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Abstract: A recent wildland fire history and climate database was compiled for South Dakota,
USA (SD). Wildfires are generally a warm season phenomenon across central and western SD while
eastern SD exhibits a spring peak in annual wildfire activity. It is hypothesized that regional climate
and land use are the two primary drivers of the spatiotemporal wildfire distribution across the
state. To assess the relative impacts of climate to wildfire activity, Spearman’s rank order correlation
coefficients were calculated for monthly values of temperature, precipitation, and the Palmer Drought
Modified Index (PMDI) as compared to both monthly area burned and numbers of fire starts data for
each of the nine climate divisions in South Dakota. Results show statewide variations in significant
correlations but positive temperature anomalies, negative precipitation anomalies, and negative
values of the PMDI were most frequently associated with months showing substantial area burned
and large numbers of wildfire starts. Time-lagged significant correlations were also seen implying
month(s)-ahead predictive capabilities. Positive PMDI values were most significantly correlated to
warm season wildfire activity suggesting that the influence of drought on wildfires within SD may be
limited to the summer months.
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1. Introduction

Knowledge of wildfire-climate relationships is vital in understanding the favorable environmental
conditions for large wildfire growth. Climate is a primary control on local weather [1] and
vegetation/fuel conditions [2,3] thereby largely dictating wildfire seasonality, location, and severity [4].
Anthropogenic factors (i.e., land use, ignitions) also impact regional wildfire climatology [5,6]. Wildfires
are not equally distributed globally [7,8] with the most frequent wildfires occurring in regions where
fuel availability meets favorable climatic conditions. Furthermore, the specific spatial and temporal
characteristics of wildfire differ substantially from region to region around the world [9–12].

Mirroring global wildfire heterogeneity, the wildfire climatology of the conterminous United
States (US) varies considerably in space and time. Wildfires occurring over the western US are typically
a warm season phenomena [13] with intra-seasonal variation based on latitude: wildfires largely peak
across southern, central, and northern areas of the region in June, July, and August, respectively [14,15].
Notable exceptions include the California Coast Chaparral which has a peak in fire activity in the fall
months and the Southwest Plateau which sees an early fire season running from late winter through
early spring [15]. Fire activity in the western Great Plains typically peaks during the warm season [15];
however, other portions of the Great Plains including the High Pains, Lake Agassiz region, Flint
Hills, central Great Plains, and Southwestern Tablelands also show a propensity for increased fire
activity during the spring months [16]. Wildfires across the eastern US, including the Appalachian
region, see yearly peaks in fire activity during October and November as well as during March and
April [17,18].
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The temporal distribution of wildfires, especially across the grasslands that dominate the Great
Plains, may be linked to plant phenology. Wildland fuels, both living and dead, all inherently
contain some level of moisture and before ignition can occur, the moisture within the fuel must
be removed [19,20]. The amount of moisture within a living fuel is driven by the annual growth
cycle which in turn is determined in part by temperature, precipitation, relative humidity, and solar
radiation [21]. These same environmental variables also control the amount of moisture contained
within dead plant material [22]. During the annual growing cycle of the herbaceous fuels,
the proportion of live-to-dead material within the fuel matrix impacts the ignition and spread
efficiencies with higher percentages of live material being more detrimental to fire propagation [20].
Although natural ignitions may be infrequent during the early spring months, increases in wildfires
across the region are still seen owing to the cured nature of the fine fuels.

The relationship between wildfire and climate patterns differs across the unique landscapes
of the US. High wildland fire activity across the closed canopy forests of the western US has been
linked to anomalously dry conditions over the previous 1–2 years [14,15,23–25]. Wildfire severity
in these dense and/or mid- to high-elevations forests is largely a function of climate variability
and its subsequent effects on the fuels [26]. This contrasts with open canopy forests, grasslands,
and shrublands which show relationships between high wildfire activity and anomalously high
moisture in the year prior, if short-term dry conditions are observed just before and during the wildfire
season itself [14,15,25,27]. Positive temperature anomalies have also been linked to concurrent increases
in wildfire activity [23,28,29].

The purpose of this study is to examine the contemporary wildfire climatology and pyrogeography
of South Dakota and to establish linkages between wildfire and climate metrics such as temperature,
precipitation, and drought. South Dakota is centered within the Great Plains but contains substantial
longitudinal variation in climate [30], topography, and land use [31]. It is hypothesized that regional
differences will exist within South Dakota in wildfire seasonality and frequency due to these variations.
Furthermore, it is hypothesized that positive temperature anomalies, moisture deficits, and drought
are all significantly correlated to statewide increases in wildfire frequency and area burned regardless
of time of year.

2. Experiments

Wildfire data for this study were collected from the Great Plains Interagency Dispatch Center,
the Black Hills National Forest, volunteer fire department incident reports, and state reports to the
National Association of State Foresters. These data include wildfires on both public and private lands.
The data were combined to form a single wildfire database consisting of 16,908 wildfires encompassing
659,344 ha (1,629,274 acres). The data were quality-controlled to the extent possible with duplicate
entries and entries with invalid geospatial information being manually removed. If questionable
entries remained, the author contacted the relevant land managers to verify the wildfire entry and,
in several cases, Landsat imagery (https://landsatlook.usgs.gov/viewer.html) was used to visually
identify fire scars. Data retained include fire name, fire start date, initial fire latitude/longitude
(presumed to be the ignition point), final fire size, and fire cause (human, lightning, unknown,
or other). For this study, human ignitions include equipment use, smoking, camp fires, debris burning,
railroads, arson, child-caused fires, fireworks, powerlines, and structure fires that have spread to the
wildland. It is important to note that the wildfire ignition data contained within this study rely on
information provided by suppression resources; that is, only wildfires that were actively responded
to were included. It is likely that additional fires occurred but were extinguished naturally without
human intervention.

Geospatial software (ArcMap 10.2.2, Esri, Redlands, CA, USA) was utilized to partition the
fire entries into their respective South Dakota climate divisions, as described by Guttman and
Quayle [32]. There are nine distinct climate divisions within South Dakota (Figure 1): Climate Division
1 (Northwest, NW), Climate Division 2 (Northcentral, NC), Climate Division 3 (Northeast, NE), Climate
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Division 4 (Black Hills, BH), Climate Division 5 (Southwest, SW), Climate Division 6 (Central, C),
Climate Division 7 (Eastcentral, EC), Climate Division 8 (Southcentral, SC), and Climate Division 9
(Southeast, SE). Due to limitations in the fire databases, only data from 1998–2016 were included for
South Dakota Climate Divisions 1–3 and 5–9 while South Dakota Climate Division 4 contains data
from 1987–2016. Climate Division 4 includes additional years as the majority of the land ownership
within the division belongs to the Black Hills National Forest which has compiled more robust fire
data over a longer period of time than the other sources.
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Figure 1. The nine climate divisions of South Dakota with underlying counties named and outlined.
Figure adapted from the Climate Prediction Center, National Oceanic and Atmospheric Administration.

The climate of South Dakota is of continental type with four distinct seasons including hot
summers and cold winters [30]. For reference, the monthly precipitation and temperature averages for
the period of study are given in Figure 2 for each climate division. Monthly climate data for South
Dakota were obtained from the National Oceanic and Atmospheric Administration’s National Centers
for Environmental Information (NCEI) for each climate division within the state. Climate data acquired
include temperature, precipitation, and the Palmer Modified Drought Index (PMDI). The PMDI is
positive for abnormally wet periods and negative for abnormally dry periods with higher absolute
values depicting increasingly abnormal conditions. It is the favored drought index for this study as
it is readily available through the NCEI and can be used in a real-time, operational setting [33,34].
There are both strengths and weaknesses in using climate divisions for expressing the climatic variables
with the primary weaknesses relating to the disparity between the climate division boundaries and
climatological homogeneity, complex terrain, and inconsistencies in the number of reporting stations
between divisions [32].
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Table 1. Climate variable nomenclature descriptions, sign conventions, and usage examples. This table is to be used in conjunction with Tables 2 and 3.

Climate Metric Sign (+ or −) Convention Variable Time Lag Variable Example

Palmer Modified Drought
Index (PMDI)

(+) Abnormally wet conditions are significantly correlated (p < 0.05) to larger number of fire starts or
area burned
(−) Drought conditions are significantly correlated (p < 0.05) to larger number of fire starts or area burned

PMDIi Concurrent month May 2016 wildfire data vs. May 2016 PMDI data

PMDIi−1 Previous month May 2016 wildfire data vs. April 2016 PMDI data

Precipitation
(+) Precipitation excesses are significantly correlated (p < 0.05) to larger number of fire starts or area burned
(−) Precipitation deficits are significantly (p < 0.05) correlated to larger number of fire starts or area burned

Pi Concurrent month May 2016 wildfire data vs. May 2016
precipitation data

Pi−1 Previous month May 2016 wildfire data vs. April 2016
precipitation data

Pi−3
Cumulative precipitation from
prior 3 months

May 2016 wildfire data vs. February–April 2016
cumulative precipitation data

Pi−12
Cumulative precipitation from
prior 12 months

May 2016 wildfire data vs. May 2015–April 2016
cumulative precipitation data

Temperature

(+) Abnormally warm conditions are significantly correlated (p < 0.05) to larger number of fire starts or
area burned
(−) Abnormally cold conditions are significantly correlated (p < 0.05) to larger number of fire starts or
area burned

Ti Concurrent month May 2016 wildfire data vs. May 2016
temperature data

Ti−1 Previous month May 2016 wildfire data vs. April 2016
temperature data
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To establish a linkage between wildfires and climate, Spearman’s rank order correlation
coefficients were calculated with two-tailed significance values between monthly climate data and
monthly wildfire data (both area burned and number of ignitions) for each of the nine climate divisions.
There is no expectation of normality within the monthly fire data and therefore Spearman’s method
was utilized in this study [35]. The wildfire data for each month of the period of record was ranked
against that given month’s climate data (precipitation, Pi; temperature, Ti; PMDI, PMDIi) and the
previous month’s climate data (precipitation, Pi−1; temperature, Ti−1; PMDI, PMDIi−1). Additionally,
the wildfire data for each month of the period of record was ranked against accumulated precipitation
for the three months preceding the given fire month (Pi−3), and for the twelve months preceding the
given fire month (Pi−12). The effects of precipitation on the wildland fuels may be long lasting and
therefore the lagged precipitation values are included. These long-duration effects are not expected for
temperature and the PMDI already incorporates prior climate information including temperature and
precipitation. Descriptions and examples of these variables are given in Table 1. Correlations were
then calculated for all paired rankings.

3. Results

Wildfire occurrence shows strong seasonal dependence within the state of South Dakota but
this seasonality differs among climate divisions and varies considerably by longitude and to a lesser
degree by latitude (Figure 3). Wildfires are most common during the warm season throughout
central and western SD with moderate wildfire activity extending into the fall months. Wildfires
typically peak in both numbers and area burned during the spring months across eastern South
Dakota. Lightning-ignited wildfires are rare across eastern South Dakota while they are relatively
common across central and western South Dakota during the warm season. Notably, lightning causes
more than 50% of the wildfires in Climate Division 4 (Black Hills) from June–September.

Seasonality and cause of ignition are two important aspects of the pyrogeography of an area
although the year-to-year variability in climatic and/or meteorological conditions likely drive local
wildfire frequency and severity. These relationships are explored in both Tables 2 and 3. Table 2
shows the significant (p < 0.05) Spearman’s rank order correlations for the monthly climate variables
(temperature, precipitation, and PMDI) as compared to the monthly area burned. Table 3 shows the
significant rank correlations between the monthly climate variables and monthly number of ignitions.
Positive (negative) values for PMDI indicate significant rank correlations between abnormally wet
(dry) periods and the wildfire data, positive (negative) values of temperature (T) indicate significant
rank correlations between above (below) average temperatures and the wildfire data, and positive
(negative) values of precipitation (P) indicate significant rank correlations between precipitation
deficits (surpluses) and the wildfire data. Significant rank correlations were not seen in the data for
every month (as denoted by the * in Tables 2 and 3) and for many of the months, namely during the
warm season, significant correlations are seen for many climate variables for each climate division.
The impacts of the anthropogenic factors (i.e., land use, ignitions) on wildfires are not included
although these factors likely have significant importance in both wildfire frequency and size [36].
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Figure 3. Monthly total hectares burned and number of fire starts for South Dakota: (a) Climate Division 1 (Northwest); (b) Climate Division 2 (Northcentral); (c)
Climate Division 3 (Northeast); (d) Climate Division 4 (Black Hills); (e) Climate Division 6 (Central); (f) Climate Division 7 (Eastcentral); (g) Climate Division 5
(Southwest); (h) Climate Division 8 (Southcentral); (i) Climate Division 9 (Southeast). Note: the scale of the vertical axes differs between panels.
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Table 2. Significant (p < 0.05) Spearman’s rank order correlations for wildfire area burned and climate variable pairs for each month for each South Dakota Climate
Division. Positive (negative) values for PMDI indicate significant rank correlations between abnormally wet (dry) periods and area burned, positive (negative) values
of temperature (T) indicate significant rank correlations between above (below) average temperatures and area burned, and positive (negative) values of precipitation
(P) indicate significant rank correlations between precipitation deficits (surpluses) and area burned. Asterisks (*) imply no significant correlation. See text and Table 1
for climate variable and subscript time-lag descriptions.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

NW * * −Pi
+Ti

* *
−Pi
+Ti

−PMDIi

−Pi−1, −Pi−3, −Pi−12
+Ti, +Ti−1

−PMDIi, −PMDIi−1

+Ti−1 *
−Pi−1,
+Pi−12

+PMDIi−1

+Ti
−Pi
+Ti

NC +Ti * +Ti −Pi−3 * −Pi −Pi−3 −Pi −Pi +Ti +PMDIi−1
−Pi−1

+Ti

NE −Pi−3 +Ti +Ti
+Ti−1

−PMDIi
−PMDIi

−Pi−12
−PMDIi, −PMDIi−1

−PMDIi, −PMDIi−1 * * * * −Pi
+Ti

BH +Ti * +Ti−1 * −Pi

−Pi, −Pi−1, −Pi−3,
−Pi−12

+Ti
−PMDIi, −PMDIi−1

−Pi−1, −Pi−3, −Pi−12
+Ti, +Ti−1

−PMDIi, −PMDIi−1

−Pi−1, −Pi−3
+Ti−1

+Ti −Pi
−Pi−1
+Ti−1

+Ti

C −Pi−3
−PMDIi−1

+Ti−1 * −Pi−1,
−Pi−3

* −Pi
+Ti

−Pi−1
+Ti, +Ti−1
−PMDIi

−Pi
+Ti, +Ti−1
−PMDIi

−Pi,
−Pi−1

−Pi−1
+Ti

* *

EC * −Pi−1
−Pi
+Ti

−Pi−3
−PMDIi−1

−Pi−12

−Pi
+Ti

−PMDIi, −PMDIi−1

−Pi−1
−PMDIi, −PMDIi−1

−Pi−12 −Pi−1
−Pi−3
−Ti−1

* +Ti

SW +Ti
−Pi
+Ti

* * −Pi

−Pi, −Pi−1
+Ti

−PMDIi

−Pi, −Pi−1, −Pi−3
+Ti, +Ti−1

−PMDIi, −PMDIi−1

−Pi−1, −Pi−3
+Ti−1

−PMDIi, −PMDIi−1

−Pi−1,
−Pi−3
−PMDIi

−Pi
+Ti

+Ti −Pi

SC * * * −Pi−1,
−Pi−3

*
−Pi
+Ti

−PMDIi, −PMDIi−1

−Pi
+Ti, +Ti−1
−PMDIi

−Pi−1 * −Pi−1
+Pi−12

+PMDIi, +PMDIi−1
*

SE −PMDIi * +Ti −Pi−12
−Pi−1,
−Pi−3

−Pi

−Pi
+Ti, +Ti−1
−PMDIi

−Pi −Pi−1 +Ti −Pi−1 *
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Table 3. Significant (p < 0.05) Spearman’s rank order correlations for wildfire ignitions and climate variable pairs for each month for each South Dakota Climate
Division. Positive (negative) values for PMDI indicate significant rank correlations between abnormally wet (dry) periods and the number of ignitions, positive
(negative) values of temperature (T) indicate significant rank correlations between above (below) average temperatures and the number of ignitions, and positive
(negative) values of precipitation (P) indicate significant rank correlations between precipitation deficits (surpluses) and the number of ignitions. Asterisks (*) imply
no significant correlation. See text and Table 1 for climate variable and subscript time-lag descriptions.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

NW * * −Pi
+Ti

* *
−Pi
+Ti

−PMDIi, −PMDIi−1

−Pi−1, −Pi−12
+Ti, +Ti−1

−PMDIi, −PMDIi−1

+Ti−1
−Pi
+Ti

−Pi−1 * −Pi
+Ti

NC +Ti * * * * −Pi
+Ti

+Ti, +Ti−1 * −Pi * −Pi, +Pi−12
+PMDIi, +PMDIi−1

−Pi−1
+Ti

NE −Pi−3 +Ti−1 +Ti +Ti−1 * +Ti
−PMDIi, −PMDIi−1

−Pi−12
+Ti−1

−PMDIi, −PMDIi−1

* −Pi, −Pi−12
−PMDIi

−Pi
+Ti

−Pi−3 +Ti

BH +Ti * * * −Pi

−Pi
+Ti

−PMDIi

−Pi−1, −Pi−3, −Pi−12
+Ti

−PMDIi, −PMDIi−1

−Pi−1
+Ti, +Ti−1

+Ti, +Ti−1
−Pi
+Ti

+Ti, +Ti−1 +Ti

C −PMDIi−1 +Ti−1 +Ti −Pi−3 * −Pi, −Pi−1
+Ti

−Pi, −Pi−1
+Ti, +Ti−1
−PMDIi

* −Pi +Ti * *

EC * −Pi−1
−Pi
+Ti

−Pi,
−Pi−1,
−Pi−3

*
−Pi
+Ti

−PMDIi, −PMDIi−1

−Pi, −Pi−3, −Pi−12
+Ti−1

−PMDIi, −PMDIi−1

−PMDIi −Pi, −Pi−1

−Pi,
−Pi−3
−Ti−1

−Pi +Ti

SW +Ti +Ti +Ti *
−Pi
+Ti

−PMDIi

−Pi, −Pi−1
+Ti, +Ti−1
−PMDIi

−Pi, −Pi−1, −Pi−3, −Pi−12
+Ti, +Ti−1

−PMDIi, −PMDIi−1

−Pi−1
+Ti, +Ti−1

−Pi−1 +Ti * −Pi
+Ti

SC * +Ti +Ti * −Pi
−Pi

−PMDIi, −PMDIi−1
−Pi * −Pi * +Pi−12

+PMDIi, +PMDIi−1
*

SE −PMDIi +Ti−1 +Ti −Pi *
−Pi
+Ti

−PMDIi, −PMDIi−1

−Pi
+Ti−1

−PMDIi

−Pi −Pi−1 −Pi−3 −Pi−1 +Ti
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4. Discussion

Climatological conditions drive the wildland fuels conditions and therefore are a contributing
factor in wildland fire spread and growth. However, these relationships are not necessarily similar
across South Dakota or within the same area for different times of the year.

4.1. Drought

Abnormally dry conditions affect wildfire numbers and area burned primarily during the early
summer months of June and July as seen from the significant negative correlations between the PMDI
and wildfire data (Tables 2 and 3). Presumably, this is due to the annual growing cycle of the fine fuels.
Grasses comprise the majority of the surface fuels (the main carrier of surface fire) within South Dakota
and these fuels are likely too moist or green to be susceptible to ignition or to sustain wildfire spread
under normal climatic conditions during early and mid-summer [37–39]. During prolonged drought
periods, these types of plants may not sprout or become stressed curing earlier in their life cycles. If few
green plants are present and sufficiently dry surface fuels remain from previous years, wildfire may
have increased opportunity to become established and spread. The relationship between concurrent
drought and an increase in wildland fires is well established in the literature [14,15,23,40–42].

There is a signal that during the fall months positive PMDI values (wetter than average conditions)
may be related to an increase in wildfire activity in Climate Divisions 1 (Northwest), 2 (Northcentral),
and 8 (Southcentral). It is possible that an increase in moisture over the preceding months leads to
increases in fine fuel loadings. These larger fuels loadings then become receptive to wildfire after the
climatologically normal killing frosts during the fall season. Such correlations within grassland fuel
types have been noted for other regions of the United States [23].

Negative values of PMDI are not significantly related to either wildfire number or wildfire area
burned across the majority of the climate divisions from September through March. The lack of
a correlation between the two implies that drought conditions are not a necessary requirement for
large wildland fires during months after killing frost events and before spring green-up—a period
when the grasses are fully cured.

4.2. Temperature

Positive temperature anomalies are significantly correlated to both wildfire area burned and
numbers of wildfires. A distinct pattern, however, does not appear to emerge with respect to location
or seasonality. Positive temperature anomalies during the winter months may lead to less snowpack
and exposed fuels leading to an increase in probability of ignition and wildfire spread. Increased
temperatures during the warm months may stress the herbaceous fuels either causing them to enter
dormancy earlier than usual or temporarily stalling growth. Numerous studies [23,28,29] have come
to similar conclusions noting correlations between increased temperatures and an increase in wildfire
frequency and/or size. Statistically significant correlations were not seen for negative temperature
anomalies for any climate division during any month in the data for area burned or numbers of
fire starts.

4.3. Precipitation

Precipitation deficits, such as positive temperature anomalies, are well-correlated to wildfire
activity across South Dakota during many months of the year. Short-term precipitation deficits may
lead to dry or stressed fuels during the summer months while deficits during the winter months
may lead to snow-free conditions allowing the surface fuels to be receptive to ignitions. Longer term
precipitation deficits (three or more months) are best correlated to wildfire activity during the early
summer months, similar to correlations seen in the PMDI data.

Within Climate Division 4 (Black Hills) 1-, 3-, and 12-month precipitation deficits are significantly
correlated to wildfire activity during June and July. This climate division contains a larger spectrum of
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fuel types and sizes than do many of the prairie areas of South Dakota and therefore may respond
differently than other locations to precipitation deficits. Fine fuels such as timber litter or grass are
known to carry surface fire but the larger fuels such as dead and down material and logging slash likely
increase the intensity of a wildland fire. The larger diameter fuels take more time than the fine fuels to
respond to prolonged periods of wet or dry conditions, a concept known as the time lag principle [43].
The statistical correlation between wildfire activity and the extended precipitation deficits may be
a reflection of the time lag principle for the heavier fuel types during these early summer months.

4.4. Ignitions vs. Area Burned

Many internally-similar patterns emerge within the results when comparing numbers of ignitions
with the area burned data. The monthly distribution of wildfire ignitions follows a similar pattern
to the area burned for nearly all of the climate divisions (Figure 3 and by extension Tables 2 and 3).
It is reasonable to assume that the climatic conditions conducive to wildfire starts are also conducive
to wildfire growth. An alternative or complementary hypothesis is that the probability of a large
wildfire increases with the number of ignitions. A notable exception to this pattern is Climate Division
6 (Central) where the largest number of fire starts occur during July and August while the majority of
the area is burned during September and October.

4.5. Other Factors

Previous research [44] has indicated that substantial changes in land use within South Dakota have
occurred on the timescale of this study potentially influencing the results. From 2006 to 2012 grassland
losses amounted to over 1.8 million acres while cropland gains were seen in excess of 1.4 million
acres across South Dakota. This may alter the frequency and seasonality of wildfire due to changes
in vegetative structure (i.e., composition, continuity, fuel loading and moisture) and human-related
impacts (i.e., harvesting practices, grazing, land use, ignitions). Anthropogenic factors have been
noted to confound others studying wildfire-climate relationships [40]. Additionally, this study may be
impacted by changes due to a short-term variations in climate as annual rises in both precipitation and
temperature have been noted in the Great Plains for the past several decades [45].

Eastern South Dakota has substantially more row crops than central or western portions of the
state and the wildfire climatology across that region differs as well (see Figure 3). Central and south
central South Dakota (as given by [44]) were shown to have the largest proportional increases of
cropland as compared to other regions of the state. It is possible that, due to the changes in land
cover, the peak in wildfire occurrence and area burned across central South Dakota may increasingly
resemble that of eastern South Dakota with smaller fires occurring more often in the spring months.

Positive temperature anomalies were significantly correlated to wildfire activity across the state
for most months (See Tables 2 and 3). It is likely that increases in temperature may result in additional
wildfire activity in a future, warmer climate. However, anticipated precipitation increases may mitigate
the issues presented by projected temperature increases. More research will be needed to explore these
temperature-precipitation relationships for South Dakota.

5. Conclusions

South Dakota exhibits strong longitudinal variation in land cover, topography, and climate.
These variations lead to the observed variations in fire frequency and area burned across the state.
Fire activity in western South Dakota is highly dependent on recent climatic conditions such as
temperature, precipitation, and drought. Drier and warmer conditions show significant correlation to
wildfire activity during the summer months which, historically, is the peak fire season. Fire frequency
and occurrence across central and eastern South Dakota exhibit less dependence on those same climate
variables and fire activity is likely dictated more by short-term weather patterns and/or snow cover.

In areas where heavier fuels exist, drought, temperature, and accumulated precipitation appear
to be well-correlated to wildfire activity. However, across the prairie of South Dakota, it appears that
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the fuels condition is what matters the most: fires are more numerous in the fall and spring when
the fine fuels are typically cured or during the summer months under drought conditions. There are
few significant correlations to positive precipitation anomalies and increases in area burned and/or
increases in ignitions suggesting that the fuels in these areas, even in periods of drought, receive
enough precipitation to grow sufficiently and carry wildfire. It is possible that factors not captured
within this study such as human activity, topography, wind, and humidity play an equal or dominant
role in wildfire occurrence and growth.

The results of this study demonstrate that the pyrogeography and wildfire-climate relationships
may differ substantially over relatively small scales of space and time. If known, these relationships
can be exploited to improve seasonal or monthly forecasts for wildfire potential aiding local wildfire
managers. Future research is expected to include different climate-wildfire pairings in an attempt
to find additional statistically significant correlations especially for the areas of central and eastern
South Dakota. The results of this study and the results of additional research on climate-wildfire
relationships may then be utilized to produce statistically-based forecasts for wildland fire potential.
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