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Abstract: Accurate and timely rainfall prediction enhances productivity and can aid proper planning
in sectors such as agriculture, health, transport and water resources. However quantitative rainfall
prediction is normally a challenge and for this reason, this study was conducted with an aim
of improving rainfall prediction using ensemble methods. It first assessed the performance of
six convective schemes (Kain–Fritsch (KF); Betts–Miller–Janjić (BMJ); Grell–Fretas (GF); Grell 3D
ensemble (G3); New–Tiedke (NT) and Grell–Devenyi (GD)) using the root mean square error (RMSE)
and mean error (ME) focusing on the March–May 2013 rainfall period over Uganda. 18 ensemble
members were then generated from the three best performing convective schemes (i.e., KF, GF and
G3). The daily rainfall predicted by the three ensemble methods (i.e., ensemble mean (ENS); ensemble
mean analogue (EMA) and multi–member analogue ensemble (MAEM)) was then compared with the
observed daily rainfall and the RMSE and ME computed. The results shows that the ENS presented
a smaller RMSE compared to individual schemes (ENS: 10.02; KF: 23.96; BMJ: 26.04; GF: 25.85;
G3: 24.07; NT: 29.13 and GD: 26.27) and a better bias (ENS: −1.28; KF: −1.62; BMJ: −4.04; GF: −3.90;
G3: −3.62; NT: −5.41 and GD: −4.07). The EMA and MAEM presented 13 out of 21 stations and
17 out of 21 stations respectively with smaller RMSE compared to ENS thus demonstrating additional
improvement in predictive performance. This study proposed and described MAEM and found
it producing comparatively better quantitative rainfall prediction performance compared to the
other ensemble methods used. The MAEM method should be valid regardless the nature of the
rainfall season.

Keywords: ensemble mean; analogue ensemble mean; multi–member analogue ensemble mean;
quantitative rainfall prediction
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1. Introduction

Rainfall is a key climatic element that has consequences on key production sectors including
agriculture [1,2], health [3], electricity generation [4] and water resources [5,6] among others.
Over Eastern Africa, the rainfall distribution and quantity is influenced by many factors such as the
Inter–Tropical Convergence Zone, El Niño/La Niña episodes, Indian Ocean Dipole and extra-tropical
weather systems [7,8]. The spatial and temporal variability of rainfall makes its quantitative prediction
a challenge [8,9]. However, according to He et al. [5] and Jie et al. [10], rainfall can be predicted
quantitatively up to 7 days using models but the prediction accuracy degrades with increasing lead
time [11].

Some of the scientific ways of predicting rainfall quantitatively have been suggested such as:
the use of radar [8] and the use of Numerical Weather Prediction (NWP) models [6]. The use of radar is
considered superior at short–range forecasts due to better spatial representation and assimilation of the
initial rainfall estimates. Unfortunately the radar–based method’s accuracy declines with increasing
lead time due to poor resolving of the growth and decay of rainfall for long lead times [5]. The NWP
models usually have higher skill because they can represent the dynamics and physics influencing
atmospheric processes [6]. However the limitation of NWP models arise due model’s failure to resolve
sub–grid processes but it is addressed using parameterization schemes [12]. An additional scientific
method is the use of statistical models such as regression [9].

The NWP models normally face a challenge in quantitative rainfall prediction due to uncertainty
in initial conditions [6,12] and model deficiencies [11,13] among others. This challenge can result to
orographic bias [13] manifesting as enhanced rainfall over mountainous regions. Therefore, more than
one deterministic NWP models can be run to generate an ensemble and thus improve quantitative
precipitation forecasts (QPF) which also helps to quantify uncertainty. He et al. [5] noted that ensemble
QPF normally produces a higher skill in terms of quantity and occurrence time than the individual
ensemble members.

According to the European Center for Medium–Range Weather Forecasts (ECMWF [14]),
which runs 51—ensemble members, an ensemble prediction consists of simultaneously running
multiple forecasts (i.e. ‘ensemble members’) with varying initial conditions and slightly perturbed
physical conditions to represent uncertainty in initial conditions and also produce a range of possible
weather. It is different from the model output statistics introduced by Glahn and Lowry [15] which is
a method of determining the statistical relationship between the predictand and the variables predicted
by a numerical model [16]. The output from the ensemble members are then statistically post–processed
to obtain a skillful probabilistic forecast [1,17] which addresses the uncertainty inherent in the
initial conditions and associated model imperfections faced by a deterministic NWP model [18,19].
This is because the ensemble spread gives the measure of the uncertainty of the prediction [10,20].
However, quantifying absolute uncertainty presents additional challenge due to the bias inherent in
the models used [20].

The ensemble mean normally has a smaller error compared to the mean error of individual
deterministic NWP model forecasts [21,22] and is often more skillful compared to climatology
forecasts [23]. For this reason, the ensemble mean is the most widely used tool and is normally used as
a deterministic forecast [21]. However studies such as He et al. [5], Coiffier [11], Evans et al. [24] and
many others, suggest that much of the results given by the ensemble mean could be obtained using
a single deterministic forecast and then improved by statistically correcting it. The major limitation
of using this approach, is that, there could be a chance that the statistical formulation process may
not accurately represent extreme weather. A wide array of ensemble members giving an adequate
ensemble spread was found skillful for short and medium term range prediction (i.e., less than 7 days)
and also to assist in dividing ensemble rainfall data into sub–samples by Zhu et al. [25].

The ensemble members can be obtained in many ways, such as running NWP models with
varying initial conditions [22], perturbing the physical parameterization schemes of the model [14,26],
initializing the models at the different times (time–lagged) [10], combining output from different NWP
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models (multi–model ensemble) [10,27]. However, it is important to integrate multiple methods of
generating ensemble members because, for example, perturbing initial conditions or model physics
has been found to be under-dispersive [22,25].

Although ensemble rainfall prediction has been extensively covered by previous studies e.g.,
He et al. [5], Fritsch et al. [27], Redmond et al. [26] and many others, majority of these studies employed
ensemble mean for quantitative rainfall prediction. A few studies e.g., Hamill and Whitaker [28] have
considered analogues in ensemble precipitation prediction and found this method to improve the Brier
Skills Score but they also recommended that this approach cannot be global instead it is appropriate
for use regionally. Additionally, Vanvyve et al. [29] have used ensemble analogues as ensemble mean
analogue (EMA) in wind speed forecasting. This study employs the EMA in addition to the ensemble
mean and proposed another ensemble analogue method, the ‘multi–member analogue ensemble’.
It assesses the performance of these ensemble methods on an 18–member ensemble derived from
the 3 best performing cumulus schemes using the Weather Research and Forecasting (WRF) model.
The ensemble members are generated from combining the convection schemes, varying entrainment
rate by ±25 and time–lagging.

2. Data and Methods

2.1. Data Sources

The study used daily rain gauge rainfall data from 1st March to 31st May 2013 recorded at
21 weather stations of Uganda (Figure 1). The rainfall data were obtained from the Uganda National
Meteorological Authority (UNMA) and quality controlled by checking for completeness. Like many
climatic records of developing countries, missing data were found at Entebbe, Gulu, Jinja, Serere
and Tororo. The missing gaps at these stations were filled using the normal ratio method described
by Mugume et al. [8] and were not excluded from analysis since the data gaps were less than 5%,
a threshold recommended by the World Meteorology Organization.

The daily rainfall data were then compared to the daily ensemble generated rainfall data over
the same period and this was used to examine the performance of the ensemble methods. The input
lateral boundary condition data to initialize the deterministic NWP simulations were obtained from
the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric
Research (NCAR) Reanalysis [30] at a resolution of 1◦ × 1◦, covering the period of study.

2.2. The Study Area

The study was conducted in Uganda which geographically approximately extends from 29.55◦ E
to 35.09◦ E and 1.50◦ S to 4.36◦ N . The country largely experiences a tropical savanna climate,
with isolated cases like the Lake Victoria Basin experiencing an equatorial climate [31]. Additional
climatological zoning has been carried out by Basalirwa [32] who delineated the country into
homogeneous zones. The 21 stations used in the study are representative of the major political regions
e.g., the northern region (Arua, Gulu, Lira, and Kitgum); the eastern region (Serere, Soroti, Buginyanya
and Tororo); the western region (Masindi, Kasese, Bushenyi, Mbarara and Kabale); the cattle corridor
(is a diagonal stretch from south western Uganda to north eastern Uganda, has Ntusi) and the Lake
Victoria Basin (Entebbe, Makerere, Kituza, Namulonge, Jinja, Kamenyamigo and Kibanda).

The rainfall over Uganda exhibits large spatial and temporal variations with the MAM rainfall
period starting in March in most areas except the northern region where the rains normally start in
April [2]. With exception of the northern region, which experience a unimodal rainfall distribution,
Uganda generally experiences two rainfall seasons (i.e., March–May and September–November).
The March–May (MAM) seasonal rainfall over Uganda is generally influenced by the Inter–Tropical
Convergence Zone [2,8]; the monsoon winds of East Africa [33,34]; the Indian ocean dipole [2,7];
the humid Congo airmass [6]; the tropical cyclones, semi–permanent subtropical anticyclones and
easterly waves [7,8]; the complex topography [34], vegetation and inland water bodies which modulate
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local rainfall [8,35]. The Inter–Tropical Convergence Zone migrates north and southwards over the
equator two times a year, which brings two rainfall seasons in the region i.e., the March–May and
September–November seasons.

Figure 1. The figure shows the spatial total MAM 2013 seasonal rainfall patterns over the study area
(Uganda). This figure is obtained using inverse distance weighted interpolation (IDW) method.

2.3. Experimental Design

The ensemble members were generated by (i) initializing the NWP simulations at different
times (i.e., time–lagged ensemble members); (ii) varying the cumulus parameterization schemes;
(iii) perturbing the cumulus parameterization schemes; and (iv) combination of (i) to (iii). We first
assessed the performance of six cumulus parameterization schemes (i.e., Kain–Fritsch (KF);
Betts–Miller–Janjić (BMJ); Grell–Fretas (GF); Grell 3D ensemble (G3); New–Tiedke (NT) and
Grell–Devenyi (GD)) using the root mean square error and the mean error (Section 2.4.1), where we
compared the daily simulated rainfall with daily observed rainfall. The three poor performers were
eliminated in line with Evans et al. [24] and we carried out the analysis with the three best schemes
(i.e., the KF, GF and G3) from which we generated the ensemble members. The description of the
cumulus parameterization schemes and their strong influence in convective precipitation simulation is
presented by Mayor and Mesquita [12].

The time–lagged ensemble members were derived by initializing the WRF model simulations
at 0000UTC, 0600UTC, 1200UTC and 1800UTC. This type of 6–hour time–lag was also used
by Jie et al. [10] for a 6–15 day ensemble probabilistic summer precipitation forecast over China.
Perturbing the schemes was carried out by varying the entrainment rates (i.e., ±25% of the default
rate). The study further combined the different physics parameterization schemes (multi–physics
ensemble) but mainly varied the cumulus parameterization schemes because of their significant effect
on precipitation simulation [11,12] especially convective precipitation in the tropics and the study
region, Uganda is found in the tropics. All simulations were done using the same initial conditions
provided by NCEP/NCAR (Section 2.1) and we used a total of 18 ensemble members.
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Additionally, the study used three domains as shown in Figure 2 and the domains were designed
such that:

• the first domain at a horizontal resolution of 90 km. This domain covered Africa and was deemed
sufficiently enough to cover the large scale synoptic systems such as the sub–tropical high pressure
systems which are important for rainfall over equatorial region;

• the second domain at a horizontal resolution of 30 km covering most parts of equatorial region to
cater for the influx of moisture over Uganda especially the Congo air mass and the moist currents
from Mozambique channel;

• the third domain at a horizontal resolution of 10 km covering Uganda, the study region.
This domain was considered appropriate to resolve the local physical features like orography and
the in–land water bodies.

The simulations were carried out for the period 1st March–31st May 2013 running daily with
a respective 12 h spin–up period to reduce spin–up errors. All the simulations were carried out using
WRF version 3.8 model and the experiments employed the staggered Arakawa C–grid; 30 vertical layers
with model top fixed at 50 hPa; the terrain–following mass coordinate as vertical coordinate that had
the capability of allowing variation of vertical grid–spacing and the Runge–Kutta 2nd order integration
option. The other physical schemes used are: the WRF Single–Moment 3–class microphyiscal scheme;
the Rapid Radiative Transfer Model as the longwave radiation scheme; the Dudhia scheme as the
shortwave radiation scheme; the Noah Land Surface Model and the Yonsei University scheme as the
planetary boundary layer scheme.

Figure 2. Shows the domains used in running WRF model. Domain, d01 covers the entire Africa at
90 Km horizontal resolution; domain, d02 covers Equatorial Africa at 30 Km horizontal resolution and
domain; d03, in red colour covers Uganda, the study region and is at 10 Km horizontal resolution.
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2.4. Methods

2.4.1. Performance Analysis Methods

This study employed the root mean square error, RMSE (Equation (1)) and the mean error,
ME (Equation (2)) to compute the performance of the ensemble methods. The study also used
the student’s t–test to compare the performance of ensemble methods with that of the convective
parameterization schemes.

The RMSE is calculated as the square root of the arithmetic average of the daily square differences
between predicted (i.e., Pi) and observed (i.e., Oi) when paired. It is calculated mathematically using
Equation (1).

RMSE =

√
1
n

n

∑
i=1

[Pi −Oi]
2 (1)

The ME is the arithmetic average of the paired differences (i.e., Pi−Oi) and is obtained mathematically
using Equation (2)

ME =
1
n

n

∑
i=1

[Pi −Oi] (2)

where i is the ith data point ordered in time and for this study, it is on daily basis (i.e., every 24 h).
The student’s t–test is a parametric test used to assess the difference between the means of

two univariate random variables [36]. The null hypothesis adopted in the study was that there is
“no difference between the RMSE of the ensemble method and that of the convective parameterization
scheme at 99% confidence interval”. If the RMSE (or ME) sample mean of the ensemble method and
that of the convective parameterization are x and y respectively, the Student’s t–test is defined by:

t =
x− y

s12

√
1

n1
− 1

n2

(3)

where n1 and n2 are the sample size of the RMSE (or ME) of the ensemble members and the convective
parameterization schemes respectively; s12 is the pooled standard deviation computed using:

s2
12 =

n1

∑
i=1

(xi − x) +
n2

∑
i=1

(yi − y)

n1 + n2 − 2
(4)

where x and y are the variables (i.e., the RMSE and ME) of the ensemble method and the convective
parameterization schemes respectively.

2.4.2. The Ensemble Mean

The ensemble mean is the arithmetic average of the ensemble members. It was found to
outperforms climatological forecasts by Segele et al. [23] and is the most widely used ensemble
method [21]. The description of the ensemble mean as used in this study follows.

If we have n ensemble members such that,

φ1, φ2, · · · , φn−1, φn

and for each member, i we get the prediction distribution over a total number of m events,

a1i, a2i, · · · , a(m−1)i, ami



Atmosphere 2018, 9, 328 7 of 17

which we summarize as 

a11 a21 . . . am1

a12 a22 . . . am2

. . . . . .

. . . . . .

. . . . . .
a1n a2n . . . amn


where the rows represent the different ensemble members and the columns are the prediction events.
The ensemble mean, ak is thus the arithmetic average of the individual columns and in this study,
ak was compared with the observed rainfall event, Ok and the RMSE (Equation (1)) as well as the ME
(Equation (2)) computed.

2.4.3. The Ensemble Mean Analogue

This Ensemble Mean Analogue (EMA) method was proposed by Delle–Monache et al. [37] and later
used by Vanvyve et al. [29] and Horvath et al. [38] in simulating the wind energy for wind farm projects.
They argued that it is key in assessing wind farm projects due to its ability to provide associated
uncertainty. The use of EMA in precipitation prediction is presented by Hamill and Whitaker [28]
who found it to improve the prediction skill, especially the Brier Skills Score.

The EMA method involves first obtaining the ensemble mean, ak. We then match the present
ensemble mean with historical ensemble mean(s). The observation(s) (i.e., {OT : OT

1 , OT
2 , · · · , }) that

correspond to the historical ensemble mean(s) are now used as the forecast value. To illustrate this,
suppose the present calculated ensemble mean is 6.0 mm, we look in historical ensemble means and
look for a similar ensemble mean of 6.0 mm. Suppose on that day, the observed rainfall became 0.8 mm,
then our ensemble mean analogue becomes 0.8 mm.

If a corresponding analogue cannot be found, then ak is used and the case is considered a rare
event but if more than one analogue is found, then an arithmetic mean of analogue is used. In the
study, the analogues were obtained from prediction of the MAM 2006 rainfall season. This period is
considered an appropriate analogue season because it had the same Oceanic Niño Index of−0.2 [39,40]
with MAM 2013 and the Inter–tropical Convergence Zone, one of the major rainfall drivers over the
study area, is normally over the same region.

2.4.4. The Multi–Member Analogue Ensemble

In order to improve ensemble rainfall prediction, the multi–member analog ensemble method (MAEM)
was used and is described here.

According to the MAEM, for each ensemble member, its corresponding analogue is used to give
the new ensemble member. The description of this method follows that: for a given prediction φi
making part of the n member ensemble, i.e.,

φ1, φ2, · · · , φi, · · · , φn−1, φn

we look for its analogue and consider the observed value corresponding to φi. This observed value, Φi
becomes the new ensemble member thus giving a new ensemble, i.e.

Φ1, Φ2, · · · , Φi, · · · , Φn−1, Φn

if more than one analogue is found, an arithmetic average of the analogues is used, i.e.,

Φi =
1
M

M

∑
j=1

Φij (5)
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where M is the number of obtained analogues. If no corresponding analogue is found, model prediction
is used as it could probably indicate a rare event. The prediction now becomes the arithmetic mean,
Φk of the observed analogues, Φk, i.e.,

Φk =
1
n

n

∑
i=1

Φik (6)

which was then compared with the rainfall event, tk.

2.4.5. Interpolation Method

This study adopted the inverse distance weighting, IDW interpolation method for displaying
spatially, the performance of ensemble methods and the simulations of the convective schemes.
The IDW is used in many studies that present spatially varying patterns e.g., Amiri and Mesgari [41]
who used the IDW in modeling the spatial and temporal patterns of precipitation in Northwestern
Iran. According to Franke [42], the IDW is generalized by Equation (7).

F(x, y) =

n

∑
k=1

wk(x, y) fk

n

∑
k=1

wk(x, y)
(7)

where fk is known as a nodal function and wk(x, y) is a weighting function given by

wk(x, y) =
√
(x− xk)2 + (y− yk)2

3. Results and Discussion

3.1. Overview of the MAM Seasonal Rainfall Totals over Uganda

The total rainfall obtained at the stations used in the study is illustrated in Figure 1. Figure 1 is
obtained by spatially interpolating total rainfall using the IDW method as recorded at a given station
over the MAM 2013 rainfall season. The total MAM 2013 rainfall amount over the entire study area
was in the range of 200–900 mm.

The stations in northern Uganda received comparatively lower seasonal rainfall amounts of
200–500 mm. This was expected because this region normally receives a unimodal rainfall distribution
with rainfall onset around April/May peaking around July/August [2]. Over western Uganda,
the rainfall amount was in the range of 270–550 mm while rainfall over Eastern Uganda varied from
400 mm to 900 mm. The Lake Victoria Basin received rainfall in the range of 400–650 mm. The MAM
2013 seasonal rainfall over Uganda thus exhibited large spatial variations.

3.2. Performance of the Cumulus Schemes

The performance of the cumulus schemes is presented using Tables 1 and 2. Table 1 shows the
RMSE of the simulations with the different cumulus schemes along with rankings in performance
while Table 2 shows the ME of the simulations with the different cumulus schemes and their
respective ranking based on the ME. The schemes yielded varied results for different regions in
Uganda as shown by Figure 3. For example, the KF scheme over estimated rainfall over northern
Uganda (i.e., 300–750 mm) but also presented comparable rainfall amounts over Eastern Uganda
(i.e., 400–900 mm). The BMJ, the GD and the G3 underestimated rainfall amount over most parts of
the country especially the eastern region (i.e., 300–600 mm). The GF captured rainfall amount over
the northern region (i.e., 250–450 mm) but also underestimated rainfall over the Lake Victoria Basin
(i.e., 150–300 mm) while the NT generally underestimated rainfall amount over most areas of Uganda.
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Table 1. The RMSE of simulations with the different cumulus parametrization schemes.

RMSE Scores (mm) RMSE Rankings

KF BMJ GF G3 NT GD KF BMJ GF G3 NT GD

Arua 12.19 12.57 14.31 14.13 24.18 14.51 1 2 4 3 6 5
Buginyanya 19.66 58.76 59.51 33.10 62.66 42.89 1 4 5 2 6 3
Bushenyi 14.70 21.84 19.25 20.51 21.70 19.03 1 6 3 4 5 2
Entebbe 45.35 55.99 53.03 51.93 61.20 53.22 1 5 4 2 6 3
Gulu 57.98 17.49 24.05 23.04 6.53 25.21 6 2 4 3 1 5
Jinja 14.35 21.62 23.33 22.13 29.31 29.62 1 2 4 3 5 6
Kibanda 31.40 8.21 8.35 7.62 7.86 7.77 6 4 5 1 3 2
Kabale 8.19 15.95 10.04 11.31 6.28 13.00 2 6 3 4 1 5
Kamenyamigo 27.94 29.32 28.67 29.81 34.57 28.28 1 4 3 5 6 2
Kasese 19.18 14.63 15.43 18.02 19.27 16.72 5 1 2 4 6 3
Kitgum 16.44 14.69 16.31 18.33 24.77 18.32 3 1 2 5 6 4
Kituza 40.00 43.14 40.80 42.91 46.13 50.84 1 4 2 3 5 6
Lira 20.42 30.50 31.22 26.30 33.28 26.95 1 4 5 2 6 3
Makerere 33.76 43.77 42.71 41.29 46.78 37.59 1 5 4 3 6 2
Mbarara 11.73 18.17 18.80 22.16 18.68 15.68 1 3 5 6 4 2
Masindi 19.59 27.75 26.33 26.83 38.51 32.24 1 4 2 3 6 5
Namulonge 36.39 35.90 34.72 35.17 34.87 44.21 5 3 1 4 2 6
Ntusi 8.85 9.33 8.81 8.20 8.53 8.70 5 6 4 1 2 3
Serere 14.94 23.23 23.12 19.17 24.27 25.51 1 4 3 2 5 6
Soroti 16.08 27.62 25.25 18.84 28.24 25.93 1 5 3 2 6 4
Tororo 34.11 16.34 18.72 14.72 34.17 15.37 5 3 4 1 6 2

Average 23.96 26.04 25.85 24.07 29.13 26.27 2.38 3.71 3.43 3.00 4.71 3.76

Table 2. The ME of the simulations with the different cumulus parametrization schemes.

ME Scores (mm) ME Rankings

KF BMJ GF G3 NT GD KF BMJ GF G3 NT GD

Arua −0.89 0.91 1.83 1.20 −4.49 −1.97 1 2 4 3 6 5
Buginyanya −2.08 −11.77 −11.93 −6.00 −12.54 −8.31 1 4 5 2 6 3
Bushenyi −2.19 −4.03 −3.22 −3.78 −3.99 −3.34 1 6 2 4 5 3
Entebbe −9.06 −11.36 −10.73 −10.50 −12.44 −10.77 1 5 3 2 6 4
Gulu 11.76 3.39 4.76 4.50 0.64 4.93 6 2 4 3 1 5
Jinja −2.15 −4.14 −4.58 −4.31 −5.89 −5.93 1 2 4 3 5 6
Kibanda 6.22 −0.04 0.53 −0.18 −0.08 0.34 6 1 5 3 2 4
Kabale 0.83 2.75 1.65 1.90 0.31 2.16 2 6 3 4 1 5
Kamenyamigo −5.31 −5.58 −5.50 −5.76 −6.78 −5.46 1 4 3 5 6 2
Kasese −3.55 −2.39 −2.68 −3.31 −3.76 −2.98 5 1 2 4 6 3
Kitgum −2.90 −2.54 −2.93 −3.38 −4.80 −3.36 2 1 3 5 6 4
Kituza −7.94 −8.57 −8.08 −8.53 −9.23 −10.24 1 4 2 3 5 6
Lira −3.43 −5.85 −6.00 −4.94 −6.51 −5.11 1 4 5 2 6 3
Makerere −6.74 −8.75 −8.51 −8.22 −9.39 −7.39 1 5 4 3 6 2
Mbarara 1.30 −2.96 −3.17 −4.02 −3.29 −2.51 1 3 4 6 5 2
Masindi −2.34 −4.63 −4.29 −4.50 −7.26 −5.78 1 4 2 3 6 5
Namulonge −7.22 −7.06 −6.82 −6.89 −6.83 −8.81 5 4 1 3 2 6
Ntusi 0.32 −0.98 −0.54 −0.55 −0.48 0.47 1 6 4 5 3 2
Serere −2.61 −4.53 −4.51 −3.66 −4.78 −5.04 1 4 3 2 5 6
Soroti −2.34 −5.30 −4.63 −3.35 −5.41 −4.98 1 5 3 2 6 4
Tororo 6.30 −1.40 −2.51 −1.80 −6.58 −1.49 5 1 4 3 6 2

Average −1.62 −4.04 −3.90 −3.62 −5.41 −4.07 2.14 3.52 3.33 3.33 4.76 3.90
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(a) KF (b) BMJ (c) GF

(d) G3 (e) NT (f) GD

Figure 3. Shows the spatially interpolated total amount of rainfall simulated by the cumulus
parameterization schemes for the MAM 2013 rainfall period using IDW.

Other studies such as Mayor and Mesquita [12] found the GF scheme to represent spatial
precipitation distribution and the BMJ presenting higher precipitation amount. Related studies
by Ratna et al. [43] found the GD scheme over–estimating convective rainfall. Our findings show
that the KF, GF and G3 had comparatively smaller RMSE and better rankings based on RMSE
(Table 1) and better scores of ME (Table 2). These schemes were thus selected to generate additional
ensemble members.

3.3. The Performance of Ensemble Mean

The comparison of the spatially interpolated RMSE of the ensemble mean using IDW to that of
the individual cumulus parameterization schemes is presented in Figure 4d while comparison of the
spatially interpolated ME of the ensemble mean to that of the individual cumulus parameterization
schemes presented in Figure 5d.

The RMSE for ensemble mean is presented in Table 3, 2nd column while the results for bias
(or ME) presented in Table 4, 2nd column. This study is at 10 Km horizontal resolution, slightly higher
than the 18 Km resolution of the ensemble of European Center for Medium–range Weather Forecasts
(ECMWF) which could interest ECMWF to investigate potential improvement in its prediction skill
using higher resolution.
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The performance of the three best cumulus schemes (i.e., KF, GF and G3) and the ensemble mean
(ENS) across the regions in the country is illustrated in Figure 4. Spatial analysis of Figure 4 shows
that, the RMSE of the ensemble mean was slightly higher for the western and the eastern regions of
Uganda (i.e., RMSE: 9–15 and 9–16) respectively. The ‘cattle corridor’ of Uganda and the Lake Victoria
Basin had RMSE of 8–10 while the northern region had 8–11.

(a) KF (b) BMJ (c) GF

(d) ENS (e) EMA (f) MAEM

Figure 4. Shows the spatially interpolated RMSE using IDW of cumulus parameterization schemes:
KF (a), GF (b), G3 (c) and the RMSE of the ensemble methods: ENS (d) , EMA (e) and MAEM (f).
We present the results of these three schemes KF, GF and G3 because they had comparatively smaller
RMSE than the other cumulus schemes.

The ensemble mean RMSE results are comparatively smaller than the RMSE results of individual
cumulus parameterization schemes over most of the study areas. Additional statistical analysis
using the Student’s t–test at 99% confidence level showed a significant difference in the RMSE of the
ensemble mean and that of the individual convective parameterization schemes (i.e., KF: t = 4.73 and
p < 0.001; GF: t = 5.14 and p < 0.001 and G3: t = 5.41 and p < 0.001). Since examination of the RMSE
presented on individual study location by the ensemble mean (Table 3) and the respective convective
parameterization schemes (Table 1) showed that the ensemble mean presented smaller magnitudes
of RMSE for most of the study locations, it shows that ensemble mean presents a better prediction
performance compared to individual convective parameterization schemes. These results confirm the
findings of Segele et al. [23] and He et al. [5] among others that found the ensemble mean more skillful
compared to the simulations from individual ensemble members.
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The ensemble mean did not show a significant improvement in the ME because, apart from
the northern Uganda, we still observed a negative bias over most parts of the country as shown by
Figure 5a–c. So relying on the RMSE, we can argue that there is improvement in performance when
using the ensemble mean but not necessarily changes in bias.

(a) KF (b) GF (c) G3

(d) ENS (e) EMA (f) MAEM

Figure 5. Shows the spatially interpolated mean error (ME) using IDW for cumulus parameterization
schemes: KF (a), GF (b), G3 (c) and the ME of the ensemble methods: ENS (d), EMA (e) and MAEM
(f). We present the results of these three schemes KF, GF and G3 because they had comparatively
smaller magnitudes of ME than the other cumulus schemes.

3.4. The Performance of Ensemble Mean Analogue

The RMSE results on the performance of the ensemble mean analogue (EMA) are presented
in Table 3, 3rd column while the ME results are presented in Table 4, 3rd column. The spatial
analysis of RMSE and ME results of the ensemble mean analogue are presented using Figures 4e
and 5e respectively.

The results show that although the improvement in simulation as shown by reduction in RMSE
was not significant at 99%, 13 out of 21 stations (RMSE shown in italics in Table 3, the 3rd column) had
their RMSE less than RMSE of ensemble mean. A slight improvement in negative bias is observed
(t = 1.710; p_value = 0.096) and additional analyses shows that the magnitude of bias of 16 out of
21 stations (Table 4 with bold values, the 3rd column) was less than a magnitude of 2.00.

Since the results of ensemble mean (Section 3.3) showed that it is significantly better than
individual convective parameterization schemes, this slight improvement in performance presented
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by the ensemble mean analogue indicates that the ensemble mean analogue is also significantly better
than simulations from individual convective parameterization schemes. Thus, the results of RMSE
and ME confirm that the EMA can present a modest improvement in quantitative rainfall prediction
and are in agreement with the results presented by Hamill and Whitaker [28] who found it to improve
the precipitation prediction skill.

Table 3. Shows the RMSE for: ensemble mean (ENS); ensemble mean analogue (EMA) and
multi–member analogue ensemble (MAEM). The italicized values show improvement in the RMSE of
the EMA and the RMSE of the MAEM compared to the RMSE of the ENS. The bold values in the 4th
column show a reduction in RMSE using MAEM compared to the RMSE of EMA.

Station
RMSE (mm)

ENS EMA MAEM

Arua 10.93 10.70 10.85
Buginyanya 15.23 15.36 15.02
Bushenyi 9.56 9.33 9.38
Entebbe 11.51 11.28 10.98
Gulu 7.78 7.76 8.04
Jinja 7.23 7.07 6.99
Kabale 5.81 5.92 5.87
Kamenyamigo 10.84 10.67 10.70
Kasese 8.37 8.21 8.28
Kibanda 6.91 6.89 6.90
Kitgum 8.34 8.96 8.32
Kituza 11.71 11.65 11.25
Lira 10.97 11.8 10.76
Makerere 11.02 10.83 10.63
Masindi 15.84 15.82 15.80
Mbarara 10.01 9.99 10.00
Namulonge 11.20 11.11 10.80
Ntusi 7.43 7.45 7.40
Serere 7.30 7.62 7.18
Soroti 9.83 10.16 9.84
Tororo 12.65 12.82 12.99

Table 4. Shows the ME (or Bias) for: ensemble mean (ENS); ensemble mean analogue (EMA) and
multi–member analogue ensemble mean (MAEM). The bold values indicate a magnitude of ME less
than 2.00 for all the three methods.

Station
Mean Error (or Bias in mm)

ENS EMA MAEM

Arua 0.42 1.45 2.61
Buginyanya −2.92 −2.02 −0.54
Bushenyi −1.62 −1.04 −1.06
Entebbe −5.20 −1.18 −1.94
Gulu 4.08 4.26 5.13
Jinja −1.60 −0.78 0.08
Kabale 0.57 1.00 1.25
Kamenyamigo −2.59 −2.35 −2.19
Kasese −1.49 −1.04 −0.76
Kibanda 0.89 0.56 1.15
Kitgum −1.02 0.15 0.94
Kituza −4.01 −1.52 −0.43
Lira −1.96 0.61 0.63
Makerere −3.92 −2.50 −1.39
Masindi −1.49 −1.03 −0.54
Mbarara −0.69 −0.71 −0.63
Namulonge −3.27 −2.13 −1.63
Ntusi 0.03 −0.03 0.05
Serere −1.15 0.17 0.34
Soroti −0.94 0.52 1.39
Tororo 1.08 1.32 1.89
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3.5. The Performance of Multi–Member Analogue Ensemble Method

The RMSE results for the multi–member analogue ensemble method are also presented in Table 3,
the 4th column while the ME results are presented in Table 4, the 4th column. The spatial analysis of
RMSE and ME results of the multi–member analogue ensemble method are presented using spatially
interpolated Figures 4f and 5f respectively.

We again observed that although the improvement in simulation as shown by reduction in RMSE
was not significant at 99%, 17 out of 21 stations (RMSE shown in italics in Table 3, the 4th column)
had their RMSE less than RMSE of ensemble mean. We further noted a slight improvement in RMSE,
though not significant at 99% by employing multi–member analogue ensemble compared to ensemble
mean analogue with 13 out of 21 stations (i.e., bold values in Table 3, the 4th column) having a smaller
RMSE compared to the RMSE for ensemble mean analogue.

The results further show a significant improvement in negative bias at 99% confidence level
(t = 2.5285; p_value = 0.016) compared to the ME of the ensemble mean. Additional analysis shows
that, the magnitude of ME of 18 out of 21 stations (Table 4 with bold values, the 4th column) was
less than a magnitude of 2.00. The results of RMSE and ME confirm that the multi–member analogue
ensemble method can improve rainfall prediction. Since these analyses have been conducted for
individual rainfall events over the MAM 2013 season, we expect this approach to be valid regardless
of whether the season is normal, above–normal or below–normal.

4. Summary and Conclusions

The study investigated the potential for improving quantitative rainfall prediction using ensemble
methods (ensemble mean, ENS; ensemble mean analogue, EMA and multi–member analogue ensemble
mean, MAEM). It considered 18 ensemble members which were generated from time–lagging
by 6–hours (00UTC, 06UTC, 12UTC and 18UTC); perturbing the convective parameterization
schemes by varying the entrainment rate by ±25% and combining the simulations from the physical
parameterization schemes used (i.e., the multi–physics ensemble). The study first analyzed the spatial
distribution of the MAM 2013 rainfall and found that it was in the range of 200–900 mm. It was also
noted that the MAM 2013 rainfall exhibited large spatial variations over the study region.

The study then assessed the performance of six cumulus parameterization schemes (KF, BMJ,
GF, G3, NT and GD) and found varying performance over different regions of Uganda with the KF
scheme over estimating rainfall over northern Uganda; the BMJ, the GD and the G3 underestimating
rainfall amount over most parts of the country especially the eastern region; the GF capturing rainfall
amount over the northern region while the NT generally underestimating rainfall amount over most
areas. Thus these schemes presented varying regional biases in their rainfall prediction performance
and no one scheme presented a consistent performance over all the study locations. Overall, the KF,
the G3 and the GF schemes presented comparatively better performance and were used to generate
the ensemble members used in the study.

The study further assessed the performance of ensemble mean, ensemble mean analogue and
the multi–member analogue ensemble. An improvement in the RMSE was observed while using the
ensemble mean compared to using individual cumulus parametrization schemes. However, there was
a non significant change in the ME of the ensemble mean compared to individual parameterization
schemes and this could probably be as a result of cancellation of the positive and negative biases.
The ensemble mean analogue presented a reduction in the magnitude of the RMSE and a slight
improvement in the ME where 16 out of 21 stations had their magnitude of ME less than 2.00.
The multi–member analogue ensemble presented a further reduction in the RMSE and additional
improvement in the magnitude of ME. We thus note that although the ensemble mean improves the
prediction accuracy, the ensemble mean analogue and the multi–member analogue ensemble presents
additional improvement in the quantitative precipitation prediction accuracy with multi–member
analogue ensemble mean giving the best results. We also argue that this method, the “multi–member
analogue ensemble mean” can be applied to precipitation prediction during any rainy season and
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not affected by the nature of the season since it was based on the prediction of daily rainfall and not
seasonal rainfall.
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