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Abstract: Accurate modeling for nonlinear and nonstationary rainfall-runoff processes is essential
for performing hydrologic practices effectively. This paper proposes two hybrid machine learning
models (MLMs) coupled with variational mode decomposition (VMD) to enhance the accuracy for
daily rainfall-runoff modeling. These hybrid MLMs consist of VMD-based extreme learning machine
(VMD-ELM) and VMD-based least squares support vector regression (VMD-LSSVR). The VMD is
employed to decompose original input and target time series into sub-time series called intrinsic
mode functions (IMFs). The ELM and LSSVR models are selected for developing daily rainfall-runoff
models utilizing the IMFs as inputs. The performances of VMD-ELM and VMD-LSSVR models are
evaluated utilizing efficiency and effectiveness indices. Their performances are also compared with
those of VMD-based artificial neural network (VMD-ANN), discrete wavelet transform (DWT)-based
MLMs (DWT-ELM, DWT-LSSVR, and DWT-ANN) and single MLMs (ELM, LSSVR, and ANN). As a
result, the VMD-based MLMs provide better accuracy compared with the single MLMs and yield
slightly better performance than the DWT-based MLMs. Among all models, the VMD-ELM and
VMD-LSSVR models achieve the best performance in daily rainfall-runoff modeling with respect to
efficiency and effectiveness. Therefore, the VMD-ELM and VMD-LSSVR models can be an alternative
tool for reliable and accurate daily rainfall-runoff modeling.

Keywords: variational mode decomposition; extreme learning machine; least squares support vector
regression; discrete wavelet transform; artificial neural network

1. Introduction

Estimating rainfall-runoff relationship and streamflow accurately is a significant element which
should be considered for managing water resources effectively [1,2]. Hydrologic practices, including
water supply and allocation, reservoir planning and operation, flood and drought management,
and other hydrological applications, can be conducted successfully only when the rainfall-runoff
relationship and streamflow behavior in a river watershed are estimated accurately. However,
the development of accurate rainfall-runoff and streamflow models is still a challenging task since
hydrological processes inherently exhibit nonlinear and complex behavior [3].

According to Wang [4], rainfall-runoff and streamflow models can be largely categorized into
process-driven models (also known as white-box, physical or conceptual models) and data-driven
models (also called black-box, meta-models or surrogate models). The process-driven models are
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based on the physical interpretation of watershed system. These models are formulated utilizing
complex physical equations and parametric assumptions [2]. Contrastively, the data-driven models
characterize the relationship between input and output, not describing the natural watershed process [2,5].
The modeling simplicity and high accuracy have increased hydrologists’ attention for rainfall-runoff
and streamflow modeling based on the data-driven models. Furthermore, the increased availability of
gauging data, the development of advanced modeling techniques, and the increase of computing power
have accelerated the development of rainfall-runoff and streamflow models utilizing the data-driven
models [2].

Over the last few decades, the development of data-driven rainfall-runoff and streamflow models
has been conducted using statistical time series models (also called stochastic models), including
autoregressive (AR), autoregressive moving average (ARMA), autoregressive integrated moving
average (ARIMA), and transfer function-noise (TFN) models [5,6]. Since rainfall-runoff relationship
and streamflow time series are usually highly non-stationary and nonlinear, it has been noted that the
modeling capability of these models classified as linear models is limited [5,7].

To overcome the limitation of the statistical time series models, various machine learning models
(MLMs) have been applied successfully for rainfall-runoff and streamflow modeling. The MLMs
included artificial neural network (ANN) [1,8], neuro-fuzzy (NF) [9], support vector machines
(SVMs) (for regression, also called support vector regression (SVR)) [10,11], random forest (RF) [12],
least squares support vector machine (LSSVM) (for regression, also called least squares support
vector regression (LSSVR)) [13,14] and extreme learning machine (ELM) [15,16]. The MLMs are
able to deal with nonlinearity and non-stationarity inherent in rainfall-runoff relationship and
streamflow time series effectively. Therefore, these models have achieved better performance than the
conventional statistical time series models and have been accepted as effective tools for rainfall-runoff
and streamflow modeling. The comprehensive review of MLMs can be found in ASCE [17,18],
Yassen et al. [19], Fahimi et al. [20], and Fotovatikhah et al. [21].

On the other hand, many studies have also been conducted to enhance the performance of
MLMs for rainfall-runoff and streamflow modeling. These studies were mostly on the development of
hybrid MLMs in which the MLMs were combined with various statistical and mathematical methods.
The hybrid model development for rainfall-runoff and streamflow modeling can be classified into the
following four types. First, to improve the model performance, the MLMs have been combined with
statistical methods, including phase-space reconstruction [22,23], principal component analysis [24,25],
fuzzy c-means clustering [7,22], k-means clustering [26,27], self-organizing map (SOM) [28,29] and
bootstrap [30]. Second, the MLMs have been coupled with evolutionary optimization algorithms,
including genetic algorithm (GA) [31,32], particle swarm optimization (PSO) [11,33], artificial bee
colony [34], bat algorithm [35], and firefly algorithm [36]. The addressed algorithms were very
helpful for efficient model learning and optimal parameter searching. Third, as the preprocessing
techniques of the MLMs, time series decomposition methods have been applied to hybrid MLMs
development. The methods included discrete wavelet transform (DWT) [37,38], maximal overlap DWT
(MODWT) [39], wavelet packet transform (WPT) [40], empirical mode decomposition (EMD) [41,42],
and ensemble EMD (EEMD) [43,44]. It has been reported that these hybrid MLMs, which consists
of time series decomposition and sub-time series modeling, were able to achieve better performance
compared with the single MLMs. Finally, the hybrid MLMs, combined with more than two methods,
have been developed for rainfall-runoff and streamflow modeling including DWT, PSO, and SVMs [45];
DWT, GA, and adaptive neuro-fuzzy inference system (ANFIS) [46]; EEMD, PSO, and SVMs [47];
EEMD, SOM, and linear genetic programming [48]; wavelet transform, singular spectrum, chaotic
approach, and SVR [49]; and Hermite-projection pursuit regression, social spider optimization, and
least square algorithm [50].

Especially, the time series decomposition methods, including DWT, MODWT, WPT, EMD, and
EEMD, have been effectively applied for improving the performance of MLMs in rainfall-runoff and
streamflow modeling. Using the addressed methods, an original time series was decomposed into
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sub-time series, and the MLMs were then modeled utilizing the decomposed sub-time series. Using the
detailed expressions, the DWT and MODWT, which are data-preprocessing techniques for analyzing
a time series in time-frequency domains, produce a low-frequency component (approximation) and
multiple high-frequency components (details) by decomposing an original time series, whereas the
WPT decomposes both the approximation and the details at each level. It has been reported that
these wavelet transform methods were effective tools for improving the performance of MLMs in
rainfall-runoff and streamflow modeling since the methods were able to capture the useful information
in different levels [51]. Adamowski and Sun [39] presented an ANN model combined with MODWT
for daily streamflow forecasting and confirmed that the hybrid model produced the better accuracy
than the single ANN model for daily streamflow. Kisi and Cimen [37] examined the accuracy of
a hybrid model combining DWT and SVMs to predict monthly streamflow and suggested that the
conjunction model could enhance the prediction accuracy of SVMs. Liu et al. [38] developed the
conjunction model of DWT and SVR for forecasting daily and monthly streamflow and investigated
the performance of conjunction model. They considered the wavelet decomposition factors, including
decomposition level, mother wavelet and edge effect, for improving the model accuracy. They found
that the ensemble approach was able to produce better performance compared with the best single
DWT-SVR model. Zhang et al. [45] developed a streamflow forecasting model combining SVM with
wavelet transform (WT) and PSO (WT-PSO-SVM). They revealed that the hybrid model provided a
better alternative compared with the SVMs for monthly streamflow forecasting. Baydaroğlu et al. [49]
presented a coupling model of WT, chaotic approach (CA), singular spectrum analysis (SSA) and SVR.
They proved that WT, SSA and CA for configuring the input matrix of the SVR were effective in the
hybrid modeling for river flow prediction. Moosavi et al. [40] developed a robust model combining
WPT and group method of data handling (GMDH) to estimate daily runoff. He concluded that the
WPT dealt with non-stationaries in daily runoff data effectively and improved the performance of
GMDH model efficiently.

The EMD and EEMD, which are self-adaptive and empirical methods, generate multiple sub-time
series called intrinsic mode functions (IMFs) by decomposing an original time series. The wavelet
transform methods work in frequency space and require basis functions (mother wavelets) which
should be predetermined, whereas the EMD and EEMD work directly in temporal space and do not
require any basis functions [52]. Recently, the hybrid model development utilizing the EMD and
EEMD have been applied successfully for rainfall-runoff and streamflow models. Napolitano et al. [41]
explored the effects of data preprocessing for EMD-based ANN streamflow model. They found
that the advantages of data preprocessing were dependent on the characteristics of intrinsic modes.
Wang et al. [47] proposed a coupling of EEMD, PSO and SVMs for forecasting annual rainfall-runoff
and concluded that the hybrid approach could improve the accuracy of annual runoff forecasting
significantly. Huang et al. [42] assessed the performance of a modified EMD-SVMs model to forecast
monthly streamflow and confirmed that the hybrid model provided high prediction accuracy and
reliable stability. Wang et al. [43] developed an ANN modeling approach based on EEMD to
forecast medium- and long-term runoff. They confirmed that the EEMD was able to increase the
forecasting accuracy effectively. Also, the hybrid approach could provide higher forecasting accuracy
compared with the single ANN model. Barge and Sharif [48] proposed the coupling of linear genetic
programming (LGP), EEMD, and SOM, and they demonstrated the effectiveness of the hybrid model
in streamflow forecasting.

Based on the previous studies mentioned above, it can be noted that the time series decomposition
techniques, including DWT, MODWT, WPT, EMD, and EEMD, were effective for developing the
hybrid MLMs. However, the addressed methods have some drawbacks. As Liu et al. [38] suggested,
three factors, namely, decomposition level, mother wavelet and edge effect, should be considered for
applying the wavelet methods. Among them, especially, the optimal mother wavelet should be selected
through evaluating the performances of the wavelet-based MLMs, depending on different mother
wavelets and wavelet indices. Since these factors should be considered for effective wavelet-based
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MLM modeling, they can make the wavelet-based MLM modeling computationally intensive and
time-consuming. The EMD has a disadvantage called the mode mixing [53], which results in incorrect
time-frequency representation and consequently degrades the accuracy of time series processing.
Furthermore, since the EMD is a recursive algorithm, the error of envelope estimation can be enlarged
more and more, and the efficiency can be decreased [54]. The stopping criteria and end-point effect
also affect the decomposition process [53]. To alleviate the problems, especially the mode mixing,
Wu and Huang [53] proposed the EEMD. Although the problems can be reduced by the EEMD, they
did not settle completely. The EEMD still has some unresolved problems including dissatisfaction with
requirements for IMF, treatment of multi-mode distribution for IMF, end-point effect, and stopping
criteria [53].

Recently, Dragomiretskiy and Zosso [55] developed an adaptive and non-recursive signal analysis
technique called the variational mode decomposition (VMD) to resolve the drawback of EMD. Unlike
the EMD, the VMD decomposes an original time series into multiple modes and then updates
them. As compared to the EMD, the VMD is more robust to sampling and noise, and has excellent
performance in frequency search and separation. Furthermore, the VMD can extract the time-frequency
features accurately since it can alleviate the mode mixing through yielding narrow-banded modes [54].
Due to these advantages of the VMD, the development of hybrid MLMs based on the VMD has
been accomplished successfully in various fields, including renewable energy, financial and economic
fields [56–58]. On the other hand, the VMD is a relatively new method for hydrological application.
Under the authors’ knowledge, the hydrological hybrid MLM modeling based on the VMD has never
been attempted. Therefore, the application of the VMD is required for developing hybrid MLMs in
hydrological modeling.

Modeling rainfall-runoff relationship accurately is essential for effective hydrologic practices.
However, since rainfall-runoff process is nonlinear and nonstationary, accurate rainfall-runoff modeling
is very difficult and thus still one of significant tasks in hydrological field. Therefore, this paper
proposes hybrid MLMs coupled with VMD for modeling nonlinear and nonstationary rainfall-runoff
process effectively. In this study, two hybrid MLMs based on the VMD are proposed including
VMD-based ELM (VMD-ELM) and VMD-based LSSVR (VMD-LSSVR). ELM and LSSVR are adopted
for developing VMD-based rainfall-runoff models. MLMs including ANN, ANFIS, SVM, RF, etc. can
be used as the alternatives. However, ELM and LSSVR have advantages over other models when
considering generalization performance, learning speed, over-training, the number of user-defined
parameters, and the possibility of getting into local minimum [13,18,59–64]. Therefore, in this study,
ELM and LSSVR are employed for VMD-based rainfall-runoff modeling and ANN is selected for
performance comparison. The model performances are evaluated through quantitative performance
indices (efficiency and effectiveness indices). For confirming the usefulness of these conjunction
models, their performances are compared with those of VMD-based ANN (VMD-ANN), DWT-based
MLMs (DWT-ANN, DWT-ELM, and DWT-LSSVR), and single MLMs (ANN, ELM, and LSSVR).

2. Methodology

2.1. Discrete Wavelet Transform (DWT)

DWT is a multiresolution signal processing method. Using the DWT, an original time series is
separated into different frequency elements, namely, an approximation and multiple details. When
X = {Xt : t = 0, 1, · · · , N − 1} is a real-valued time series, the J0-level DWT of X yields DWT
coefficients W using an orthonormal transform, W = WX, where W is a matrix that defines the DWT.
The W and W can be written as follows [65]:
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W =


W1

W2
...

WJ0

VJ0

, W =


W1

W2
...

WJ0

VJ0

 (1)

Wj = WjX, VJ0 = VJ0X (2)

where Wj is the vector of wavelet coefficients and VJ0 is the vector of scaling coefficients. The X can be
reconstructed from W as follows [65]:

X = WTW =
J0

∑
j=1

WT
j Wj + VT

J0
VJ0 ≡

J0

∑
j=1

Dj + SJ0 (3)

where Dj = WT
j Wj is the jth level detail and SJ0 = VT

J0
VJ0 is the J0 level approximation.

Practically, the DWT is performed by the Mallat algorithm, also known as the pyramid
algorithm [66]. The key point of the algorithm is two-channel filters (also called half-band filters)
which are comprised of wavelet (high-pass) filter {hl : l = 0, 1, · · · , L− 1} and scaling (low-pass)
filter {gl : l = 0, 1, · · · , L− 1} of even width L. The main algorithm consists of circular filtering and
downsampling. According to Percival and Walden [65], the wavelet and scaling coefficients for the jth
decomposition level are defined as Equation (4):

Wj, t ≡
L−1

∑
l=0

hlVj−1, 2t+1−l mod Nj−1
, Vj, t ≡

L−1

∑
l=0

glVj−1, 2t+1−l mod Nj−1
, t = 0, 1, · · · , Nj − 1, (4)

where Wj, t and Vj, t are the elements of Wj and Vj, respectively. Figure 1 depicts a flowchart for
three-level DWT decomposition. By utilizing the pyramid algorithm, three details (D1, D2 and D3) and
an approximation (A3) are produced from an original time series. Details on the DWT can be found in
Percival and Walden [65].
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2.2. Variational Mode Decomposition (VMD)

VMD is a fully adaptive and non-recursive algorithm for time-frequency signal analysis. Using
the VMD, an original time series f is decomposed into K IMFs. According to Dragomiretskiy and
Zosso [55], the constrained variational formulation for yielding the IMFs can be written as Equation (5).

min
{uk}, {ωk}

{
K

∑
k=1
‖∂t
[(

δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

}
, s.t.

K

∑
k=1

uk(t) = f (5)
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where δ = the Dirac function; j2 = −1; ||·||2 = the L2 distance; ωk = the center frequency;
* = the convolution; uk(t) = Ak(t) cos(φk(t)) the kth IMF; φk = the non-decreasing function;
and Ak = the non-negative function. The constrained variational formulation is changed to the
following unconstrained one by introducing an augmented Lagrangian method [55,67]:

L({uk}, {ωk}, λ) = α
K
∑

k=1
‖∂t
[(

δ(t) + j
πt

)
∗ uk(t)

]
e−jωkt‖

2

2

+‖ f (t)−
K
∑

k=1
uk(t)‖

2

2
+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉 (6)

where L = the augmented Lagrangian, λ = the Lagrange multiplier, and 〈a, b〉 = the scalar product of a
and b.

The saddle point (also called minimax point) of the L is then obtained by updating un+1
k , ωn+1

k , and
λn+1

k in a sequence of iterative sub-optimizations using the alternate direction method of multipliers
(ADMM) [68]. Compared with Newton’s method and sequential quadratic programming which are
local convergence methods, the ADMM is globally convergent, robust and fast. Moreover, parallel
computing becomes possible and computational cost can be greatly reduced since the ADMM can
decouple a large problem into a series of sub-problems [69]. The final updated formulations can be
expressed as Equations (7)–(9) [55].

ûn+1
k (ω) =

f̂ (ω)− ∑
i<k

ûn+1
i (ω)− ∑

i>k
ûn

i (ω) + λ̂n(ω)/2

1 + 2α(ω−ωn
k )

2 (7)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(8)

λ̂n+1(ω) = λ̂n(ω) + τ

[
f̂ (ω)−∑

k
ûn+1

k (ω)

]
(9)

where ˆ = the Fourier transform, n = the iteration number, α = the quadratic penalty factor, and τ = the
time step of the dual ascent. Figure 2 shows a flowchart for the VMD. Details on the VMD can be
found in Dragomiretskiy and Zosso [55].
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2.3. Extreme Learning Machine (ELM)

ELM is a non-iterative and least square-based learning algorithm for training single-hidden layer
feed-forward neural networks (SLFNs) effectively [70]. As stated in Huang et al. [70], the parameters
of hidden layer (weights and biases) are generated randomly, and the SLFN is reduced to the linear
system as Equations (10)–(13).

Hβ = T (10)

H =

 h(w1 · x1 + b1) · · · h(wL · x1 + bL)
...

. . .
...

h(w1 · xN + b1) · · · h(wL · xN + bL)


N×L

(11)

β =
[
βT

1 , βT
2 , · · · , βT

L

]T

L×m
(12)

T =
[
tT
1 , tT

2 , · · · , tT
N

]T

N×m
(13)

where H = the output matrix for the hidden layer, β = the output weight matrix; T = the target
data matrix; h = the activation function, wi = [wi1, wi2, · · · , win]

T (i = 1, 2, · · · , L) = the weight
vectors between the ith hidden neuron and input neurons; (xk, tk) ∈ Rn ×Rm (k = 1, 2, · · · , N) = the
arbitrary distinct samples, bi = the bias of ith hidden neuron; βi = [βi1, βi2, · · · , βim]

T = the weight
vectors between the ith hidden neuron and output neurons, and L = the number of hidden neurons.

Unlike the conventional ANN, the β is estimated analytically utilizing the least-square method.
The optimal solution for β can be obtained by inverting the H as follows [70]:

β̂ = H†T (14)

where H† = PHT is the Moore-Penrose generalized inverse of H, and P =
(
HTH

)−1 is the inverse of
the covariance matrix of H. Figure 3 shows an example of ELM model structure comprised of eight
(input), 30 (hidden), and one (output) neurons, respectively. Huang et al. [70] can be referred for more
details on the ELM.
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2.4. Least Squares Support Vector Regression (LSSVR)

LSSVR, which is a least-squares version of standard SVR, is a kernel-based statistical learning
algorithm. The SVR performs a quadratic optimization involving inequality constraints and a
ε-insensitive loss function, whereas the LSSVR uses equality constraints and a least-squares loss
function and solves a system of linear equations instead of the quadratic optimization. When a training
set {(x1, y1), (x2, y2), · · · , (xN , yN)} is given, the LSSVR can be written as Equation (15) [71].
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f (x) = wTφ(x) + b (15)

where x ∈ Rp = the input data, p = the number of input patterns, y ∈ R = the target data, N = the
data length, w ∈ Rn f = the weight vector; n f = the dimension of a Hilbert space H, φ : Rp → H = the
mapping from the input space to the high dimensional feature spaces, and b ∈ R = the bias term.

From the research of Suykens et al. [71], the LSSVR can be converted into the primal optimization
form as Equation (16).  min

w, b, e
J(w, e) = 1

2‖w‖
2 + γ

2

N
∑

i=1
e2

i

s.t. yi = wTφ(xi) + b + ei, i = 1, 2, · · · , N
(16)

where ei ∈ R is the slack variable and γ > 0 is the regularization parameter. The Equation (16) is
solved by constructing the following Lagrangian [71]:

L(w, b, e, α) =
1
2
‖w‖2 +

γ

2

N

∑
i=1

e2
i −

N

∑
i=1

αi

{
wTφ(xi) + b + ei − yi

}
(17)

where αi ∈ R is the Lagrange multiplier. The Equation (17) can be solved using the partial
differentiation for w, b, ei, and αi. The solution of α and b can be obtained by Equation (18) after
removing the variables w and ei [71].[

0 1T

1 φ(xi)
Tφ(xj) + γ−1I

][
b
α

]
=

[
0
y

]
(18)

where 1 = [1; 1; · · · ; 1], α = [α1; α2; · · · ; αN ], and y = [y1; y2; · · · ; yN ]. Finally, the LSSVR can be
expressed as the following equation [71]:

f (x) =
N

∑
i=1

αiK(xi, xj) + b (19)

where K(xi, xj) = φ(xi)
Tφ(xj) is the kernel function that is symmetric and continuous positive definite.

The typical kernels which can be utilized in the LSSVR include linear, polynomial, sigmoid, and radial
basis function (RBF). For regression problems, the following RBF is generally applied [72]:

K(xi, xj) = exp
(
−
∣∣∣∣∣∣xi − xj

∣∣∣∣∣∣2/2σ2
)

(20)

where σ is the parameter of RBF kernel, also called the width parameter. RBF kernel function has
advantages compared with other kernel functions including linear, sigmoid, and polynomial kernel
functions in terms of nonlinear mapping capability, parameter number, numerical limiting conditions,
global superiority, and positive definite [73]. Furthermore, linear kernel function is effective only for
linear problems, sigmoid kernel function is not applied widely, and polynomial kernel function suffers
from computational difficulties [74]. On the other hand, RBF kernel function can be used for any
problems as long as the parameter is selected appropriately [75]. Figure 4 shows an example of LSSVR
model structure. Details on the LSSVR can be found in Suykens et al. [71].

2.5. Artificial Neural Network (ANN)

ANN is an artificial intelligent computing system that is a collection of linked layers comprised
of multiple nodes called neurons analogous to the biological neural network system. Multilayer
perceptron (MLP), which is a nonparametric estimator and the most widely applied ANN model, is a
feedforward ANN with intermediate layers called hidden layers to implement nonlinear discriminants
for classification and approximate nonlinear function for regression [76]. As seen in Figure 5, the MLP
has three-layer architecture generally.
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The MLP can be expressed as follows [15]:

ŷj =
L

∑
i=1

βih(wi · xj + bi) +β0, j = 1, 2, · · · , N (21)

where xj and ŷj = the input and output vectors, respectively, L = the number of hidden neurons, h = the
activation function (also called the transfer function), wi and βi = the connection weights for the hidden
and output layers, respectively, bi and β0 = the biases for the hidden and output layers, respectively,
and N = the data length. The parameters can be adjusted iteratively using learning algorithms such as
backpropagation (BP) algorithm. Detailed information on the ANN can be found in Alpaydin [76].

2.6. VMD and DWT-based MLM Modeling

VMD-based MLMs (VMD-ELM, VMD-LSSVR, and VMD-ANN) are the hybrid models coupling
the VMD and the single MLMs (ELM, LSSVR and ANN), respectively. In the same manner,
DWT-based MLMs (DWT-ELM, DWT-LSSVR, and DWT-ANN) combine the DWT with the single
MLMs, respectively. As shown in Figure 6, the VMD and DWT-based MLMs consist of the following
three steps:
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Step 1. Training and testing data sets are decomposed into multiple IMFs by the VMD and an
approximation and multiple details by the DWT, respectively.

Step 2. For each decomposed training data set, single MLMs (ELM, LSSVR, and ANN) are developed.
Step 3. The final estimates of streamflow time series are obtained by aggregating the sub-time series

estimated from the single MLMs, respectively.
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2.7. Quantitative Performance Indices

In this study, the model performances were assessed by efficiency and effectiveness indices.
The efficiency indices include the coefficient of efficiency (CE), the index of agreement (IOA),
the coefficient of determination (r2), the persistence index (PI), the root-mean-square error (RMSE),
the mean absolute error (MAE), the mean squared relative error (MSRE), the mean absolute relative
error (MARE), the relative volume error (RVE), and the fourth root mean quadrupled error (R4MS4E),
respectively. The effectiveness indices involve the average absolute relative error (AARE) and the
threshold statistics (TS). Table 1 summarizes the quantitative performance indices employed in this
study. Details on the indices can be found in Jain and Srinivasulu [31] for the effectiveness indices and
Dawson et al. [77] for efficiency indices, respectively. CE, r2, IOA, and PI are dimensionless indices.
The indices can provide a useful comparison between different studies since they are independent on
data scale. RMSE and MAE can be used as more representative measures than other indices (ex., mean
square error) since they have the same unit as original data. RMSE is a good efficiency index for high
flows, whereas MAE evaluates all deviations from observed values. MARE is sensitive to errors for
low flows, whereas less sensitive to them for high flows. For this reason, MARE is a good efficiency
index for low flows. MSRE is a good efficiency index for moderate flows. RVE is a relative index
for overall volume error and can provide an indication of overall water balance. R4MS4E is a good
efficiency index for high and peak flows and has the same unit as original data [77,78]. AARE and TS
give appropriate weights for low, moderate, and high flows, and it has been reported that they can
provide better performance evaluation [31].
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Table 1. Quantitative performance indices.

Indices Equations Indices Equations

Efficiency indices

Coefficient of efficiency CE = 1−
n
∑

i=1
(Qi−Q̂i)

2

n
∑

i=1
(Qi−Q)

2

Efficiency indices

Mean squared relative error MSRE = 1
n

n
∑

i=1

(
Qi−Q̂i

Qi

)2

Index of agreement IOA = 1−
n
∑

i=1
(Qi−Q̂i)

2

n
∑

i=1
(|Q̂i−Q|+|Qi−Q|)2

Mean absolute relative error MARE = 1
n

n
∑

i=1

|Qi−Q̂i|
Qi

Coefficient of
determination r2 =


n
∑

i=1
(Qi−Q)(Q̂i−Q̃)√

n
∑

i=1
(Qi−Q)

2 n
∑

i=1
(Q̂i−Q̃)

2


2

Relative volume error RVE =

n
∑

i=1
(Qi−Q̂i)

n
∑

i=1
Qi

Persistence index PI = 1−
n
∑

i=1
(Qi−Q̂i)

2

n
∑

i=1
(Qi−Qi−1)

2
Fourth root mean quadrupled error

R4MS4E =
4

√
n
∑

i=1
(Qi−Q̂i)

4

n

Root mean square error
RMSE =

√
n
∑

i=1
(Qi−Q̂i)

2

n Effectiveness indices

Average absolute relative error AARE = 1
n

n
∑

i=1

∣∣∣Qi−Q̂i
Qi

∣∣∣× 100%

Mean absolute error MAE = 1
n

n
∑

i=1

∣∣Qi − Q̂i
∣∣ Threshold statistics TSx = nx

n × 100%

Q̂i is the estimated streamflow; Qi the observed streamflow; Q the mean of the observed streamflow; Q̃ the mean of the estimated streamflow; n the size of testing data; m the size of
training data; p the number of free parameters in a model; and nx is the total number of estimated streamflow data where the absolute relative error is less than x%.
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3. Study Area and Observed Data

The study area for investigating the model performance is the Geumho River Watershed, South Korea.
Sufficient and reliable observed data are essential for developing MLMs. The Geumho River Watershed
has a number of gauging stations with long-term observation periods of more than 20 years. Moreover,
since the gauging stations have been strictly managed by the Ministry of Land, Infrastructure and
Transport, the quality and reliability of their data is good. The Geumho River Watershed is thus
adequate as study area in this study in terms of the number of gauging stations and the availability
and reliability of observed data. Figure 7 displays the study area and locations of gauging stations.
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The watershed is in the central-eastern part of the Nakdong River Basin which is the second largest
among the river basins of South Korea. The watershed has an area of 2092.4 km2, an average watershed
elevation of 235.4 m, an average watershed slope of 33.6%, and a stream length of 119.0 km [79].
To develop the hybrid and single MLMs, daily streamflow and rainfall data were gathered from four
streamflow and 15 rainfall gauging stations, respectively (see Figure 7). The data are available from the
Water Management Information System (WAMIS) [79] which is a web portal information service that
has been operated for providing and managing the water resources and environmental information of
South Korea effectively. The areal mean rainfall (AMR) time series was calculated from the collected
rainfall data using Thiessen polygon method [80]. The AMR and streamflow time series were utilized
for model training and testing. These time series were scaled to the range of [0,1] for efficient model
training [78] and grouped into two data sets: training (2001-2010, data length = 3652) and testing data
sets (2011–2014, data length = 1461).

4. Results and Discussion

4.1. Development of Hybrid and Single MLMs

To decompose input and target time series by the VMD, the number of IMFs (K) and the quadratic
penalty factor (α) should be determined beforehand. In this study, the parameters, K and α, were
determined according to the following steps:

Step 1. Decompose input and target time series into IMFs for different K = [1, 20] and α = [5, 2000].
Step 2. Add up the IMFs for each of the K and α values again and estimate the values of correlation

coefficient (r) for the reconstructed and original time series.
Step 3. Select the sets of K and α values for r ≈ 1.
Step 4. Select the optimal K and α values producing the best performance of VMD-based MLMs.
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Based on the above method, K = 5 and α = 10 were determined in this study. Figure 8 shows
five IMFs decomposed by the VMD for daily streamflow data observed at the Dongchon streamflow
gauging station.
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To decompose input and target time series by the DWT, the optimal level of decomposition (L)
should be first selected. In this study, Equation (22) [81] was used for determining the L value:

L = int[log(N)] (22)
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where N is the length of time series, int[k] returns the integer portion of k, and k is a real number.
Using Equation (22), L = 3 was determined in this study. The determination of decomposition level
using Equation (22) has been adopted in many previous studies [81–86]. Although the decomposition
level can be also selected using a trial-and-error method, it is computationally burdensome and
time-consuming. Furthermore, a mother wavelet should be selected before performing the DWT.
The performance of DWT-based MLMs is dependent on the mother wavelet [6]. For each model, the
optimal mother wavelet producing the best model performance was selected. As a result, the optimal
mother wavelets were chosen as d12 for DWT-ELM, d12 for DWT-LSSVR, and d18 for DWT-ANN,
respectively. Figure 9 shows an approximation and three details decomposed by the DWT for daily
streamflow data observed at the Dongchon streamflow gauging station.
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In developing rainfall-runoff models using MLMs, one of the most important modeling steps is
to select the appropriate input variables [78]. Tables 2–4 summarize the input sets for VMD-based
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MLMs, DWT-based MLMs, and single MLMs, respectively. The input sets can be set up based on the
following steps in this study:

Step 1. Select the potential influencing variables based on the lag times of input variables determined
by autocorrelation function (ACF), partial autocorrelation function (PACF), cross-correlation
function (CCF), and average mutual information (AMI).

Step 2. Select five input sets for each model utilizing the variables selected in step 1 and
all-possible-regression method [87], where Mallows’s Cp and adjusted r2 [87] are used as
the criteria for selecting the sets. The Mallows’s Cp is minimized when the input set consists of
only statistically significant variables. The adjusted r2 helps prevent overfitting since a penalty
is given when adding variables to a model [87,88].

Step 3. Select the optimal input set producing the best performance for each model based on
quantitative performance indices.

Table 2. Configuration of input sets for single MLMs.

Models Input Variables Output Variables

ANN R(t), QDP(t − 1), QDP(t), QGH(t), QHY(t − 1), QHY(t), QDC(t − 5), QDC(t − 1) QDC(t)
ELM R(t − 1), R(t), QDP(t − 1), QDP(t), QGH(t), QHY(t − 1), QHY(t), QDC(t − 1) QDC(t)

LSSVR R(t − 1), R(t), QDP(t − 1), QDP(t), QGH(t), QHY(t − 1), QHY(t), QDC(t − 1) QDC(t)

Table 3. Configuration of input sets for VMD-based MLMs.

Models IMFs Input Variables Output Variables

VMD-ANN

IMF 1 IMF1R(t − p), IMF1DP(t − q), IMF1GH(t − r), IMF1HY(t − s), IMF1DC(t − u)
(p = 0, 1, 2, 3, 5, 6, 7; q = 0, 1, 2, 4, 5, 6, 7; r = 2, 3, 4, 6, 7; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) IMF1DC(t)

IMF 2 IMF2R(t − p), IMF2DP(t − q), IMF2GH(t − r), IMF2HY(t − s), IMF2DC(t − u)
(p = 0, 1, . . . , 4, 6, 7; q = 0, 1, 2, 3, 5; r = 2, 3, . . . , 7; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) IMF2DC(t)

IMF 3 IMF3R(t − p), IMF3DP(t − q), IMF3GH(t − r), IMF3HY(t − s), IMF3DC(t − u)
(p = 0, 2, 3, 4, 6, 7; q = 0, 1, 3, 4, 5, 6; r = 0, 1, . . . , 7; s = 0, 1, . . . , 6; u = 1, 2, . . . , 7) IMF3DC(t)

IMF 4 IMF4R(t − p), IMF4DP(t − q), IMF4GH(t − r), IMF4HY(t − s), IMF4DC(t − u)
(p = 0, 1, . . . , 7; q = 1, 2, . . . , 7; r = 0, 1, . . . , 6; s = 0, 1, . . . , 5, 7; u = 1, 2, . . . , 7) IMF4DC(t)

IMF 5 IMF5R(t − p), IMF5DP(t − q), IMF5GH(t − r), IMF5HY(t − s), IMF5DC(t − u)
(p = 0, 1, . . . , 7; q = 0, 1, 2, 3, 5, 6, 7; r = 0, 1, . . . , 5, 7; s = 0, 1, . . . , 7; u = 1, 2, 3, 4, 6, 7) IMF5DC(t)

VMD-ELM

IMF 1 IMF1R(t − p), IMF1DP(t − q), IMF1GH(t − r), IMF1HY(t − s), IMF1DC(t − u)
(p = 0, 1, 2, 3, 5, 6, 7; q = 0, 1, 2, 4, 5, 6, 7; r = 2, 3, 4, 6, 7; s = 0, 1, 2, 3, 5, 6, 7; u = 1, 2, . . . , 7) IMF1DC(t)

IMF 2 IMF2R(t − p), IMF2DP(t − q), IMF2GH(t − r), IMF2HY(t − s), IMF2DC(t − u)
(p = 0, 1, 2, 3, 4, 6, 7; q = 0, 1, 2, 3, 5, 7; r = 0, 1, . . . , 7; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) IMF2DC(t)

IMF 3 IMF3R(t − p), IMF3DP(t − q), IMF3GH(t − r), IMF3HY(t − s), IMF3DC(t − u)
(p = 0, 1, . . . , 4, 6, 7; q = 0, 1, 3, 4, . . . , 7; r = 0, 1, . . . , 7; s = 0, 1, . . . , 6; u = 1, 2, . . . , 7) IMF3DC(t)

IMF 4 IMF4R(t − p), IMF4DP(t − q), IMF4GH(t − r), IMF4HY(t − s), IMF4DC(t − u)
(p = 0, 1, . . . , 7; q = 0, 1, . . . , 7; r = 0, 1, . . . , 6; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) IMF4DC(t)

IMF 5 IMF5R(t − p), IMF5DP(t − q), IMF5GH(t − r), IMF5HY(t − s), IMF5DC(t − u)
(p = 0, 1, . . . , 7; q = 0, 1, 2, 3; r = 0, 1, . . . , 5, 7; s = 0, 1, . . . , 7; u = 1, 2, 3, 4, 6, 7) IMF5DC(t)

VMD-LSSVR

IMF 1 IMF1R(t − p), IMF1DP(t − q), IMF1GH(t − r), IMF1HY(t − s), IMF1DC(t − u)
(p = 0, 1, . . . , 7; q = 0, 1, 2, 4, 5, 6, 7; r = 0, 1, . . . , 4, 6, 7; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) IMF1DC(t)

IMF 2 IMF2R(t − p), IMF2DP(t − q), IMF2GH(t − r), IMF2HY(t − s), IMF2DC(t − u)
(p = 0, 1, . . . , 4, 6, 7; q = 0, 1, 2, 3, 5, 7; r = 0, 1, 3, 4, . . . , 7; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) IMF2DC(t)

IMF 3 IMF3R(t − p), IMF3DP(t − q), IMF3GH(t − r), IMF3HY(t − s), IMF3DC(t − u)
(p = 0, 2, 3, 4; q = 0, 1, 3, 4, 5, 6; r = 0, 1, . . . , 7; s = 0, 1, . . . , 6; u = 1, 2, . . . , 7) IMF3DC(t)

IMF 4 IMF4R(t − p), IMF4DP(t − q), IMF4GH(t − r), IMF4HY(t − s), IMF4DC(t − u)
(p = 0, 1, . . . , 7; q = 1, 2, . . . , 7; r = 0, 1, . . . , 6; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) IMF4DC(t)

IMF 5 IMF5R(t − p), IMF5DP(t − q), IMF5GH(t − r), IMF5HY(t − s), IMF5DC(t − u)
(p = 0, 1, . . . , 6; q = 0, 1, 2, 3, 5, 6, 7; r = 0, 1, . . . , 5, 7; s = 0, 1, . . . , 7; u = 1, 2, 3, 4, 6, 7) IMF5DC(t)

R: areal mean rainfall, Q: streamflow, DP: Danpogyo gauging station, GH: Geumho gauging station, HY: Hayang
gauging station, and DC: Dongchon gauging station.
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Table 4. Configuration of input sets for DWT-based MLMs.

Models Ds and As Input Variables Output
Variables

DWT-ANN

D1 D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u)
(p = 0, 1, 2, 3; q = 0, 1, 2; r = 0; s = 0, 1, 2, 3; u = 1, 2, . . . , 7) D1DC(t)

D2 D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u)
(p = 1, 2, 3; q = 1, 2; r = 0, 1, 2; s = 0, 1, 2, 3; u = 1, 2, . . . , 6) D2DC(t)

D3 D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u)
(p = 0, 1, 2, 3; q = 0, 1, 2, 3; r = 0, 1, 2, 3; s = 0, 1, 2, 3; u = 1, 2, . . . , 7) D3DC(t)

A3 A1R(t − p), A1DP(t − q), A1GH(t − r), A1HY(t − s), A1DC(t − u)
(p = 0, 1, . . . , 4; q = 0, 1, . . . , 6; r = 0, 1, . . . , 7; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) A3DC(t)

DWT-ELM

D1 D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u)
(p = 0, 1, 2, 3; q = 0, 1, 2; r = 0; s = 0, 1, 2, 3; u = 1, 2, . . . , 7) D1DC(t)

D2 D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u)
(p = 0; q = 0, 1, 2; r = 3; s = 0, 1, 2, 3; u = 1, 2, . . . , 7) D2DC(t)

D3 D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u)
(p = 0, 1, 2; q = 0; r = 0, 1, 2, 3; s = 0, 1, 2, 3; u = 1, 2, . . . , 7) D3DC(t)

A3 A1R(t − p), A1DP(t − q), A1GH(t − r), A1HY(t − s), A1DC(t − u)
(p = 0, 1, 2, 3, 6; q = 0, 1, . . . , 7; r = 0, 1, . . . , 7; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) A3DC(t)

DWT-LSSVR

D1 D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u)
(p = 0, 1, 2, 3; q = 0, 1, 2; r = 1; s = 0, 1, 2, 3; u = 1, 2, . . . , 7) D1DC(t)

D2 D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u)
(p = 0, 1, 2; q = 0, 1, 2; r = 0, 1, 2; s = 0, 1, 2, 3; u = 1, 2, . . . , 6) D2DC(t)

D3 D1R(t − p), D1DP(t − q), D1GH(t − r), D1HY(t − s), D1DC(t − u)
(p = 0, 1, 2, 3; q = 1; r = 0, 1, 2; s = 0, 1, 2, 3; u = 1, 2, . . . , 7) D3DC(t)

A3 A1R(t − p), A1DP(t − q), A1GH(t − r), A1HY(t − s), A1DC(t − u)
(p = 5; q = 0, 1, 2, 3, 7; r = 0, 1, . . . , 7; s = 0, 1, . . . , 7; u = 1, 2, . . . , 7) A3DC(t)

D: Detail, and A: Approximation.

The critical modeling phase for developing the MLP and ELM models is to select the optimal
number of hidden neurons. The model performances are affected by the number of hidden neurons.
The optimal number was selected utilizing a trial-and-error approach [6,89]. Furthermore, the logistic
sigmoid function (also known as the log-sigmoid), which has been applied in most hydrological neural
network modeling [78], was employed for calculating the output of each neuron for the MLP and ELM
models, and BP algorithm was used for training the MLP model. For MLP, the training parameters
(learning rate and momentum rate) mainly affect the convergent speed of learning procedure, not
the model performance. Larger learning rate leads to unstable oscillation and local minimum [90,91].
Although the momentum rate is used for filtering out the oscillation, it cannot be removed completely.
When the learning parameters are small, they have a minor effect on the performance although
the convergence time is increased. According to Dai and MacBeth [92], the learning parameters
can be obtained by a trial-and-error approach, but it is time-consuming, and they marginally affect
the performance. Therefore, it is not necessary to take a lot of effort to select the optimal values,
and it is more efficient to select appropriate small learning parameters considering the computation
speed (convergence speed). In this study, the default values of learning parameters suggested by
Zell et al. [93] were used.

For the LSSVR modeling, selecting the regularization and kernel parameters is one of the
significant modeling steps. The parameters should be selected in advance. Coupled simulated
annealing (CSA) and derivative-free simplex search (DSS) [94,95] were used for selecting the optimal
parameters. In the parameter optimization, the CSA determines the initial values, and the DSS performs
the fine-tuning [96]. Optimization algorithms, including gradient-based techniques, simulated
annealing, genetic algorithms, particle swarm optimization, etc., can be used for selecting the optimal
parameters. The gradient-based methods have limitations when the cost function is non-differential
and the computation cost for large-scale problems is high. Additionally, the method suffers from
performance degradation when there is multimodality, multidimensionality, and many local minima
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in search space. Global optimization algorithms including simulated annealing, genetic algorithms
and particle swarm optimization have the advantage that they can escape from multiple local minima.
However, global optimization algorithms have high computational burdensome and very slow
convergence since they require very many evaluations for cost function to reach the global optimum.
Moreover, they are sensitive to the initial parameters [95]. On the other hand, CSA features fast
convergence speed and can reduce the sensitivity for the initial parameters although there is a tradeoff
between the number of evaluations for cost function and the quality of the final solutions. The tradeoff
problem can be resolved by performing a fine tuning by the DSS. Thus, the coupled CSA and DSS
result in better performance and more optimal solutions [97,98].

Considering the above modeling strategies, three VMD-based MLMs (VMD-ELM, VMD-LSSVR
and VMD-ANN), three DWT-based MLMs (DWT-ELM, DWT-LSSVR and DWT-ANN) and three single
MLMs (ELM, LSSVR, and ANN) were developed. Table 5 shows the optimal model architectures.
For ANN, ELM, VMD-ANN, VMD-ELM, DWT-ANN, and DWT-ELM models, the digits represent
the number of input, hidden, and output neurons, respectively. For LSSVR, VMD-LSSVR, and
DWT-LSSVR models, the digits represent the number of input nodes, RBF kernel functions, and output
nodes, respectively.

Table 5. Optimal model architectures.

Models Architectures Models Architectures

VMD-ANN

IMF1 34-120-1

DWT-ANN

D1 19-28-1
IMF2 33-151-1 D2 18-69-1
IMF3 34-95-1 D3 23-46-1
IMF4 36-76-1 A3 35-59-1
IMF5 36-99-1

DWT-ELM

D1 19-64-1

VMD-ELM

IMF1 33-148-1 D2 16-93-1
IMF2 36-154-1 D3 19-63-1
IMF3 36-122-1 A3 36-96-1
IMF4 38-163-1

DWT-LSSVR

D1 19-19-1
IMF5 33-190-1 D2 19-19-1

VMD-LSSVR

IMF1 37-37-1 D3 19-19-1
IMF2 35-35-1 A3 29-29-1
IMF3 32-32-1 ANN 8-9-1
IMF4 37-37-1 ELM 8-30-1
IMF5 35-35-1 LSSVR 8-8-1

4.2. Performance Assessment

As stated in the Introduction chapter, this study aims at examining the performances of
VMD-based MLMs for daily rainfall-runoff modeling and comparing them with those of DWT-based
and single MLMs. The model performances were evaluated using the quantitative performance indices
which measure the model efficiency and effectiveness. The results are summarized in Table 6.

When the values of CE, IOA, r2 and PI are close to one and the values of RMSE, MAE, MSRE,
MARE, RVE, and R4MS4E are close to zero, it indicates that a model achieves better efficiency compared
with other models. Also, when lower AARE and higher TS are produced by a model, it represents that
the model has better effectiveness.
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Table 6. Performance evaluation for testing period.

Models CE IOA r2 PI RMSE
(m3/s)

MAE
(m3/s) MSRE MARE RVE R4MS4E

(m3/s)
AARE

(%)
TS1
(%)

TS5
(%)

TS25
(%)

TS50
(%)

TS75
(%)

TS100
(%)

ANN 0.979 0.995 0.981 0.976 8.957 4.479 0.175 0.346 −0.104 25.636 34.6 0.6 2.7 18.8 97.1 98.8 99.4
ELM 0.981 0.995 0.982 0.979 8.502 3.873 0.228 0.283 −0.011 22.894 28.3 2.2 12.6 58.2 90.3 96.1 97.8

LSSVR 0.981 0.995 0.981 0.978 8.540 2.802 0.146 0.179 0.004 30.235 17.9 4.7 22.4 84.3 95.3 97.6 98.5
VMD-ANN 0.990 0.998 0.991 0.989 6.067 3.002 0.117 0.224 0.054 15.376 22.4 3.1 16.0 71.6 91.6 96.9 98.2
VMD-ELM 0.997 0.999 0.997 0.997 3.193 1.376 0.036 0.101 −0.001 8.431 10.1 14.9 50.0 91.2 97.1 98.9 99.4

VMD-LSSVR 0.998 0.999 0.998 0.998 2.887 1.418 0.042 0.110 −0.008 6.193 11.0 11.0 47.5 89.3 96.5 98.8 99.4
DWT-ANN 0.987 0.997 0.987 0.985 7.092 3.475 0.155 0.241 −0.050 16.693 24.1 4.9 19.6 69.7 88.4 94.7 97.3
DWT-ELM 0.995 0.999 0.996 0.995 4.200 1.693 0.039 0.112 −0.003 10.877 11.2 11.3 43.3 90.1 97.0 98.9 99.4

DWT-LSSVR 0.995 0.999 0.995 0.994 4.404 1.668 0.104 0.116 0.006 11.656 11.6 11.6 46.0 90.5 97.5 98.8 99.4
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In comparing the performances of VMD-based and single MLMs, VMD-based MLMs yielded
better efficiency and effectiveness indices than ELM, LSSVR and ANN models, respectively. It can be
indicated from this result that the combination of VMD and single MLMs can improve the performances
of single MLMs in terms of efficiency and effectiveness. Also, the performances of VMD-based MLMs
were compared with those of DWT-based MLMs. As a result, VMD-ELM and VMD-LSSVR models
provided better efficiency, whereas VMD-ELM and DWT-LSSVR models performed better in terms
of effectiveness. When both model efficiency and effectiveness were considered, the VMD-ELM and
VMD-LSSVR models achieved the better performance. On the other hand, VMD-ANN model yielded
poor efficiency and effectiveness as compared with DWT-ANN model. These results revealed that the
VMD was able to enhance the performances of ELM and LSSVR models, whereas the DWT was more
suitable to improve the performance of ANN model than the VMD for daily rainfall-runoff modeling.
Among all the models, the top three models with the best efficiency and effectiveness can be identified
as VMD-ELM, VMD-LSSVR, and DWT-ELM models, respectively. These results indicated that the
VMD provided better efficiency and effectiveness than the DWT for daily rainfall-runoff modeling
utilizing MLMs, and the performance reliability was also dependent on the MLMs.

Figures 10 and 11 show the scatter plots and the residual boxplots for the VMD-based, DWT-based,
and single MLMs, respectively. The plots provide the graphical comparison of model accuracy.
The scatter plots represent the degree of correlation and dispersion between estimated and observed
values, whereas the residual boxplots depict the distribution of residuals that are the differences
between estimated and observed values.
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From Figure 10, it was observed that the scatter points of the VMD-based and DWT-based MLMs
were closer to the 1:1 slope line compared with the single MLMs. This indicated that the VMD-based
and DWT-based MLMs provided better accuracy than the single MLMs. From Figure 11, it was evident
that the overall residual ranges (the maximum residual minus the minimum residual) of the single
MLMs were larger than those of the VMD-based and DWT-based MLMs, whereas the interquartile
residual ranges (the third quartile minus the first quartile for residual) for all models were similar
and small. It can be found from the figures that the single MLMs produced worse results than the
VMD-based and DWT-based MLMs for extreme (low and high) streamflow even if all models provided
accurate results for almost streamflow data. Especially, as seen in Figure 10, the VMD-based and
DWT-based MLMs models yielded the best accurate streamflow values compared with the single
MLMs for higher streamflow.

Based on model performance evaluation and graphical comparison, VMD-based and DWT-based
MLMs produced better results than single MLMs in daily rainfall-runoff modeling. These results
are consistent with those of previous studies dealing with hybrid modeling for rainfall-runoff
process [6,47,99–101]. Single MLMs (e.g., ANN, ELM, and LSSVR) represent a natural limitation
in terms of nonstationary hydrologic time series modeling even if they can model nonlinear
hydrologic time series effectively [102,103]. However, in case of VMD-based and DWT-based hybrid
modeling, VMD and DWT decompose an original time series into time-frequency features (details
and approximation for DWT, and IMFs for VMD), and the features are then used for the inputs of
single MLMs. Since the MLMs utilize the training data with more simple structure for each scale
obtained by time series decomposition in the training process, they can learn the data pattern more
effectively. These characteristics can reduce the effects of nonlinearity and nonstationarity embedded
in the original time series. Therefore, VMD-based and DWT-based hybrid rainfall-runoff models can
deal with nonlinear and nonstationary hydrologic time series more effectively and also improve the
model performance.

In this study, ANN, VMD-ANN, and DWT-ANN models were trained using backpropagation
algorithm which has been widely applied in hydrological applications. Chau [104] proposed
a split-step PSO algorithm which combines particle swarm optimization for global search and
Levenberg-Marquardt algorithm for fast local search in river stage forecasting. The algorithm
provided more improved results in terms of computation time and accuracy. Similarly, in ANN-based
rainfall-runoff modeling, using the enhanced learning algorithm may help improve the computation
time and accuracy of ANN models. Furthermore, for VMD- and DWT-based ANN modeling, VMD and
DWT increase the number of input features for ANN models greatly since sub-time series decomposed
by VMD and DWT are used as the training dataset of ANN models. The enhanced learning
algorithm may also improve the computation time and accuracy of VMD-ANN and DWT-ANN
models. Therefore, a rainfall-runoff modeling combining VMD (or DWT), split-step PSO, and ANN
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can be suggested as a future study. For LSSVR, VMD-LSSVR, and DWT-LSSVR models, the optimal
parameters were determined using coupled CSA and DSS algorithms in this study. The algorithms
feature enhanced computation speed and accuracy compared with conventional global optimization
algorithms. However, the coupled CSA and DSS algorithms may be more enhanced if they utilize
the parallel computing concept using multiple computers and parallel genetic algorithm proposed by
Cheng et al. [105] or graphics processing unit (GPU)-based computing (ex., Zhou and Tan [106]) which
has been getting the spotlight recently. These methods can help an optimization algorithm to search
multidimensional solution space efficiently since the enhanced computing ability can significantly
reduce the computation time for optimization. In this study, original time series were decomposed into
sub-time series by VMD and DWT. In contrast, Taormina et al. [107] split hydrograph into baseflow
and excess flow components using digital filter, and then trained modular neural networks for the
components, respectively. Wu and Chau [108] used singular spectrum analysis for the decomposition
and analysis of original time series. Combining the advantages of these methods may help improve
the performance of rainfall-runoff MLMs. In other words, it can be suggested to divide an original time
series into baseflow and excess flow components using the baseflow separation method, decompose
them into sub-time series by applying VMD or DWT to each component, and then utilize the sub-time
series as a training dataset for modeling rainfall-runoff MLMs.

5. Conclusions

In this study, two different conjunction models, VMD-ELM and VMD-LSSVR, are developed for
daily rainfall-runoff modeling in the Geumho River Watershed, South Korea, and their performances
are investigated. The performances of the coupled models are evaluated utilizing the quantitative
performance indices, namely, efficiency and effectiveness indices. The results are compared with those
of VMD-ANN, DWT-based MLMs (DWT-ELM, DWT-LSSVR, and DWT-ANN), and single MLMs
(ELM, LSSVR, and ANN). As a result, the VMD and DWT-based MLMs perform better than the single
MLMs. The VMD-ELM and VMD-LSSVR models yield slightly better performance than the DWT-ELM
and DWT-LSSVR models, whereas the DWT-ANN model produces slightly better performance as
compared with the VMD-ANN model. Considering efficiency and effectiveness, the VMD-ELM
and VMD-LSSVR models achieve the best performance. These results confirm that the VMD can
enhance the performances of single MLMs for daily rainfall-runoff modeling, and the performances of
VMD-based MLMs are dependent on the combination of single MLMs. Therefore, the VMD can be a
novel alternative technique for hybrid rainfall-runoff modeling based on time series decomposition.

In this study, two VMD-based hybrid MLMs, VMD-ELM and VMD-LSSVR, are proposed for
daily rainfall-runoff modeling. This study deals with rainfall-runoff modeling on daily basis using
VMD-based hybrid MLMs. However, it is also necessary to investigate the performances of VMD-based
rainfall-runoff models on weekly, monthly, and annual basis for effective river basin management,
water supply and allocation, and reservoir planning and operation. Moreover, this study has the
limitation that it employs rainfall and streamflow as predictors for rainfall-runoff modeling and
does not consider runoff components (surface, subsurface, and groundwater flow components),
hydro-physical elements (evapotranspiration, infiltration, etc.), and human-made factors. It can be
suggested as future studies to investigate VMD-based rainfall-runoff modeling considering runoff
components and various factors, effective variable selection methods, comparison with different time
series decomposition methods and MLMs; hybrid learning algorithm combining global and local
search algorithms, parameter optimization using GPU-based parallel computing, and rainfall-runoff
MLMs using baseflow separation and time series composition methods.
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