
  

Supporting Information 

Table S1. Studies below room temperature for the reaction of OH radicals with hydrocarbons. 

Compounds Technique* Temperature 

Range (K) 

Reference 

n-butane RR (relative to ethane, 

k=1.49 × 10−17 T2e−499/T) 

235–361 DeMore and Bayes [1] 

 PLP-LIF 231–378 Talukdar et al. [2] 

n-pentane RR (relative to n-butane, 

k=1.81 × 10−17 T2e114/T) 

233–364 DeMore and Bayes [1] 

 RR (relative to 2-

methylpropane, k=1.17 × 

10−17 T2e213/T) 

243–325 Harris and Kerr [3] 

 PLP–LIF 224–372 Talukdar et al. [2] 

n–hexane RR/DF/MS 240–340 Crawford et al. [4] 

n–heptane RR/DF/MS 240–340 Crawford et al. [4] 

 RR (relative to several 

hydrocarbons) 

241/406 Wilson et al. [5] 

n–octane RR/DF/MS 240–340 Li et al. [6] 

n–nonane RR/DF/MS 240–340 Li et al. [6] 

cyclooctane HPFS 237–379 Sprengnether et al. [7] 

 RR/DF/MS 240–340 Singh et al. [8] 

2,2–dimethylbutane RR (relative to n–pentane, 

k=2.52 × 10–17 T2e158/T) 

245–328 Harris and Kerr [3] 

Benzene FPRF 250–298 Tully et al. [9] 

 FPRF 239–352 Witte et al. [10] 

 RR (relative to toluene, 

k=0.79 × 10–12 e614/T) 

274–363 Semadeni et al. [11] 

Toluene FPRF 213–352 Tully et al. [9] 

o–xylene RR/DF/MS 240–340 Mehta et al. [12] 

p–xylene RR/DF/MS 240–340 Mehta et al. [12] 

 FPRF 300–350 Alarcón et al. [13] 

*RR: relative rate 

PLP–LIF: pulsed laser photolysis–laser induced fluorescence 

DF: discharge flow 

MS: mass spectrometry 

HPFS: high pressure flow system 

FPRF: flash photolysis resonance fluorescence 



 

 

 

Figure S1. Schematic flowchart of the sample enrichment system connected with gas 

chromatographic analysis of the gas phase in the smog chamber. 

S1. Gas containers to introduce hydrocarbons into chamber 

Two gas containers (1.3 L each) were used to introduce the hydrocarbons into the smog chamber. 

Gas container 1 was filled with the 13 compounds n–butane, n–pentane, n–hexane, n–heptane, n–

octane, n–nonane, cyclooctane, 2,2–dimethylbutane, 2,2–dimethylpentane, 2,2–dimethylhexane, 

2,2,4–trimethylpentane, benzene and n–perfluorohexane, and gas container 2 was filled with the 

other 5 hydrocarbons (2,2,3,3–tetramethylbutane and the aromatics toluene, ethylbenzene, p–xylene 

and o–xylene). The stock concentration of each of the hydrocarbons was around 1300 ppm in the gas 

container. By taking 50 ml gas samples from each container by a gas–tight syring, and initial 

concentrations of about 20 ppb were obtained in the smog chamber. 

 

 

Figure S2. Dosage of methyl nitrite into the smog chamber, using a twin of gas containers. This 

method warrants a fairly constant production of OH [14]. 

S2. Hydrocarbons used in the experiments 
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n–Butane (liquid gas bottle, AIR LIQUIDE Deutschland GmbH), n–pentane (Grüssing GmbH), 

n–hexane (Merck kGaA, UniSolv), n–heptane (Fluka AG, UV Spectroscopy grade), n–octane (Fluka 

AG), n–nonane (Riedel–de Haen AG), cyclooctane (Sigma–Aldrich), 2,2–dimethylbutane (Janssen 

Chimica), 2,2–dimethylpentane (Janssen Chimica), 2,2–dimethylhexane (Sigma–Aldrich), 2,2,4–

trimethylpentane (Janssen Chimica), 2,2,3,3–tetramethylbutane (Sigma–Aldrich), benzene (Riedel–de 

Haen AG), toluene (Carl Roth GmbH&Co KG), ethylbenzene (Riedel–de Haen AG), p–xylene (Fluka 

AG), o–xylene (Fluka AG), n–perfluorohexane (Sigma–Aldrich) 

S3. Illustration of the Twin of Gas Containers to Inject Methyl Nitrite into Chamber  

A twin of gas containers (1.3 L of each) were connected one by another and known volumes of 

methyl nitrite were injected into the gas containers by a syringe respectively. The gaseous methyl 

nitrite was slowly flushed by air into the chamber. With the aid of the twin of gas collecting tubes, an 

approximately constant concentration of OH was maintained during the experiment [1]. 

 

Figure S3. Decrease of the hydrocarbon concentrations (normalized by n–perfluorohexane) by the 

reaction with OH during a smog chamber run at 248 K. 

  

Figure S4. Plots of ln (c0/ct) of hydrocarbons versus toluene (reference substance) from data points of 

three experimental runs at 288 K, respectively (▽, ○ and □ distinguish data points from different 

experimental runs). (a) branched–chain alkanes; (b) aromatic hydrocarbons. 
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Figure S5. Plots of ln (c0/ct) of hydrocarbons versus toluene (reference substance) from data points of 

two experimental runs at 248 K, respectively (▽  and ○ distinguish data points from different 

experimental runs). (a) branched–chain alkanes; (b) aromatic hydrocarbons.  
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Table S2. Rate constants for the reaction of OH radicals with hydrocarbons at 248K. 

Compound Rate constant, (kOH ± 2σ) / 10–12 cm3 s–1 

Toluene as Reference a Pentane as Reference b Average 

n–Butane 1.74 ± 0.03 1.59 ± 0.02 1.66 ± 0.04 

n–Pentane 3.19 ± 0.03 2.93b 3.06 ± 0.03 

n–Hexane 4.79 ± 0.08 4.56 ± 0.09 4.68 ± 0.12 

n–Heptane 6.51 ± 0.10 6.32 ± 0.14 6.42 ± 0.17 

n–Octane 8.16 ± 0.16 7.97 ± 0.20 8.07 ± 0.26 

n–Nonane 8.83 ± 0.64 8.47 ± 0.56 8.65 ± 0.85 

Cyclooctane 13.9 ± 0.3 12.8 ± 0.3 13.3 ± 0.4 

2,2–Dimethylbutane 1.72 ± 0.03 1.69 ± 0.01 1.71 ± 0.03 

2,2–Dimethylpentane 2.99 ± 0.06 2.96 ± 0.02 2.97 ± 0.06 

2,2–Dimethylhexane 4.32 ± 0.09 4.28 ± 0.03 4.30 ± 0.09 

2,2,4–Trimethylpentane 3.20 ± 0.08 3.19 ± 0.03 3.20 ± 0.09 

2,2,3,3–Tetramethylbutane 0.66 ± 0.04 0.73 ± 0.03 0.70 ± 0.05 

Benzene 0.95 ± 0.01 0.90 ± 0.01 0.92 ± 0.01 

Toluene 7.09a 6.52 ± 0.07 6.81 ± 0.07 

Ethylbenzene 7.60 ± 0.35 7.41 ± 0.18 7.51 ± 0.39 

p–Xylene 18.7 ± 0.6 17.3 ± 0.6 18.0 ± 0.85 

o–Xylene 17.6 ± 1.1 16.3 ± 1.0 16.9 ± 1.49 

a The Arrhenius expression leads to k (toluene) = 7.09 × 10–12 cm3 s−1 at 248K [15] 

b The Arrhenius expression leads to k (n–pentane) = 2.93 × 10–12 cm3 s−1 at 248K [16]  



 

 

Table S3 Arrhenius parameters A and B corresponding to the equation kOH = A e (–B/T). 

 ln(A/cm3 s–1) B/K 

o–Xylene –25.8 ± 0.4 –203 ± 126 

p–Xylene –25.3 ± 0.4 –62 ± 116 

Ethylbenzene –25.7 ± 0.5 –8 ± 135 

 

 

Figure S6. Arrhenius plots of the rate constant for the reaction of OH radicals with n–heptane. 

For n–heptane, our data differs from both the measurements from Crawford et al. and Wilson et 

al.  In order to explain the discrepancy, we recalculate the rate constant by using n–butane, n–

pentane and n–hexane as reference compounds respectively. The calculated rate constant decrease 

with increasing CH2 chains: 7.00 ±0.19, 6.32 ±0.14 and 5.47 ±0.01 (in unit ×10−12 cm3 molecule−1 s−1) 

respectively. When using n–hexane alone as a reference compound, a lower reaction rate constant for 

n–heptane is obtained and it is very close to the data from Crawford et al. and Wilson et al. (figure 

S6). The understanding of temperature–dependence of n–pentane is more comprehensive, therefore, 

we choose n–pentane as our reference compound. 
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