 mm). The estimates at three stations where total rainfall exceeded 300 mm were analyzed in
particular during this rainfall event. To analyze the reasons for QPE error, a rain microphysics retrieval
algorithm was presented to retrieve Dm and Nw from the PR measurements. The DSD characteristics
of this extremely heavy rainfall event and the factors affecting QPE are analyzed based on Dm and
Nw. To improve the operational algorithm, R(AH) replaces R(KDP, ZDR) in the original algorithm to
estimate heavy precipitation. The improved algorithm is also evaluated. The main conclusions are
presented as follows.

(1) Persistent convergence and ascending motions occurred during this rainfall event, resulting
in strong echoes that persisted for a long time. Radar echoes larger than 45 dBZ lasted for a long
time and moved slowly, leading to heavy rain over some areas of Guangdong. Compared with ZDR

derived from Yangjiang DSD data, ZDR in this rainfall event are smaller for the same ZH, which is
more obvious for the high occurrence frequencies data. The average values of Dm and log10Nw

derived from the PR data in this rainfall event are 1.44 mm and 4.06, respectively. Compared with the
values of data derived from the Yangjiang DSD data, the average value of Dm in this rainfall event
decreased by 24.21% and the average value of log10Nw in this rainfall event increased by 14.69%.
In short, compared with the statistical DSD data in Yangjiang (estimators are derived from these
data), this rainfall event was characterized by smaller average raindrop diameters and higher number
concentration. These characteristics are more obvious in the heavy rainfall area.

(2) The bias ratio of MRMS for precipitation during the 2014 warm season is 1.06, which is slightly
larger than that (1.00) of the algorithm presented in this study. NB and RMSE of the France operational
radar system for intense rain (hourly accumulations >5 mm) in two rainfall events observed in 2010
are −9% and 8.46 mm, respectively. Compared with it, the algorithm presented in this study is slightly
better in terms of similar NB (−9%) and lower RMSE (6.55 mm) for the intense rain. The performance
of the operational PR QPE algorithm presented in this study is satisfied when it estimates precipitation
of all nine rainfall events. Even though precipitation estimates for light-to-moderate rain performed
well, this algorithm severely underestimated heavy rain.

(3) The algorithm underestimated the precipitation with small and midsize particles but
overestimated the precipitation with midsize and large particles. When Dm and Nw are both very
large, underestimations occurred, and severe underestimations of heavy rain are mainly due to these
particles. It is verified that some of these particles are associated with the melting hail. Even though
most mixed precipitation was detected by the operational algorithm presented in this study, R1(KDP)
underestimated mixed precipitation because it is not capable of adapting to large DSD variations for
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extremely heavy rain. R(KDP, ZDR) underestimates most heavy rain at the three stations because of the
same reason.

(4) Even though R(KDP, ZDR) is less susceptible to DSD variations than R(ZH) [6], it still performs
poorly for the extremely heavy rain in this rainfall event. In the improved algorithm, R(AH) replaces
R(KDP, ZDR). After improvement, RMSE and NE decreased by 40.29% and 37.70%, respectively, for the
heavy rain in which hourly rainfall accumulations are more than 50 mm. At station 2, the improved
algorithm performed much better than the previous algorithm during hours 3 and 4 when DSD is
affected by hail. These indicate that R(AH) performs well for the extremely heavy rain.

There are still scarce PR observations of such extremely heavy rain events, and further studies of
similar extremely heavy rain are necessary to verify the improved algorithm.
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16. Chandrasekar, V.; Bringi, V.N.; Balakrishnan, N.; Zrnić, D.S. Error structure of multiparameter radar and surface
measurements of rainfall. part III: Specific differential phase. J. Atmos. Ocean. Technol. 1990, 7, 621–629. [CrossRef]

17. Giangrande, S.E.; Ryzhkov, A.V. Estimation of rainfall based on the results of polarimetric echo classification.
J. Appl. Meteorol. Clim. 2008, 47, 2445–2462. [CrossRef]

18. Wang, J.; Liu, L.; Cao, J. A comparison of methods of rainfall rate measurements by dual linear polarization
Doppler radar. Meteor. Mon. 2005, 31, 25–30. (In Chinese) [CrossRef]

19. Golestani, Y.; Chandrasekar, V.; Bringi, V.N. Intercomparison of multiparameter radar measurements.
In Proceedings of the Program 24th Conference on Radar Meteorology, Boston, MA, USA, 27–31 March 1989;
American Meteor Society: Boston, USA, 1989; pp. 309–314.

20. Atlas, D.; Ulbrich, C.W. Path- and area-integrated rainfall measurement by microwave attenuation in the
1–3 cm band. J. Appl. Meteorol. 1977, 16, 1322–1331. [CrossRef]

21. Matrosov, S. Attenuation-based estimates of rainfall rates aloft with vertically pointing Ka-band radars.
J. Atmos. Ocean. Technol. 2005, 22, 43–54. [CrossRef]

22. Ryzhkov, A.; Diederich, M.; Zhang, P.; Simmer, C. Potential utilization of specific attenuation for
rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Ocean. Technol.
2014, 31, 599–619. [CrossRef]

23. Mishra, K.V.; Krajewski, W.F.; Goska, R.; Ceynar, D.; Seo, B.C.; Kruger, A.; Niemeier, J.J.; Galvez, M.B.;
Thurai, M.; Bringi, V.N.; et al. Deployment and performance analyses of high-resolution iowa XPOL radar
system during the NASA IFloodS campaign. J. Hydrometeorol. 2016, 17, 455–479. [CrossRef]
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