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Abstract: This study was carried out at Kita-mura near Bibai located in central Hokkaido, Japan, with
the intention of investigating the effects of different agronomical managements on CH4 emissions
from paddy fields on mineral soil over peat under farmers’ actual management conditions in the
snowy temperate region. Four fields were studied, including two fields with twice drainage
(D1-M and D2-M) and also a single-drainage field (D3-S) under annual single-cropping and a
paddy-fallow-paddy crop rotation as their systems. The other field was under single cropping
annual with continuous flooding (CF-R) in the pattern of soybean (upland crop)-fallow-paddy.
The mineral-soil thickness of these soil-dressed peatland fields varied from 20 to 47 cm. The amount
of crop residues leftover in the fields ranged from 277 to 751 g dry matter m−2. Total CH4 emissions
ranged from 25.3 to 116 g CH4-C m−2 per growing season. There was a significant relationship
between crop-residue carbon (C) and total CH4 emissions during the rice-growing season. Methane
fluxes from paddy soils had a strong interaction between readily available C source for methanogens
and anaerobic conditions created by water management. Despite the differences in water regime and
soil type, the average values of straw’s efficiency on CH4 production in this study were significantly
higher than those of southern Japan and statistically identical with central Hokkaido. Our results
suggest that the environmental conditions of central Hokkaido in association with crop-residue
management had a significant influence on CH4 emission from paddy fields on mineral soil over peat.
Rotation soybean (upland)-to-paddy followed by drainage-twice practices also largely reduces CH4

emission. However, mineral-soil dressing on peat could have a significant impact on suppression of
CH4 emissions from beneath the peat reservoir.

Keywords: crop residues; water regime; crop rotation; temperate region

1. Introduction

The increased atmospheric concentration of greenhouse gases (GHGs), including carbon dioxide
(CO2), methane (CH4), and nitrous oxide (N2O), are responsible for past, current, and predicted
future global warming by substantially increasing the greenhouse effect [1]. It is important to
understand the change in magnitude of GHG fluxes from soil.These fluxes are either by-products,
intermediates, or end-products of soil-related microbial processes involved in C and N dynamics in
soils [2]. The paddy field is considered to be an important anthropogenic CH4 emission source [3].
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Methane has been reported to account for 95% of the total carbon dioxide-equivalent (CO2-equivalent)
emissions from paddy fields [4]. As a contributor to climate change, CH4 is second only to CO2,
and its global warming potential is 25 times greater than CO2 on a mass basis [1]. Over the last two
centuries, CH4 concentration in the atmosphere has more than doubled [5]. The annual CH4emission
from rice paddies has been estimated to be 36 Tg year−1, contributing approximately 18% of the total
anthropogenic CH4 emission to the atmosphere [6]. Methane emissions in rice fields can be quite
different in different sites, and in seasonal and management types [7]. Irrigated rice is one of the few
major CH4 sources that is manageable, and is, therefore, likely to be a critical focus of mitigation efforts.

Factors affecting CH4 emissions, such as weather conditions, the water regime, soil properties,
land practices, i.e., irrigation, organic amendments, fertilization, and rice varieties have been
considered [8–10]. Land management practices are thought to be major factors regulating CH4

emissions from paddy fields that include water management, cropping history and residue
management [9–11]. CH4 emissions from paddy fields are regulated by a complex set of biogeochemical
characteristics of flooded soils depending on agricultural-management practices [10–12]. Appropriate
water management can reduce CH4 emissions from paddy fields. Aeration of the soil by either
discontinuing irrigation or by draining the water from the rice fields could enhance CH4 oxidation
and decrease its production, resulting in a lower release to the atmosphere [13,14]. Fertilizer effect
on emissions, especially CH4, depends on rate, type and mode of applications [15]. The ammonium
sulfate reduced CH4 emissions by 40% compared to urea applied at the same rate. A decrease in
the emission rate of CH4 due to the competitive inhibition of nitrate in favor of CH4 production in
ammonium nitrate applications has been reported [16]. Rice varieties have been found in various field
studies to affect GHG emissions, especially CH4 [17,18]. Methane emissions were lower in the high
yielding improved varieties compared to the traditional varieties [19]. The effects of organic materials
i.e., straw, farmyard manure, green manure, and rice-straw compost on CH4 emissions showed a
high CH4 seasonal flux for all treatments except rice-straw compost-amended plots, which showed a
significantly lower emissions level [20]. It has been reported that CH4 emissions increased with the
increase in the amount of added rice straw [21,22]. It is generally accepted that application of straw to
flooded paddy soils enhances CH4 emissions [12,21]. It has also been reported that the rate of CH4

emissions due to straw addition depends on application rate, timing and climatic conditions [22].
Agricultural activities produce large quantities of crop residues. Agricultural residue, especially

rice straw, is either removed from the field, burned in situ, piled or spread in the field, incorporated in
the soil, or used as mulch for the following crop [23]. The existing rice-straw management practice of
this area is to leave rice straw on the paddy fields after harvest in autumn and incorporate the straw into
the soil in the following spring by plowing. Irrigated rice systems are predominant [24], and various
water-management practices can be found. The study area has a cold climate with a long period of
snow cover during the winter period (late November to early April). During the winter-fallow period
(October to April), between harvest and the next year’s planting, the rice straw is generally left on the
unplowed fields, experiencing deep snow covers with subfreezing air temperature. To the best of our
knowledge, little or no information is available on CH4 emissions upon application of rice straw in
off-season and their effects on CH4 emission as well as its release directly from the farmer’s fields on
mineral soil over peat is scarce. Moreover, having distinct variations in agricultural management, such
as residue and water regime, with due consideration to the cool and temperate snowy region, is by far
lacking. We hypothesized that rice-straw management in paddy fields on mineral soil over peat may
regulate CH4 emission in a snowy, temperate region. Thus, field investigations were carried out to
evaluate the effects of different agronomical managements on CH4 emissions from paddy fields on
mineral soil over peat.
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2. Materials and Methods

2.1. Site Description and Field-Management Schemes

Hokkaido is the most recently developed land in Japan. Since its development in the Meiji Era
(1867–1911), many of the peatlands in Hokkaido, Japan, were reclaimed as paddies or dry fields.
In central Hokkaido, peatlands are distributed mainly in the lowlands along the main river, Ishikari.
Especially after the year 1945, most of the Ishikari peatlands have been used for paddy cultivation
according to the systematic-development plan of the Japanese Government. In the 1960s, the peat soils
were drained, top dressed with about 30 cm of mineral soil, and turned into productive crop fields [25].

Field investigations were carried out from May to September during rice-growing season at
Kita-mura (43◦18′ N, 141◦44′ E) near Bibai, located in Central Hokkaido, a major rice-growing area
of Japan Figure 1. We investigated four rice-paddy fields on mineral soil over peat (Figure 2).
Three fields, including drainage-twice (D1-M and D2-M) and single-drainage (D3-S) were under
annual single-cropping and a paddy-fallow-paddy crop rotation as their systems, except one
field of continuous flooding (CF-R), which had an annual single cropping system under soybean
(upland)-fallow-paddy rotation. The mineral-soil (dressing) thickness of soil-dressed peatland fields
of CF-R, D1-M, D2-M, and D3-S were 47 ± 7.5, 20 ± 4.2, 29 ± 5.4, and 29 ± 5.4 cm, respectively.
Field CF-R received soybean stover from the previous year’s soybean crop. Three fields of D1-M, D2-M,
and D3-S received drainage practices, whereas CF-R was under continuously flooded conditions.
Drainage-twice(29 days after transplanting (DAT) and 63 DAT) was done in D1-M and D2-M,
and single-drainage (63 DAT) in the middle of the growing season was done in the D3-S field.
The duration of each drainage was 10 days. All fields were finally drained for harvest at the end of
the growing season. The difference in water-management practices among the fields might have been
governed mainly by differences in the amount of leftover rice residues and soil conditions. However,
the frequency of drainage depended on field conditions. Some physical and chemical properties of
the investigated fields’ soils are presented in Tables 1 and 2, respectively. Detailed information on the
amount of leftover straw on the fields, as well as other management practices, are presented in Table 3.
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Table 1. Some physical characteristics of the investigated paddy field soils (initial soil at 0–10 cm depth).

Site andWater
Regime § SoilType ¶ Particle Size Distribution (%)

Soil Texture
Bulk Density

Sand Silt Clay (g cm−3)

CF-R MBP 53.3 ± 0.54 31.4 ± 0.32 15.3 ± 0.22 CL 1.13 ± 0.11
D1-M MBP 28.8 ± 1.7 47.1 ± 0.92 24.2 ± 0.27 SICL 0.96 ± 0.09
D2-M MBP 29.9 ± 1.2 46.9 ± 1.32 23.1 ± 1.35 SICL 0.87 ± 0.10
D3-S MBP 50.9 ± 0.75 33.5 ± 0.27 15.6 ± 0.47 CL 1.15 ± 0.07

§ CF-R(continuous flooding-rotational field); D1-M (drainage-multiple); D2-M (drainage-multiple); D3-S
(drainage-single). ¶ MBP, mineral soil beneath peat.

Table 2. Some chemical characteristics of the investigated paddy field soil profile (initial soil at
0–50 cm depth).

Site and Water
Regime §

Soil Depth Soil pH EC Total C Total N C/N NO3-N NH4-N

(cm) m S/m (g kg−1) (g kg−1) Ratio (µg kg−1) (µg kg−1)

CF-R

0–10 5.58 ± 0.11 8.03 ± 0.10 22.4 ± 0.29 1.48 ± 0.07 15.1 ± 0.51 1360 ± 130 30 ± 7.22
10–20 5.76 ± 0.10 8.14 ± 0.06 21.0 ± 2.21 1.48 ± 0.14 14.3 ± 0.13 1160 ± 170 20 ± 2.50
20–30 5.62 ± 0.13 7.03 ± 0.16 26.7 ± 2.03 1.83 ± 0.04 14.6 ± 1.46 550 ± 110 240 ± 28.4
30–40 5.49 ± 0.04 7.54 ± 0.15 30.6 ± 2.32 2.07 ± 0.19 14.8 ± 0.21 1030 ± 50 280 ± 83.8
40–50 5.49 ± 0.04 7.72 ± 0.01 37.6 ± 2.73 2.63 ± 0.10 14.3 ± 1.51 980 ± 80 1980 ± 86.2

D1-M

0–10 5.38 ± 0.01 9.14 ± 0.01 57.8 ± 1.02 3.86 ± 0.18 15.0 ± 0.44 1560 ± 150 660 ± 150
10–20 5.41 ± 0.06 9.34 ± 0.23 66.0 ± 2.79 4.21 ± 0.49 15.7 ± 1.18 1720 ± 120 800 ± 110
20–30 5.31 ± 0.04 9.87 ± 0.18 148 ± 4.17 9.27 ± 0.27 16.0 ± 0.91 1100 ± 100 1630 ± 149
30–40 5.24 ± 0.01 13.8 ± 0.20 188 ± 7.16 11.2 ± 0.55 16.8 ± 0.18 770 ± 80 1330 ± 147
40–50 5.31 ± 0.05 12.2 ± 0.15 146 ± 5.68 8.73 ± 0.78 16.7 ± 0.85 320 ± 70 900 ± 88.9

D2-M

0–10 5.32 ± 0.11 9.06 ± 0.10 43.5 ± 1.52 3.03 ± 0.18 14.3 ± 0.37 1180 ± 320 300 ± 16.9
10–20 5.82 ± 0.10 7.03 ± 0.06 39.1 ± 2.45 2.55 ± 0.19 15.3 ± 0.18 1090 ± 80 230 ± 41.9
20–30 5.52 ± 0.13 7.60 ± 0.16 41.2 ± 4.04 2.66 ± 0.34 15.5 ± 0.50 600 ± 70 130 ± 34.9
30–40 5.48 ± 0.04 7.82 ± 0.15 165 ± 7.81 11.1 ± 0.76 14.9 ± 0.72 540 ± 70 380 ± 75.7
40–50 5.42 ± 0.04 5.55 ± 0.08 146 ± 2.46 8.60 ± 0.41 16.9 ± 1.69 150 ± 30 1530 ± 99.6

D3-S

0–10 5.45 ± 0.08 5.67 ± 0.04 24.7 ± 1.89 1.65 ± 0.07 15.0 ± 0.50 90 ± 10 30 ± 12.7
10–20 5.77 ± 0.03 5.92 ± 0.06 25.4 ± 2.79 1.76 ± 0.12 14.4 ± 0.57 50 ± 11 60 ± 10.5
20–30 5.58 ± 0.07 7.93 ± 0.08 52.5 ± 3.93 3.43 ± 0.28 15.3 ± 0.12 370 ± 30 250 ± 61.6
30–40 5.52 ± 0.05 5.08 ± 0.05 166 ± 5.72 9.08 ± 0.82 18.3 ± 1.03 740 ± 40 300 ± 86.2
40–50 - - 374 ± 7.64 19.8 ± 1.05 18.9 ± 0.62 - -

§ CF-R(continuous flooding-rotational field); D1-M (drainage-multiple); D2-M (drainage-multiple); D3-S
(drainage-single).
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Table 3. Summary of management and dry matter yield of the investigated paddy fields.

Site and Water
Regime §

Field
Area

Straw Leftover on Field from
Previous Crop

Nitrogen
Fertilizer

Application

Dates

Rice Variety

Dry Matter Yield

Dry
Matter C Conc. C Amount Trans-Planting Multiple/Single-Drainage Final

Drainage for
Harvest

Harvest
Grain Total

Biomass †

(ha) (g m−2) (%) (g C m−2) (kg N ha−1) 1st 2nd (g m−2) (g m−2)

CF-R 0.18 277 ‡ 44.5 123 36 25-May - - 15-August 15-September Kirara 397 727 1382
D1-M 0.54 521 41.7 217 76 24-May 22-June 25-July 15-August 15-September Kirara 397 627 1182
D2-M 0.48 558 40.4 225 76 24-May 22-June 25-July 15-August 15-September Nanatsuboshi 710 1278
D3-S 0.35 751 39.2 295 36 25-May - 26-July 15-August 25-September Kirara 397 713 1306

§ CF-R(continuous flooding-rotational field); D1-M (drainage-multiple); D2-M (drainage-multiple); D3-S (drainage-single). ‡ Soybean stover. † Total biomass (whole rice plant) includes
grain, straw and stubble with roots.
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2.2. Experimental Layout and Approach

Four rice-paddy fields were selected under farmers’ actual management conditions. Each field
was used as treatment, and had three measurement positions. Field CF-R received leftover soybean
stover from the previous year’s crop and acted as a control with no rice straw. Field D1-M, D2-M and
D3-S received different amounts of leftover rice straw from previous year’s rice crop. We considered
four treatments and three chambers per field, i.e., four treatments (four fields) and three replications
(three chambers per field).

The distance between each of the field sites was about 500–1000 m. Three chambers (three
replicates) were placed in each field at an equal distance of 30 m. Immediately after transplantation, an
aluminum chamber base of 61 cm× 31 cm× 7 cm (length×width× height), which has 1 cm× 2.5 cm
(width × deep) water groove on inner side, was installed in the waterlogged soil. The base groove was
filled with water if the field-water table dropped below the groove level. To avoid soil disturbance
during gas collection, boardwalks were constructed from border dikes across each sampling site.
During the cropping period, all observations were made from the boardwalks to avoid disturbing
the soil.

2.3. Gas Sampling and Analysis

A closed-chamber method [22] was used to collect gas from the experimental fields. Transparent,
rectangular gas-sampling chambers of 60 cm × 30 cm × 100 cm (length × width × height) were
constructed using 5-mm-thick acrylic sheets and placed on base over the rice plants covering four hills
in the paddy fields. To prevent pressure gradients between the interior and exterior of the chambers
during flux measurement and gas sampling, a plastic lightweight bag was affixed inside. To measure
the inside temperature, a digital electronic thermometer was attached inside the chamber with a silicon
cork. A silicon tube with a three-way stopcock was also attached to each chamber with a silicon
cork for gas sampling. Every sampling event was replicated three times. Sampling was carried out
three to four times per month within 10:00 h to 15:00 h on each sampling day. The same approach
was used at each field site on each sampling date. At each sampling time, gas was sampled at 0, 10,
and 20 min using a 25-mL polypropylene syringe and was transferred into a 20-mL vacuum vial with
a hypodermic needle. CH4 concentrations of the collected gas samples were analyzed in the laboratory
by a gas chromatograph equipped with a hydrogen flame-ionized detector (FID, SHIMADZU GC-8A,
Shimadzu Corporation, Kyoto, Japan) while N2 (flow rate: 100 kPa), H2 (flow rate: 50 kPa), and zero
air (flow rate: 50 kPa) were used as the carrier, fuel, and supporting gas, respectively. Column and
injector/detector temperature were set at 70 ◦C and 130 ◦C, respectively. Cylinder for CH4 standard of
2.0 and 10.0 ppmv, obtained from Hokkaido Air Water Inc, Sapporo, Japan, was used as the primary
standard, and it had an injection volume of 1 mL.

2.4. Eh and Soil Temperature Measurement

The soil redox potential (Eh) was recorded at a depth of 4 cm by inserting the electrode into the
soil during each gas-sampling day using a TOA pH/Eh meter (HM-14P, TOA Electronics Ltd., Nagoya,
Japan). Soil temperature was also measured at a depth of 3 cm during gas sampling.

2.5. Gas Flux Calculation

CH4 fluxes were calculated from the linear increase or decrease of gas concentration in the
chamber over time, using the following equation [21]:

F (mg C m-2 h-1) = ρ × V/A × ∆c/∆t × 273/T × α (1)

where F is the gas flux; ρ is the density of gas at the standard condition (CH4 = 0.716 g m−3); V (m3)
and A (m2) are the volume and bottom area of the chamber, respectively; ∆c/∆t (10−6 m3 m–3 h–1) is
the gas concentration change in the chamber during a given period; T is the absolute temperature (K);
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and α is the conversion factor for gas (CH4 = 12/16). A positive flux indicates the emission of gas
from soil into the atmosphere, and a negative flux indicates its uptake from the atmosphere. Total CH4

emission during the rice-growing season was calculated by successive linear interpolation of average
gas emissions on the sampling days, assuming that gas emissions followed a linear trend during the
periods when no sample was taken:

Cumulative gas emission =
n−1
∑

i=1
(Ri × Di), (2)

where, Ri is the mean gas flux (mg m–2 day–1) of the two sampling times, Di is the number of days in
the sampling interval, and n is the number of sampling times. The cumulative gas flux of CH4 is 121
days (rice-growing period).

2.6. Soil and Plant Samples Analysis

Initial soil-profile (0–50 cm) samples were collected from different depths (0–10, 10–20, 20–30,
30–40, and 40–50 cm) by hand using stainless-steel augur to measure the physical and chemical
properties of the experimental fields’ soil. Undisturbed 100 cm3 soil cores for 0–10 cm depth and
disturbed samples (PVC bag; about 500 g) were collected from the different depths (0–50 cm).
Undisturbed core samples were used to measure the bulk density. Bulk density ρb (g cm−3) was
obtained by ρb = Ms/100, where Ms (g) is the mass of dry solids determined after drying the soil
sample to a constant weight at 105 ◦C in a 100 cm3 core. Disturbed samples were air dried for more
than three weeks in the laboratory, and then passed through a 2-mm sieve to remove coarse materials.
Soil texture was determined by the pipette method [26,27].

Soil pH was determined with a glass electrode pH meter (HORIBA pH meter F-8, Horiba,
Kyoto, Japan) in a supernatant suspension of 1:2.5 soil:water mixture. EC was determined with
an EC meter (TOA CM-30V Conductivity Meter, DKK-TOA Corporation, Tokyo, Japan) in a 1:5
soil:deionizedwater mixture. Nitrate (NO3

−–N) concentration (1:5 = soil:water) was determined by
Dionex Ion Chromatograph. Ammonium (NH4

+–N) was determined by Colorimetry with indophenol
blue method (Shimadzu UV-VIS Spectrophotometer, Shimadzu Corporation, Kyoto, Japan). To record
the amounts of residues from the previous year’s crop, rice straw of each field was collected from three
1-m2 quadrates and dried in an oven at 70 ◦C for three days. Residue consisted of the above-ground
harvested parts of rice plants, except grain. Dried soil and plant samples from each field were ground
(e.g., to powder) by hand with a mortar and pestle to determine total C concentration with a C–N
analyzer (vario MAX CNS, Elementar Analysensysteme GmbH, Langenselbold, Germany).

2.7. The Decomposition Rates of Rice Straw during the Winter Fallow Period

The rice straw was collected from all fields except CF-R, where the soybean stover was left.
Leftover straw samples (from previous fallow period of investigation) were collected two times
from three 1-m2 quadrates in each field: once just after harvesting the previous year’s rice crop
(29 September) and again in the spring just before plowing (23 April). Collected samples were dried in
an oven at 70 ◦C for 3 days. Total C concentrations of straw samples were determined with a C–N
analyzer. Percentage of C lost during winter fallow was calculated by the following equation:

Percentage of C lost = 100 × (W1 × C1 −W2 × C2)/(W1 × C1) (3)

W1 and W2 are the total dry weights of the straw per unit area before and after winter, respectively,
and C1 and C2 are the C concentrations of the straw before and after winter, respectively.

2.8. Statistical Analysis

Statistical differences were performed by Tukey’s comparisons test on the basis of analysis of
variance technique and simple linear-regression analyses were done using statistical software SAS®



Atmosphere 2018, 9, 212 8 of 18

9.3, SAS Institute Inc., Cary, NC, USA. To compare the straw’s efficiency on CH4 production values in
this study with reported values, a t-test for unpaired comparison was done using KyPlot version 4.0
(KyensLab Incorporated, Tokyo, Japan).

3. Results

3.1. Climatic Conditions

Meteorological data during the rice-growing and winter-fallow periods were recorded from
Sapporo District Meteorological Observatory: Digital reading room—Daily and annual climate
data at Iwamizawa Weather Station and presented in Figure 3a,b. During the rice-growing period
(May–September), the mean air temperature was 17.9 ◦C (range: 12.9 to 21.1 ◦C), which was 5.1 ◦C
lower than the average soil temperature at a depth of 3 cm. The total precipitation during rice-growing
period was 611 mm, accounting for 48% of the annual total precipitation (1265 mm). The average
air temperature in between harvest and first snowfall (October–November) was 8.2 ◦C (range: 0.80
to 14.2 ◦C). During the snowy period (late November–late April) the average air temperature was
−2.2 ◦C (range: −13.6 to 10.2 ◦C), and snow depth averaged 58 cm (range: 0 to 120 cm). The mean
annual temperature was 7.94 ◦C, which was 0.8 ◦C higher than the 10-year average, and the annual
total precipitation was 87.5 mm higher than the 10-year average.
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3.2. CH4Emissions during Rice-Growing Period

The seasonal variations in CH4 emission from paddy fields are shown in Figure 4. In field
D3-S (highest rice straw-received field with single-drainage), the first peaks for CH4 emissions
(46 mg C m−2 h−1) appeared during the late tillering stage (34 days after transplanting-DAT) of the rice
plants. In fields D1-M and D2-M (rice straw-containing fields with drainage-twice) the first peak did not
appear until later, owing to drainage, but re-flooding increased emissions substantially during the early
(57 DAT) and middle (66 DAT) stages of flowering (95 and 97 mg C m−2 h−1, respectively). Just after
the second drainage in both of the fields (62 DAT), there was a large drop in CH4 emission. In D3-S,
the highest peak of CH4 emission was found in the middle stage of flowering, and just after mid-season
(62 DAT) drainage, there was also a large drop in CH4 emission. In the case of CF-R (soybean-to-paddy
rotation field), CH4 emission started to rise during the early stage of flowering (57 DAT) with a peak at
the middle stage (66 DAT) of flowering, which was lower (27 mg C m−2 h−1) than the other fields on
mineral soil over peat (soil-dressed peat). When continuous flooding was interrupted by final drainage
for harvesting, the emission from all fields also dropped quickly. A statistically significant difference
(p < 0.05) in daily CH4 emissions has been found between the CF-R and D3-S fields (Table 4), but was
statistically identical with D1-M and D2-M (695 and 732 mg CH4-C m−2 day−1, respectively).

Comparatively low total-seasonal CH4 emission was observed from field CF-R (25.3 g CH4-C m−2),
which received soybean residue of 277 g dry-matter m−2, though rice was grown under continuously
flooded conditions (Table 4). Fields D1-M and D2-M with similar water managements, receiving
leftover rice straw of 521 and 558 g dry-matter m−2 had no significant variation in total CH4 emissions
75.5 and 76.8 g CH4-C m−2, respectively. The single or mid-season drainage field (D3-S) emitted
the highest total CH4 (116 g CH4-C m−2), which was significantly (p < 0.01) greater than the CF-R
field, but statistically identical with D1-M and D2-M (75.5 and 76.8 g CH4-C m−2). The difference
between the highest seasonal CH4 emissions from the highest crop residue-received field (D3-S—with
single-drainage) and the lowest from the lowest crop residue-received field (CF-R—with continuous
flooding, upland-to-paddy rotation field) was approximately 357%. When comparing drainage-twice
fields (D1-M and D2-M) with single-drainage (D3-S), the seasonal emissions of multiple-drainage
fields were 34 to 35% lower. In addition, it was 198–204% higher in multiple-drainage fields over
the continuous-flooding field (CF-R). Regression analyses between the amount of crop residue C
(CRC) present in the field and the total seasonal CH4 emissions suggests that total CH4 emission was
significantly (p < 0.001) related with the amount of crop residue C (Figure 5). The rice straw’s efficiency
on CH4 production (straw’s efficiency on CH4 production = total CH4 emission (g C m−2)/total dry
matter of crop residue (g m−2) leftover) from paddy fields in this study with variable additions of straw
and water has been compared with previously reported values for central Hokkaido and southern
Japan (Table 5). During the growing seasons except at harvest time, the Eh values measured at the
4-cm soil depth ranged from approximately +510 to −175 mV (Figure 4).



Atmosphere 2018, 9, 212 10 of 18

Atmosphere 2018, 9, x FOR PEER REVIEW  10 of 17 

 

harvest time, the Eh values measured at the 4-cm soil depth ranged from approximately +510 to −175 
mV (Figure 4). 

 

Figure 4. The CH4 emissions over time and Eh measured from paddy fields during the growing 
season. Error bar indicating standard deviation. ↔ = Drainage period. → = Final drainage for harvest. 

D3-S

0 15 30 45 60 75 90 105 120

D2-M

Days after transplanting

D1-M

CF-R

C
H

4 e
m

is
si

on
s (

m
g 

C
H

4-
C

 m
-2

 h
-1

)

120

90

60

30

0

120

90

60

30

0

120

90

60

30

0

120

90

60

30

0

-400

-200

0

200

400

600

0 19 31 35 42 49 58 67 72 78 91 105 120

E
h 

(m
V

)

CF-R D1-M D2-M D3-S

Figure 4. The CH4 emissions over time and Eh measured from paddy fields during the growing season.
Error bar indicating standard deviation. ↔ = Drainage period. → = Final drainage for harvest.



Atmosphere 2018, 9, 212 11 of 18

Table 4. Daily average (±, Standard deviation) fluxes and total seasonal (±, Standard deviation) CH4

emission from paddy fields during growing season.

Site § Soil Type † Straw Leftover
on Field

Methane Emission CH4 Emission
Increment (%)Daily Average * Total Seasonal **

(g m−2) (mg CH4-C m−2

Day−1) (g CH4-C m−2)
Compared with CF-R as

No Rice Straw

CF-R MBP 277 ‡ 227 ± 283a 25.3 ± 8.54a -
D1-M MBP 521 695 ± 67ab 75.5 ± 24.6ab 198
D2-M MBP 558 732 ± 685ab 76.8 ± 30.0ab 204
D3-S MBP 751 1074 ± 789b 116 ± 23.5b 357

Values in a column followed by a common letter are not significantly different at * p < 0.05 & ** p < 0.01. †

MBP, mineral soil beneath peat. § CF-R (continuous flooding-rotational field); D1-M (drainage-multiple); D2-M
(drainage-multiple); D3-S (drainage-single). ‡ Soybean stover.
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Table 5. Comparison of total seasonal CH4 emission from paddy fields on mineral soil over peat in Central Hokkaido with those reported studies in various locations
of Japan.

Place
Location Rice Straw Applied/Leftover

Water Regime † Total Seasonal CH4
Emission (g C m−2)

Straw’s Efficiency on CH4Prodn.
(g CH4-C g Dry Matter−1) Sources ‡

Lat. Lon. Season Rate (g m−2)

Ryugasaki,
Ibaraki 35◦61′ N 140◦13′ E off_ 500 CF 11.1 0.02 [28]

Ryugasaki,
Ibraki 35◦61′ N 140◦13′ E off_ 500 DM 6.47 0.01 [28]

Ryugasaki,
Ibraki 35◦90′ N 140◦2′ E off_ 600 DM 20.3 0.03 [29]

Kawachi,
Ibaraki 35◦90′ N 140◦25′ E off_ 600 DM 33.6 0.06 [29]

Mito, Ibaraki 36◦40′ N 140◦4′ E off_ 900 DM 9.45 0.01 [29]
Tsukuba,
Ibaraki 36◦01′ N 140◦11′ E off_ 600 DM 0.83 0.001 [29]

Atsugi,
Kanagawa 35◦24′ N 139◦19′ E off_ 600 DS 11.3 0.02 [30]

Mikasa,
Hokkaido 43◦14′ N 141◦49′ E off_ 80 CF 9.84 0.12 [22]

Mikasa,
Hokkaido 43◦14′ N 141◦49′ E off_ 105 CF 9.09 0.09 [22]

Mikasa,
Hokkaido 43◦14′ N 141◦49′ E off_ 190 CF 38.9 0.20 [22]

Mikasa,
Hokkaido 43◦14′ N 141◦49′ E off_ 219 CF 40.8 0.19 [22]

Fujian, China 25◦59′ N 119◦38′ E on_ 330 CF 28.0 0.08 [31]
Cuttack, India 20◦25′ N 85◦55′ E on_ 200 CF 2.71 0.01 [32]

Bibai, Hokkaido 43◦18′32” N 141◦43′21” E off_ 277§ CF 25.3 0.09 TS¶

Bibai, Hokkaido 43◦18′13” N 141◦44′22” E off_ 521 DM 75.5 0.14 TS
Bibai, Hokkaido 43◦18′16” N 141◦44′12” E off_ 558 DM 76.8 0.14 TS
Bibai, Hokkaido 43◦18′30” N 141◦43′17” E off_ 751 DS 116 0.15 TS

† DM, multiple drainage. DS, single-drainage. CF, continuously flooded. § soybean stover. ¶ TS, This study. ‡ Sources: [22] Naser et al. 2007. [28] Yagi et al. 1996. [29] Yagi and Minami
1990. [30] Morimura et al. 1995. [31] Weiqi et al. 2015. [32] Adhya et al. 2000. Straw’s efficiency on CH4 production = total CH4 emission (g C m−2)/total dry matter of crop residue (g
m−2) leftover.
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4. Discussion

With water-management practices, mid-season drainage conditions exhibited their peak in the
early season for CH4 emission, as observed in Japan [29] and Italy [33]. It generally occurs as a result
of the spring incorporation of organic residues or with a high availability of organic matter in soils [34].
In our study, the early peaks appeared in the D3-S field because of the rice straw, which was left on
the soil surface for half a year experiencing deep snow cover with low temperatures. This leftover
straw did not degrade much over the winter-fallow period (Figure 6). This less-decomposed (35%
of the straw C loss by 208 days) rice straw might act as a fresh organic matter upon incorporation
in spring for paddy cultivation. Kondo and Yasuda [35] found a lower decomposability under cool
temperate conditions with 26% (148 days) of the added rice straw, which was also surface applied
during off-cropping season. Lu et al. [36], however, reported a loss of 50%, 68%, and 74% of the
straw C by 60, 150, and 240 days of incubation, respectively, at 15 ◦C in paddy soil during a fallow
period. The lesser straw decomposition and the environmental factors regulating the processes are in
agreement with many researchers [22,37].
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Figure 6. Straw C loss during the winter-fallow period (October to April).

Irrespective of water-management practices, we observed a second peak for CH4 during the
reproductive stage. It may be attributed to the increase in methanogenic substrate by the excretion
of organic exudates from the developing rice plants [38], which was associated with un-mineralized
rice straw [39]. The highest CH4 emission was observed from D3-S, and it experienced mid-season
drainage as well as the highest rate of rice straw, despite the water management interrupting its
emission. An important finding in this study is that D1-M and D2-M, those with the same drainage
conditions and similar leftover rice straw (217 and 225 g C m−2, respectively), had similar total CH4

emission (75.5 and 76.8 g C m−2, respectively). The differences in soil-organic C contents of D1-M
and D2-M fields (total C 57.8 and 43.5 g kg−1, respectively) had no influence on CH4 emission, as it
primarily originates from the decomposition of rice straw and not at all or very little from soil-organic
C [36]. Yuan et al. [21], they found that decomposing rice straw is not only a substrate of CH4

production, but in addition stimulates CH4 production from soil organic matter and rice root organic
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carbon. Minamikawa et al. [40] reported that the decomposition of soil carbon is delayed under
reductive conditions in flooded paddy soil.

CF-R field started to emit CH4 at the reproductive stage (57 DAT), and the CH4 emission at that
time was 1/7th to 1/12th of the other fields receiving leftover rice straw in this study, even though
CF-R was under continuously flooded conditions. This may be attributed to the distinct variations
in their residue-decomposition characteristics [41,42] and rotational effect. Soybean cultivation may
have an effect on CH4 emissions in paddy fields. Mer and Roger [43] reported that the intensity of
the reduction process in submerged soils depends on the content and nature of organic matter and
the ability of the microflora to decompose this organic matter. Eh changes occur more rapidly in
flooded rice paddy fields in the presence of readily decomposable rice straw [44]. The lignin level
in soybean stover (11.9%) is higher than in rice straw (7.3%) [45], and high lignin content slows the
decomposition of organic matter [46]. Moreover, growing an upland crop in rotation with flooded rice
can cause sufficient aeration of the soil to increase Eh periodically [42], which, in turn, may reduce
CH4 emissions.

In this study, we found a significant (p < 0.001) linear relationship between the amount of crop
residue C and total CH4 emissions (Figure 5). We compared the relationship in this study with our
previous study on paddy fields of various types of mineral soils (Gray Lowland soils, Gley Lowland
soils, Pseudogleys, and Brown Lowland soils) in Mikasa, Central Hokkaido, Japan, where there was a
significant relationship (p < 0.05) between the amount of organic-residue C and total CH4 emission
under continuously flooded conditions [22]. The coefficient of determination (R2 = 0.990) of the
regression equation in this study is much higher than our previous study (R2 = 0.884). Wang et al. [47]
found that incorporating rice straw (500 to 1200 g dry matter m−2) into paddy fields increased CH4

emissions by two to nine times, showing a linear relation with the amount of straw incorporated.
Similar trends have also been observed for rice fields in Italy [21], China [31], Japan [22], and the
Philippines [13]. Negative correlations between CH4 emissions and soil Eh in this study corresponded
to the result of Xu and Hosen [48] and Yang et al. [49]. Soil Eh generally decreased in response to rice
straw application, similar to the findings of other studies [31,50] which could be attributed to several
reasons. Firstly, the decomposition of rice straw will increase the supply of electrons for reduction
reactions, thereby lowering soil Eh [51,52]. Secondly, rice straw has a high ability to absorb moisture
and hence to maintain a more anaerobic soil environment [31].

Despite the differences in water regime and soil type, the average values of straw’s efficiency on
CH4 production in this study was about 5.2 to 7.5 times higher (p < 0.01) than the reported average
value of southern Japan (Table 5: source (28, 29, 30) and statistically identical with Mikasa, Central
Hokkaido [22]. When compared to China and India’s efficiency under continuous flooding, the average
values of straw’s efficiency on CH4 production in this study was about 6–85 times higher [31,32].This is
because of the deep snow cover, low temperature, and unplowed conditions, which may have retarded
the decomposition of crop residues over the winter fallow. We observed higher CH4 fluxes from the
offseason application/leftover in this study than those from on-season applications of rice straw in
other studies [53,54]. Lu et al. [14] reported that the offseason application of rice straw reduced CH4

emission by 11% as compared with that obtained from fields to which the same amount of rice straw
(600 g m−2) was applied during field preparation (on-season). The CH4 fluxes during the rice-growing
season with various water-management practices in this study was on the average 4.7 times higher
than the study conducted with the application/leftover of rice straw under continuous flooding on
mineral soil [22]. Although water management that included multiple and single-drainage might have
interrupted the trend of increase in CH4 emission in this study. Our results do not refute the findings of
other studies where water management was a key factor in reducing CH4 emissions from paddy fields
in central Japan [9,28,55] and other parts of the world [5,14,56,57]. However, we emphasize that the
environmental conditions of central Hokkaido in association with crop-residue management favored
CH4 release into the atmosphere. In addition, upland to paddy rotation and/or drainage practices
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could reduce its emission largely. However, the fact remains that the mineral-soil dressing on peat
could have a significant impact to suppress CH4 emission from beneath the peat reservoir.

5. Conclusions

It may be concluded that rice-straw management in paddy fields on mineral soil over peat
significantly regulates CH4 emission. The presence of rice straw has a significant influence on CH4

emissions from paddy fields on mineral-soil over peat in a snowy, temperate region, while drainage
practices along with soybean (upland)-to-paddy rotation might reduce CH4 emissions. However,
CH4 emission in this study was found to be five times higher than that of the other studies,
but the presence of higher C contents in mineral-soil over peat had no significant influence on CH4

emission. More intensive study would be worthwhile for precise estimation of CH4 emission in
rice straw-amended paddy fields on mineral-soil over peat. We note that an alternative residue
management in the region could be collecting the residues after harvest for biofuel production,
which would help reduce CH4 emissions, and could serve to augment the regional production of green
energy sources.
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