
atmosphere

Article

Global Atmospheric CO2 Concentrations Simulated
by GEOS-Chem: Comparison with GOSAT, Carbon
Tracker and Ground-Based Measurements

Yingying Jing 1,2, Tianxing Wang 2,* ID , Peng Zhang 1, Lin Chen 1 ID , Na Xu 1 and Ya Ma 3

1 National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA),
Beijing 100081, China; jingyy@radi.ac.cn (Y.J.); zhangp@cma.gov.cn (P.Z.); chenlin@cma.gov.cn (L.C.);
xuna@cma.gov.cn (N.X.)

2 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences, Beijing 100101, China

3 Chinese Academy for Environmental planning, Beijing 100012, China; maya@caep.org.cn
* Correspondence: wangtx@radi.ac.cn; Tel.: +86-10-6480-7981

Received: 23 February 2018; Accepted: 4 May 2018; Published: 7 May 2018
����������
�������

Abstract: Accurate quantification of the distribution and variability of atmospheric CO2 is crucial for
a better understanding of global carbon cycle characteristics and climate change. Model simulation
and observations are only two ways to globally estimate CO2 concentrations and fluxes. However,
large uncertainties still exist. Therefore, quantifying the differences between model and observations
is rather helpful for reducing their uncertainties and further improving model estimations of
global CO2 sources and sinks. In this paper, the GEOS-Chem model was selected to simulate
CO2 concentration and then compared with the Greenhouse Gases Observing Satellite (GOSAT)
observations, CarbonTracker (CT) and the Total Carbon Column Observing Network (TCCON)
measurements during 2009–2011 for quantitatively evaluating the uncertainties of CO2 simulation.
The results revealed that the CO2 simulated from GEOS-Chem is in good agreement with other CO2

data sources, but some discrepancies exist including: (1) compared with GOSAT retrievals, modeled
XCO2 from GEOS-Chem is somewhat overestimated, with 0.78 ppm on average; (2) compared with CT,
the simulated XCO2 from GEOS-Chem is slightly underestimated at most regions, although their time
series and correlation show pretty good consistency; (3) compared with the TCCON sites, modeled
XCO2 is also underestimated within 1 ppm at most sites, except at Garmisch, Karlsruhe, Sodankylä
and Ny-Ålesund. Overall, the results demonstrate that the modeled XCO2 is underestimated on
average, however, obviously overestimated XCO2 from GEOS-Chem were found at high latitudes
of the Northern Hemisphere in summer. These results are helpful for understanding the model
uncertainties as well as to further improve the CO2 estimation.
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1. Introduction

As one of the most important anthropogenic greenhouse gases, the CO2 concentration in the
Earth’s atmosphere has increased by 40% since pre-industrial times because of human activities [1,2].
Global warming caused by atmospheric CO2 concentrations has gained much attention from climate
scientists throughout the world [3,4]. An increased knowledge of the carbon cycle is necessary to
predict and mitigate climate change [3,4]. Thus, it is extremely important to accurately quantify
the distribution and variability of the global CO2 sources and sinks [4]. Model simulation and
observations provide two effective ways to quantitatively estimate CO2 fluxes and concentrations with
high accuracy, but the existing in situ measurements of atmospheric CO2 are sparse and even absent
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in some regions (e.g., oceans and polar regions) so that large uncertainties exist in the estimation of
global CO2 sources/sinks if only using ground-based data [5,6]. Satellite remote sensing provides
an advantageous technique to derive the CO2 column-averaged dry air mole fractions (XCO2) for
atmospheric inversions on the global and regional scales.

Currently, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
(SCIAMACHY) from Europe [7], the Greenhouse gases Observing Satellite (GOSAT) from Japan [8],
the Orbiting Carbon Observatory-2 (OCO-2) from the United States of America [9] and the TanSAT
from China [10] are four typical satellite sensors that can derive XCO2 with significant sensitivity in the
boundary layer [7]. Among these instruments, SCIAMACHY mainly measures the global trace gases
in the troposphere and stratosphere, including CO2 and CH4 [7], but unfortunately, it has been lost
since 2012. The GOSAT as well as the recently launched OCO-2 and TanSAT are specifically designed
to accurately estimate atmospheric CO2 and CH4 [8,9]. Moreover, CO2 retrieval algorithms have also
been developed based on these instruments, for example, the NASA’s Atmospheric CO2 Observations
from Space (ACOS) team has applied the OCO retrieval algorithm to the GOSAT Level 1B data [6,11]
to produce XCO2 data (hereinafter called GOSAT/ACOS XCO2). These XCO2 data from satellite are
very useful to improve estimations of CO2 concentrations and further constrain the model simulations,
thereby reducing uncertainties of CO2 sources and sinks. However, due to cloud contamination and
limitations of observation modes, the available data number of XCO2 retrievals is very limited [12,13].
Morino et al. [14] pointed out that only about 10% of the GOSAT data points can be used for the XCO2

retrievals. Consequently, these limited CO2 observations could bring additional uncertainties into
atmospheric inversion models [15].

Model simulation is another essential tool to quantify the spatio-temporal characteristics of
CO2 concentrations and fluxes. Unlike limited satellite observations, it can provide full-coverage
atmospheric CO2 concentrations on a global scale. In early studies, two-dimensional transport
models were frequently used to estimate the distribution of CO2 fluxes [16], while, in recent decades,
three-dimensional (3-D) models have been developed to estimate the distribution as well as interannual
variations of CO2 fluxes [16]. Considering the large differences between models, robust estimation of
model transport error has become a serious concern [17]. TransCom 3 found that the significant source
of uncertainty in CO2 inversion calculations was mainly due to the CO2 flux inventories in transport
models by intercomparing CO2 inversion differences among 17 different models [16]. Chevallier et al.
emphasized that the uncertainties in models probably limits the utility of the model system for further
carbon cycle research [17].

To better estimate the uncertainty in CO2 model inversion, several studies have also assessed
the differences between observations and models [15,18,19]. Li et al. [18] compared the differences
of atmospheric CO2 concentration in East Asia between the Community Multiscale Air Quality
Modeling System (CMAQ) and GOSAT observations to evaluate the uncertainties in model simulation.
Saito et al. [20] reported that the latitude-time variations of XCO2, CH4 and N2O and the transport
processes in troposphere and stratosphere were well modeled by an atmospheric general circulation
model (AGCM)-based chemistry-transport model (ACTM), which was confirmed through comparisons
to TCCON (Total Carbon Column Observing Network). Particularly, GEOS-Chem, as a global 3-D
chemical transport model, which plays an important role in characterizing the distribution and
variability of global atmospheric CO2 [21], has also been evaluated using surface carbon dioxide
monitoring network, aircraft, and satellite observations. For example, Feng et al. [22] evaluated the
GEOS-Chem model using GLOBALVIEW, CONTRAIL aircraft and AIRS satellite data. Lindqvist
et al. [23] compared the seasonal cycle of ACOS retrievals with the University of Edinburgh model
(assimilating two GOSAT retrievals into GEOS-Chem, referred as UoE) in the Northern Hemisphere.
Recently, Zhang et al. [24] modeled the HASM XCO2 by fusing the TCCON measurements with
GEOS-Chem XCO2 model and compared them with satellite observation. These studies have compared
the differences of atmospheric CO2 between GEOS-Chem and other observations in terms of spatial
variation, regional bias and latitudinal gradient by seasons. However, the CO2 characteristics of
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GEOS-Chem model simulation (e.g., seasonal cycle amplitude as well as model errors, especially CO2

overestimation in the high latitudes in summer) have not been fully investigated and inter-compared
with multi-source CO2 data. These inter-comparisons are quite important to quantitatively evaluate
model uncertainties and improve the CO2 flux estimate in GEOS-Chem. Therefore, it is necessary
to further compare the CO2 characteristics from GEOS-Chem with multi-source CO2 data including
observations and other model results to understand uncertainties of CO2 simulation.

For this reason, the overall objective of this study was to simulate atmospheric CO2 using
GEOS-Chem and inter-compare the characteristics of CO2 simulation with GOSAT/ACOS XCO2 data,
CarbonTracker CO2 modeling system and TCCON site measurements during the years of 2009–2011.
The remainder of this paper is organized as follows: Section 2 describes the data and models used in
this study; Section 3 introduces the methods to compare the simulated XCO2 from GEOS-Chem and
other CO2 data with the results presented in Section 4 along with the comparisons between XCO2 from
GEOS-Chem and that of GOSAT/ACOS, CarbonTracker as well as TCCON measurements. The results
are discussed in Section 5 and the conclusions are presented in Section 6.

2. Data and Models

2.1. Datasets

2.1.1. GOSAT XCO2 Observations

The GOSAT, the first satellite specifically used to accurately monitor CO2 and CH4 [8],
was successfully launched on 23 January 2009. It includes a Thermal and Near-infrared Sensor
for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS, JAXA, Tokyo, Japan) and
a Cloud and Aerosol Imager (CAI, JAXA, Tokyo, Japan). TANSO-FTS mainly measures greenhouse
gases in both the Short-Wave InfraRed (SWIR) region (0.76, 1.6 and 2.0 µm) and a wide Thermal
InfraRed (TIR) band (5.5–14.3 µm) at a spectral resolution of 0.2 cm−1 [8]. TANSO-CAI monitors the
clouds and aerosols within the TANSO-FTS’s field of view [8]. In recent years, some CO2 retrieval
algorithms, e.g., NIES [25], ACOS [6], and UOL-FP [26] have been developed based on the GOSAT
satellite. Operational GOSAT/ACOS CO2 products from the NASA’s Atmospheric CO2 Observations
from Space team have been released and are publicly available. Currently, the version 7.3 of the
GOSAT/ACOS XCO2 L2 data [27] is the newest one. Considering the potential deficiencies in M-gain
and ocean glint retrievals, only the H-gain land data of GOSAT/ACOS are used in this study. Before
incorporating GOSAT/ACOS XCO2 data in this study, data filtering and bias corrections recommended
by GOSAT/ACOSv7.3 data users guide [27] were applied for scientific purpose.

2.1.2. Total Carbon Column Observing Network (TCCON) XCO2 Measurements

The Total Carbon Column Observing Network (TCCON) is a global network of ground-based
Fourier transform spectrometers that measure atmospheric columns of the gases CO2, CO, CH4, H2O
and others [28–30]. Wunch et al. [28] compared the XCO2 data retrieved from TCCON with integrated
aircraft profiles and found an accuracy of approximately 1 ppm in these data. TCCON provides
critical ground-based data for validation and bias correction of retrieved CO2 from satellites [28,29],
e.g., the calibration of ACOS XCO2 retrievals from GOSAT [11]. In this study, TCCON XCO2 retrievals
of the newest GGG2014 version at fourteen sites during January 2009–December 2011 were used to
evaluate XCO2 results from the GEOS-Chem model. Sites selected for this study are: Lamont [31],
Park Falls [32,33], Bialystok [34,35], Orleans [36,37], Garmisch [38,39], Bremen [40], Sodankylä [41,42],
Ny-Ålesund, Izaña [43], Eureka [44], Karlsruhe [45] sites located in the Northern Hemisphere (NH),
Wollongong [46], Darwin [47,48], and Lauder [49] sites located in the Southern Hemisphere (SH),
were used in this study.
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2.2. Model Description

2.2.1. GEOS-Chem Model Description

GEOS-Chem is a global three-dimensional (3-D) chemical transport model (CTM) driven by
assimilated meteorological fields from the Goddard Earth Observing System (GEOS-5) of the NASA
Global Modeling and Assimilation Office [50]. The original GEOS-Chem CO2 simulation was
developed by Suntharalingam et al. [51]. Nassar et al. [21] have completed a major update of CO2

simulations of GEOS-Chem model, which improved the CO2 flux inventories and added CO2 emissions
from international shipping and aviation. In this study, the GEOS-Chem model (v9-02) was used to
simulate global atmospheric CO2 from 2005 to 2011.

Since the setting of initial CO2 concentration has a significant impact on the simulated results, it
is necessary to select the appropriate CO2 concentration to initialize the model. In this study, the CO2

concentration on January 2005 was initially set as 375 ppm on the global scale similar to Nassar et
al. [21]. Four years after initialization, a more reasonable CO2 distribution pattern was generated
to again drive the model calculation. Finally, the global atmospheric CO2 distribution is effectively
simulated and available for the years of 2009–2011 in this study. The simulated CO2 included 47
vertical levels with a horizontal grid resolution of 2◦ × 2.5◦ latitude/longitude. The time period of
CO2 simulation is set at 13:00 ± 2 h local time to match the overpass time of the GOSAT satellite.

The input surface CO2 fluxes include: (1) fossil fuel burning and cement manufacture from
an inventory developed at the Carbon Dioxide Information and Analysis Centre (CDIAC) [52];
(2) Monthly biomass burning from the third version of the Global Fire Emission Database
(GFEDv3) [53]; (3) Terrestrial biospheric exchange in the model including two components: a balanced
biosphere computed by the CASA biospheric model and the residual annual terrestrial exchange
obtained by inverse modeling in the TransCom 3 project [21,54,55]. The CASA Net Ecosystem
Productivity (NEP) output is used as Net Ecosystem Exchange (NEE) in the GEOS-Chem model
simulation [21]. It should be noted that these balanced biospheric fluxes contribute no net annual
uptake of CO2, but they make the greatest contribution to the seasonal cycle of atmospheric CO2

over most of the globe with the largest impact in the Northern Hemisphere [21]. The residual annual
terrestrial exchange is based on the TransCom CO2 inversion results adjusted with GFEDv2 fire
emissions and account for the total annual sum of biospheric uptake and emission of CO2 [21];
(4) The ocean fluxes of CO2 from Takahashi et al. [56]. Other fossil fuel emissions from international
shipping and aviation have also been included in the GEOS-Chem simulation [21]. The CO2 module
and sources/sinks inventories is described in detail by Nassar et al. [21].

2.2.2. CarbonTracker

CarbonTracker (CT) is a CO2 data assimilation system built by the National Oceanic and
Atmospheric Administration (NOAA, Silver Spring, MD, USA), Earth System Research Laboratory
(ESRL, Boulder, CO, USA) and uses the Transport Model 5 (TM5) offline atmospheric tracer transport
model to propagate surface emissions [57]. CarbonTracker CO2 profiles of CT2013B and CT2016
version during 2009–2011 were collected for comparison with modeled CO2 of the GEOS-Chem model
in this study. The CT provides global CO2 profiles of 25 vertical levels with 3◦ × 2◦ longitude/latitude
grids and 3-h temporal resolution [58].

The input CO2 fluxes used in CarbonTrakcer contain: (1) two fossil fuel emissions from Miller and
ODIAC datasets. These two datasets provide similar global emissions for each year, but differ in spatial
and temporal distribution [59]; (2) biomass burning based on CASA-GFED [59], which is similar to that
used in GEOS-Chem; (3) two terrestrial biosphere flux; for CT2013B from CASA-GFEDv2 and GFEDv3;
for CT2016 from GFEDv4 and GFED_CMS. It reported that CASA-GFEDv3 product has a smaller
seasonal cycle than the older CASA-GFEDv2 [59]; (4) The ocean fluxes of CO2 from Takahashi et al. [56]
and ocean inversions (OIF) [59,60] results; (5) assimilation of in situ observations including tall towers,
flasks sampled by the NOAA Cooperative Air Sampling Network, and continuous measurements
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from partners [59]. A comparison of CO2 input parameters among CT2013B, CT2016 and GEOS-Chem
is shown in Table 1.

Table 1. Comparison of resolution, input surface CO2 fluxes, transport models and assimilated
observation Among CT2013B, CT2016 and GEOS-Chem.

Models Resolution Biospheric Flux Fossil Fuel Transport
Model

Biomass
Burning

Assimilated
Obs

GEOS-Chem 2◦ × 2.5◦ lat/lon ×47 CASA/GFEDv3 CDIAC GEOS5 CASA/GFEDv3 no

CT2013B 2◦ × 3◦ lat/lon ×25 CASA/GFEDv3
and GFEDv2

CDIAC and
Miller TM5 CASA/GFEDv3

and GFEDv2 in situ data

CT2016 2◦ × 3◦ lat/lon ×25 CASA/GFEDv4
and GFED_CMS

CDIAC and
Miller TM5 CASA/GFEDv4

and GFED_CMS in situ data

3. Methodology

It is well known that different CO2 products cannot be directly compared with each other as
a result of their different data sources and samplings methods. For example, CO2 products retrieved
from GOSAT/ACOSv7.3 are CO2 column-averaged dry air mole fraction (XCO2) concentrations,
while the modeled results from GEOS-Chem are CO2 profiles with 47 vertical layers. Considering
these discrepancies, an adjustment must be conducted before comparing them with each other. In this
study, the model-simulated CO2 profiles were converted to XCO2 by using averaging kernel and
a priori profile of GOSAT/ACOS according to Rodgers and Connor [61] for comparing with GOSAT
observations. The adjustment equation is expressed as follows:

XCOm
2 = XCOa

2 + ∑
j

hjaj(ym − ya)j (1)

where XCO2
m refers to the transformed model XCO2, XCO2

a is the GOSAT/ACOS a priori XCO2,
h denotes pressure weighting function, a is the GOSAT/ACOS v7.3 column averaging kernel, ym is the
simulated CO2 vertical profile, ya is the GOSAT/ACOS v7.3 a priori CO2 profile.

The detailed adjustment method was performed as follows. First, the GEOS-Chem CO2 profiles
were extracted and interpolated to the corresponding time and locations of the GOSAT/ACOS v7.3
XCO2 data. After interpolation according to the GOSAT/ACOS pressure levels, the simulated CO2

profiles have the same layers as a priori CO2 profiles of the GOSAT/ACOS. Then, the interpolated
CO2 profiles from the GEOS-Chem model are convolved with the averaging kernel of GOSAT/ACOS
to obtain XCO2 as in Equation (1). These transformed XCO2 from the GEOS-Chem model are then
compared with GOSAT/ACOSv7.3 XCO2 data in terms of their spatial and temporal characteristics as
well as time series variations.

Furthermore, modeled CO2 from both GEOS-Chem and CarbonTracker are CO2 profiles with
different vertical levels (e.g., GEOS-Chem for 47 layers and CarbonTracker for 25 layers). To better
compare them with each other on the global scale, their CO2 profiles are uniformly transformed to
XCO2 according to the weighting pressure-averaged method described by O’Dell et al. [6]:

XCO2 = hTû (2)

where û is the CO2 profiles from the CarbonTracker or GEOS-Chem model on discrete pressure
levels and h is the pressure weighting function. The specific conducted method of h is described in
O’Dell et al. [6].

In addition, to compare modeled CO2 from GEOS-Chem with TCCON XCO2 measurements,
the GEOS-Chem CO2 profiles should be transferred to XCO2 by using TCCON column averaging
kernels and a priori CO2 profiles [28,62,63]. The averaging kernel correction formula is similar
to Equation (1). Here, the model-simulated CO2 profiles are extracted and integrated to XCO2

within ±2.5◦ latitude and ±2.5◦ longitude of each TCCON site. XCO2
m denotes the integrated



Atmosphere 2018, 9, 175 6 of 24

XCO2 from GEOS-Chem; XCO2
a is the TCCON a priori XCO2; h is pressure weighting function; a is the

TCCON column averaging kernel, which is a function of pressure and the solar zenith angle; ym is the
simulated CO2 profile; ya is the TCCON a priori CO2 profile. The detailed method is described in
Wunch et al. [28].

4. Results and Discussion

4.1. Comparison with GOSAT/ACOS XCO2 Retrievals

Satellite measurements (e.g., GOSAT) can provide spatiotemporal distribution characteristics
of global atmospheric CO2 and have the potential to improve model flux estimation. Motivated
by this, we compare modeled CO2 from GEOS-Chem with GOSAT/ACOSv7.3 retrievals over land
in this study to evaluate the uncertainties of CO2 simulations. However, atmospheric CO2 data
from GOSAT/ACOS are XCO2 concentrations, while those from the GEOS-Chem model are CO2

profiles with 47 vertical levels. For comparison between them, the model-simulated CO2 profiles
were transformed to XCO2 according to the time and location of GOSAT/ACOS retrievals based on
the method in Section 3. It is noted that the CO2 data used in this study during the period of March
2010 to February 2011, are divided by seasons in this study: spring (MAM, March–May), summer
(JJA, June–August), autumn (SON, September–November), and winter (DJF, December 2010–February
2011). From Figure 1, obviously sparse spatial coverage is observed in GOSAT/ACOSv7.3 XCO2

distribution because of some factors, e.g., cloud contamination or limitations of GOSAT observation
modes as well as solar zenith angles [13,26].
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Figure 1. Comparison of XCO2 simulated with GEOS-Chem and GOSAT/ACOSv7.3 XCO2 products 
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during March 2010–February 2011. Seasonal averaged XCO2 concentrations are shown for GEOS-Chem,
GOSAT/ACOSv7.3 and their differences (GEOS-Chem −ACOS): (a): MAM; (b): JJA; (c): SON;
(d): DJF. Unit: ppm.
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Figure 1 also reveals that seasonal variations of XCO2 in the NH are apparent for the GEOS-Chem
model and GOSAT/ACOSv7.3, with the higher CO2 concentrations occurred in MAM and DJF as
well as the lower ones in JJA and SON. There was no significant seasonal variation found in the SH.
The cause of these significant seasonal variations in the NH may be mainly that strong photosynthesis
by vegetation in JJA and SON results in the decay of the CO2 concentration and winter heating leads
to higher XCO2 concentration in MAM and DJF [13,64].

As presented in Figure 1, although the spatial distribution characteristics are consistent between
GEOS-Chem and GOSAT/ACOS on the whole, the differences are evident in each season. For example,
XCO2 from GEOS-Chem is overestimated relative to that of GOSAT/ACOSv7.3 at many regions,
especially in the SH and high latitude region in the NH. However, underestimated XCO2 is found in
the middle latitude region of the NH, particularly in SON.

Furthermore, there are consistent latitudinal variations between GEOS-Chem and GOSAT/ACOS
v7.3 retrievals in Figure 2. Nevertheless, some discrepancies are obvious between them (GEOS-Chem
−GOSAT/ACOS), which vary from 0.2 ppm to 0.78 ppm, with the largest difference (0.78 ppm) in
summer. The result in Figure 2 also shows that overestimated XCO2 from GEOS-Chem were found,
especially in the SH as well as 55◦ N–65◦ N latitude band in JJA, with largest overestimated value
point-by-point even up to 2.88 ppm in the 20◦ S latitude band in winter. However, underestimated
XCO2 was observed over tropical region of the NH in MAM and DJF, as well as middle latitude region
of NH in JJA and SON. For underestimated XCO2 over tropical region in MAM and DJF, it may be
affected by satellite retrieval errors due to tropical cloud during these seasons. This result is also in good
agreements with Cogan et al. [26]. Few data is found in the high latitude of the NH for GOSAT/ACOS
XCO2 in DJF due to the effect of large solar zenith angles in GOSAT observation. In addition, it can
also be seen from Figure 2 that the standard deviation of GOSAT/ACOSv7.3 is relatively larger than
GEOS-Chem, which indicates the larger discrete variation of GOSAT/ACOS retrievals.
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Figure 2. XCO2 concentrations of GOSAT/ACOSv7.3 and GEOS-Chem averaged over 5◦ latitude bins
during March 2010–February 2011: (a) MAM; (b) JJA; (c) SON; (d) DJF. Blue lines denote the latitudinal
mean GOSAT/ACOSv7.3 XCO2 data, with the light blue envelope representing their standard deviation.
Orange line and light orange envelope denotes the latitudinal mean GEOS-Chem XCO2 concentrations
and their corresponding standard deviation.

The seasonal correlation coefficients of XCO2 between GOSAT/ACOS and GEOS-Chem in Figure 3
show that best correlation (R = 0.80) is found in MAM and the poorest correlation (R = 0.52) in SON.
Cogan et al. [26] also found that GEOS-Chem (v08-02) showed highest correlation with GOSAT
observation (UoL-FP retrievals) in MAM.
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In addition, as shown in Figure 4, the time series variations of XCO2 from GEOS-Chem in
the NH during April 2009–December 2011 show good agreement with those of GOSAT/ACOSv7.3,
but monthly averaged XCO2 in the SH is obviously overestimated by GEOS-Chem (even up to 2.5 ppm
in April 2011). Overall, the average bias between GEOS-Chem and GOSAT/ACOS is 0.78 ppm
(GEOS-Chem −GOSAT/ACOS) on the global land during April 2009–December 2011. From Figure 4,
in the NH, the CO2 seasonal cycle dependence of GOSAT/ACOSv7.3 is stronger than GEOS-Chem
in JJA.
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Monthly averaged XCO2 result in Table 2 and time series variations of the NH in Figure 4
also reveal the largest difference (1.2 ppm) between GEOS-Chem and GOSAT/ACOS found in JJA.
This phenomenon coincides with the seasonal drawdown of XCO2 and therefore may be connected



Atmosphere 2018, 9, 175 9 of 24

to the biospheric fluxes in the GEOS-Chem model. Li et al. [18] stated that the uncertainty in the
terrestrial biosphere has a strong effect on CO2 simulations in summer.

Table 2. Statistics of the number of XCO2 data (N), standard deviation (STD) and averaged biases (Bias)
for GEOS-Chem (G-C), GOSAT/ACOS (G-A for GEOS-Chem −ACOS) over the global land during
March 2010–February 2011. Unit: ppm.

Month Num G-C STD G-C ACOS STD A Bias G-A

03/2010 2286 389.74 1.48 389.33 2.90 0.41
04/2010 2424 390.01 1.72 389.81 3.54 0.26
05/2010 3339 389.82 1.46 389.37 3.14 0.46
06/2010 4429 389.44 0.65 388.87 2.11 0.58
07/2010 5095 388.85 0.94 387.80 2.45 1.05
08/2010 5098 388.42 1.80 387.20 2.23 1.23
09/2010 4481 388.07 2.02 387.52 1.81 0.55
10/2010 3880 388.32 1.57 388.43 1.80 −0.11
11/2010 3167 389.08 1.02 389.08 1.82 0.00
12/2010 2598 390.14 0.66 389.96 1.98 −0.17
01/2011 2232 390.98 0.73 390.74 2.44 0.25
02/2011 1908 391.21 1.05 391.21 2.80 0.24

Additionally, the result from Table 2 indicates that monthly averaged biases (GEOS-Chem—
GOSAT/ACOS) during March 2010–December 2011 ranging from −0.11 ppm to 1.23 ppm. However,
Lei et al. [19] found that the bias between GEOS-Chem and GOSAT (NIES algorithm) XCO2 could be
up to around 3.3 ppm. This discrepancy between our study and Lei et al. [19] could be due to different
retrieval algorithms of GOSAT and different version of GEOS-Chem model simulation.

From Table 2, the monthly averaged standard deviation of GOSAT/ACOSv7.3 XCO2 is relatively
larger (even up to 3.5 ppm) than that of XCO2 simulated from GEOS-Chem, indicating the more
discrete variation of GOSAT/ACOSv7.3 XCO2 than those of GEOS-Chem. This phenomenon is similar
to the result shown in Figure 2. The reason for more discrete variations of GOSAT/ACOS XCO2

may be that, on the one hand, the GEOS-Chem model is not better to capture complicated dynamic
variations of XCO2 than satellite observations [15]. On the other hand, the retrieval errors on satellite
observations [23,26] could lead to large uncertainties in the GOSAT/ACOSv7.3 XCO2.

4.2. Comparison with CarbonTracker XCO2

Satellite XCO2 retrievals are useful in analyzing XCO2 variability and informing carbon
cycle science. Nonetheless, their limited observations probably lead to uncertainties in further
interpreting their scientific significance [65]. Unlike satellite XCO2 retrievals, model simulations
(e.g., GEOS-Chem) can provide full-coverage maps of CO2 concentrations on the global or regional
scale. To further compare the differences between GEOS-Chem and CarbonTracker, global CO2 profiles
from GEOS-Chem, CT2013 and CT2016 are converted to XCO2 using Equation (2) in this section.
In view of a high similarity of input surface fluxes in GEOS-Chem and CT2013B, we mainly analyze
the spatial distribution, seasonal correlation and time series variations of XCO2 between GEOS-Chem
and CT2013B.

The spatial distribution of XCO2 between GEOS-Chem and CT2013B in Figure 5 indicates
that significant seasonal variations of global atmospheric CO2 are found from these two model
simulations. The difference (GEOS-Chem −CT2013B) result shows that the seasonal averaged XCO2

of GEOS-Chem is slightly underestimated relative to that of CT2013B at most regions on the global
scale, apart from eastern China and middle Africa in MAM, SON and DJF, northern South America
as well as high latitude of the NH in JJA. Here, we simply analyze the overestimated effect in these
regions. From Figure 6, limited assimilated observation sites for CT2013B are found in these regions,
therefore, the assimilated effect of CT2013B is small and not discussed in these regions. From Table 1,
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GEOS-Chem used ODIAC as fossil fuel emission input, and CT2013B simultaneously used ODIAC
and Miller dataset. CT2013B document [59] reported that large fossil emission differences between
ODIAC and Miller datasets were found in eastern China, although ODIAC and Miller have similar
global emissions for each year. Overestimated XCO2 from GEOS-Chem over eastern China may be
due to the effect of fossil fuel emission inventory differences. For middle Africa and northern South
America, overestimated XCO2 from GEOS-Chem is probably related to spatial distribution differences
in terrestrial biosphere fluxes between GFED3 and GFED2. These spatial differences between GFED3
and GFED2 were also described by CT2013 document [59]. For more details, please see the CT2013
document [59]. For the high latitude region in the NH, the difference of biosphere fluxes and fossil
fuel emission in this region used in GEOS-Chem and CT2013B is very small according to CT2013B
document [59], but transport models are different. Therefore, overestimated XCO2 from GEOS-Chem
in summer for the high latitudes of NH are likely affected by atmospheric transport and local fluxes.

Atmosphere 2018, 9, x FOR PEER REVIEW  10 of 24 

 

regions. From Figure 6, limited assimilated observation sites for CT2013B are found in these regions, 
therefore, the assimilated effect of CT2013B is small and not discussed in these regions. From Table 1, 
GEOS-Chem used ODIAC as fossil fuel emission input, and CT2013B simultaneously used ODIAC 
and Miller dataset. CT2013B document [59] reported that large fossil emission differences between 
ODIAC and Miller datasets were found in eastern China, although ODIAC and Miller have similar 
global emissions for each year. Overestimated XCO2 from GEOS-Chem over eastern China may be 
due to the effect of fossil fuel emission inventory differences. For middle Africa and northern South 
America, overestimated XCO2 from GEOS-Chem is probably related to spatial distribution 
differences in terrestrial biosphere fluxes between GFED3 and GFED2. These spatial differences 
between GFED3 and GFED2 were also described by CT2013 document [59]. For more details, please 
see the CT2013 document [59]. For the high latitude region in the NH, the difference of biosphere 
fluxes and fossil fuel emission in this region used in GEOS-Chem and CT2013B is very small 
according to CT2013B document [59], but transport models are different. Therefore, overestimated 
XCO2 from GEOS-Chem in summer for the high latitudes of NH are likely affected by atmospheric 
transport and local fluxes. 

 
Figure 5. Comparison of global XCO2 simulated with GEOS-Chem and CT2013B during March 2010–
February 2011. Seasonal averaged XCO2 concentrations are shown for GEOS-Chem, CT2013B and 
their difference (GEOS-Chem −CT2013B). (a) MAM; (b) JJA; (c): SON; (d): DJF. Unit: ppm. 

Figure 5. Comparison of global XCO2 simulated with GEOS-Chem and CT2013B during March
2010–February 2011. Seasonal averaged XCO2 concentrations are shown for GEOS-Chem, CT2013B
and their difference (GEOS-Chem −CT2013B). (a) MAM; (b) JJA; (c): SON; (d): DJF. Unit: ppm.



Atmosphere 2018, 9, 175 11 of 24
Atmosphere 2018, 9, x FOR PEER REVIEW  11 of 24 

 

 
Figure 6. The spatial distribution of CT2013B assimilated observational network (source: 
CarbonTracker website). 

The seasonal correlation in Figure 7 shows that the highest correlation of XCO2 (up to 0.98) 
between GEOS-Chem and CT2013B is found in MAM, with an average bias of −0.59 ppm, while the 
poorest correlation also reached approximately 0.93 in SON, with the smallest average bias of −0.37 
ppm. The XCO2 from these two models show very good correlation for each season on the whole, 
but remarkably overestimated XCO2 for GEOS-Chem (more than 6 ppm) are found in Figure 7b, 
which mainly located at high latitude of the NH as shown in Figure 5. 

  

Figure 7. Scatter plots of XCO2 from CarbonTracker (CT2013B) versus that of GEOS-Chem during 
March 2010–February 2011. (a)–(d) indicate MAM, JJA, SON and DJF respectively. Unit: ppm. 

Figure 8 shows that there is good agreement among GEOS-Chem, CT2013B and CT2016 with 
regard to the seasonal cycle of monthly averaged XCO2 during 2009–2011. As presented in Table 1, 
both GEOS-Chem and CT2013B use CASA biospheric flux (GFED3 or GFED2) as their input surface 
flux. Lindqvist et al. [29] reported that biospheric flux is closely connected to seasonal cycle of CO2. 
Nearly identical time series variation of XCO2 in JJA and SON in Figure 8 between GEOS-Chem and 
CT2013B are probably influenced by similar biospheric flux components. This result was also 
reported by Lindqvist et al. [23]. However, CT2013B Document [59] have found that the newer 
CASA-GFEDv3 product has a smaller seasonal cycle than the older CASA-GFEDv2. Compared with 

Figure 6. The spatial distribution of CT2013B assimilated observational network (source:
CarbonTracker website).

The seasonal correlation in Figure 7 shows that the highest correlation of XCO2 (up to 0.98)
between GEOS-Chem and CT2013B is found in MAM, with an average bias of −0.59 ppm, while the
poorest correlation also reached approximately 0.93 in SON, with the smallest average bias of
−0.37 ppm. The XCO2 from these two models show very good correlation for each season on the
whole, but remarkably overestimated XCO2 for GEOS-Chem (more than 6 ppm) are found in Figure 7b,
which mainly located at high latitude of the NH as shown in Figure 5.
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March 2010–February 2011. (a)–(d) indicate MAM, JJA, SON and DJF respectively. Unit: ppm.

Figure 8 shows that there is good agreement among GEOS-Chem, CT2013B and CT2016 with
regard to the seasonal cycle of monthly averaged XCO2 during 2009–2011. As presented in Table 1,
both GEOS-Chem and CT2013B use CASA biospheric flux (GFED3 or GFED2) as their input surface
flux. Lindqvist et al. [29] reported that biospheric flux is closely connected to seasonal cycle of CO2.
Nearly identical time series variation of XCO2 in JJA and SON in Figure 8 between GEOS-Chem and
CT2013B are probably influenced by similar biospheric flux components. This result was also reported
by Lindqvist et al. [23]. However, CT2013B Document [59] have found that the newer CASA-GFEDv3
product has a smaller seasonal cycle than the older CASA-GFEDv2. Compared with the time series of
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CT2013B, the global XCO2 simulated from GEOS-Chem were slightly underestimated on the whole,
which may be due to the newer CASA-GFEDv3 biospheric flux used in GEOS-Chem, as well as
different transport models or the assimilation of observation data (e.g., GLOBALVIEW data) from
CT2013B. Furthermore, the CT2013B show nearly identical variation with the CT2016 due to their
similar input surface fluxes and transport models (shown in Table 1). However, due to the difference
of biospheric flux version, their seasonal cycle shows a little discrepancies in JJA.
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CT2013B. Unit: ppmv.

For standard deviation, most of the monthly averaged XCO2 from CT2013B shows a slightly
larger discrete variation than the GEOS-Chem model. The larger discrete variation in CT2013B may be
due to different transport models, as well as the assimilation of observation data (e.g., GLOBALVIEW
data) in the CT2013B.

4.3. Comparison with TCCON XCO2 Measurements

To further validate the GEOS-Chem CO2 simulations, ground-based TCCON measurements
during 2009–2011 were used in this study. Since TCCON measurements were XCO2 observations,
the model-simulated CO2 profiles need to be first sampled at the location of TCCON observation
and integrated to XCO2 by using the TCCON averaging kernels and a priori profiles as described
in Section 3. The ground-based XCO2 retrievals from fourteen TCCON sites were compared to the
modeled CO2 from GEOS-Chem at around 13:00 ± 2 h local time.

The comparison result in Figure 9 shows that evident time series variations of XCO2 from
the GEOS-Chem model and TCCON sites are observed in the NH sites, e.g., Bialystok, Lamont,
Park Falls, Garmisch, and Orleans. No obviously seasonal variations were found in Wollongong,
Darwin and Lauder sites of the SH. The XCO2 comparisons in Figure 10 and Table 3 reveal that
the model bias at most sites is within ±1.0 ppm, except at Eureka (−1.2 ppm). The model bias is
relatively smaller in the SH sites (<0.5 ppm) than those in the NH sites (<1.2 ppm). However, relative to
GOSAT/ACOS, the model bias is a litter larger in the SH than that in the NH. The result in Figure 10a
and Table 3 also indicates that modeled XCO2 from GEOS-Chem are underestimated at most sites,
which shows good agreement with the result from comparison with CT2013B. Other studies also
reported the underestimated effect of XCO2 in model simulation (e.g., ACTM, TM5 models) [20,66].
However, overestimated XCO2 from GEOS-Chem are found at some sites, including Garmisch
(+0.79 ppm), Karlsruhe (+0.03 ppm), Sodankylä (+0.68 ppm) and Ny-Ålesund(+0.37 ppm). As for
Garmisch, complex geographical terrain (valleys) at station probably result in model overestimation.
For Sodankylä and Ny-Ålesund sites in the far north, model overestimation of CO2 is likely caused
by atmospheric transport and local fluxes that has been discussed in Section 4.2 This result is also
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similar to the performance of the NIES TM model, which shows a larger bias (+1.22 ppm) for XCO2

over Sodankylä [67].
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Table 3. Statistics of number of XCO2 data (N) at TCCON sites, averaged XCO2, correlation coefficient
(R), averaged bias (Bias) and root-mean-square error (RMSE) between GEOS-Chem (G-C) and TCCON
during 2009–2011.

Sites N TCCON G-C R Bias RMSE

Lauder (45.04◦ S,169.68◦ E) 28,453 387.04 386.96 0.92 −0.03 0.57
Wollongong(34.41◦ S, 150.88◦ E) 12,546 386.66 386.48 0.83 −0.18 0.98

Darwin (12.42◦ S, 130.89◦ E) 9451 386.78 386.66 0.95 −0.12 0.66
Izaña (28.3◦ N, 16.5◦ W) 4024 389.61 389.34 0.94 −0.27 0.65

Lamont (36.61◦ N,97.49◦ W) 41,176 388.79 387.91 0.90 −0.90 1.32
Park Falls (45.95◦ N, 90.27◦ W) 19,857 388.05 387.83 0.93 −0.22 1.31
Garmisch (47.48◦ N, 11.06◦ E) 7714 388.39 389.16 0.87 0.79 1.47

Orleans (47.97◦ N, 2.11◦ E) 6934 388.30 388.13 0.90 −0.16 1.13
Karlsruhe (49.1◦ N, 8.4◦ E) 620 389.55 389.57 0.91 0.03 1.28
Bremen (53.10◦ N,8.85◦ E) 3447 388.42 388.29 0.93 −0.14 1.36

Bialystok (53.23◦ N,23.03◦ E) 11,933 388.41 388.09 0.95 −0.33 1.48
Sodankylä (67.37◦ N, 26.63◦ E) 16,936 386.68 387.35 0.97 0.68 1.53

Ny-Ålesund (78.92◦ N, 11.92◦ E) 857 387.76 388.13 0.92 0.37 2.21
Eureka (80.1◦ N, 86.4◦ W) 698 389.14 387.92 0.90 −1.23 1.86

As presented in Table 3, XCO2 from GEOS-Chem show strong correlation with the TCCON data
(R > 0.83), indicating a good representation of transport and fluxes in GEOS-Chem for simulated CO2.
However, in the far north (Eureka and Sodankylä, Finland), the result show good correlation (R > 0.9)
but the model bias is relatively high (>0.5 ppm), which is probably caused by atmospheric transport
and local flux in high latitude of the NH. From Figure 10b and Table 3, the root-mean-square error
(RMSE) also show small differences between GEOS-Chem and TCCON sites, with the largest RMSE
(2.21 ppm) at the Ny-Ålesund site located in the far north. The RMSE is somewhat smaller at the SH
stations than most of the NH sites, except Izaña site.

Seasonal biases can affect the seasonal cycle amplitude, and the seasonal cycle is important
for biospheric flux attribution [68]. From Figure 11, in MAM and DJF, the modeled XCO2 from
GEOS-Chem are underestimated at most sites, except Garmisch and Izaña. However, similar to
Figure 10 and Table 3, the overestimated XCO2 occurred at the sites of high latitude of the NH in JJA,
especially overestimated seasonal bias more than 1 ppm found at Sodankylä and Ny-Ålesund sites.
This comparison result is also consistent with that of GOSAT/ACOS as well as CT2013B and probably
related to transport model and local flux in GEOS-Chem.
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The seasonal cycle of XCO2 is closely related to the biospheric fluxes that determine the global
terrestrial net CO2 sinks [23]. To compare the seasonal cycle of XCO2 from GEOS-Chem and TCCON
sites, we use the NOAA fitting software CCGCRV [69] to statistically fit the seasonal cycle and yearly
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growth of XCO2. Constrained by short time series or large data gaps, only seven sites in the NH
are used to extract the seasonal cycle of XCO2 in this study. It is noted that the detrended seasonal
cycle is calculated by removing the long-term trends of XCO2. From Figure 12, the seasonal cycles
in GEOS-Chem XCO2 are in good agreement with those of TCCON sites, for example, no apparent
mismatches found at the Garmisch, Park Falls and Lamont sites. However, seasonal cycle amplitudes
of XCO2 are obviously underestimated by GEOS-Chem at some sites, such as Bialystok, Bremen and
Sodankylä sites, which may be due to the biospheric fluxes or transport in model. The result also shows
consistency with previous studies, reporting an underestimation of XCO2 peak-to trough amplitudes in
models [23,66]. From Table 4, the average yearly growth rate varies from 1.90 ppm year−1 to 2.37 ppm
year−1 for GEOS-Chem and TCCON measurements during 2009–2011. The GEOS-Chem model shows
a lower XCO2 growth rate than those of TCCON sites.
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Table 4. Comparison of the seasonal cycle amplitude and yearly growth rate between XCO2 of
GEOS-Chem and TCCON sites. Sites included Izaña, Lamont, Park Falls, Garmisch, Bremen, Bialystok,
and Sodankylä.

Sites Amplitude (ppm) Growth Rate
(ppm year−1) Period

Izaña TCCON
GEOS

5.29
4.96

2.24
2.01 Jan/2009–Dec/2011

Lamont TCCON
GEOS

6.52
6.35

2.37
2.09 Jan/2009–Dec/2011

Park Falls TCCON
GEOS

8.56
8.62

2.13
1.96 Jan/2009–Dec/2011

Garmisch TCCON
GEOS

6.9
7.1

1.89
1.82 Sep/2009–Dec/2011

Bremen TCCON
GEOS

8.8
6.9

2.29
1.91 Jan/2009–Dec/2011

Bialystok TCCON
GEOS

8.1
6.3

2.28
1.90 Mar/2009–Sep/2011

Sodankylä TCCON
GEOS

9.01
7.37

2.22
1.91 May/2009–Oct/2011

We also investigate mean bias, RMSE and correlation coefficients between TCCON sites and
GEOS-Chem as well as GOSAT/ACOS during April 2009–December 2011. Considering of CO2

data availability at TCCON sites, only 9 TCCON sites including Bialystok, Bremen, Darwin,
Garmisch, Lauder, Lamont, Orleans, Park Falls and Wollongong are used in this section. Similar
to Cogan et al. [26], the averaging kernel and a priori have not been adopted in comparison between
GOSAT/ACOS and TCCON sites, but they are used when comparing modeled CO2 from GEOS-Chem
with TCCON sites.

As shown by Figure 13, the overall correlations between XCO2 from GEOS-Chem as well as
GOSAT/ACOS and 9 TCCON sites are 0.93 and 0.74 respectively. The mean biases of XCO2 is
−0.06 ppm between GEOS-Chem and TCCON sites, and −0.2 ppm between GOSAT/ACOS and
TCCON sites, and their RMSE is 1.19 ppm and 2.05 ppm respectively. The result show that the
modeled XCO2 from GEOS-Chem is underestimated on the whole by comparison with TCCON
sites. Also, the result also indicate that XCO2 retrievals from GOSAT/ACOSv7.3 show somewhat
underestimated effect by comparison with TCCON sites, which may be due to retrieval errors or
instrument issue of the GOSAT [23,26,68]. These results show good consistency with Section 4 and
Cogan et al. [26].
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Figure 13. The scatter plot of XCO2 between GEOS-Chem as well as GOSAT/ACOS and 9 TCCON
sites during April 2009–December 2011. (a) The scatter plot between XCO2 from GEOS-Chem and
XCO2 from TCCON sites; (b) The scatter plot between XCO2 from GOSAT/ACOS and XCO2 from
TCCON sites.
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5. Discussion

In this study, the comparison method mainly considered the averaging kernels among different
CO2 data according to Wunch et al. [28]. While horizontal CO2 variability and differences in spatial
support should be also considered in the future due to their impact in inter-comparison between
different remote sensing observations [70]. For example, TCCON provide XCO2 observations at
a point location, and GOSAT/ACOS observation represents an average XCO2 within the footprint
10.5 km in diameter [70]. The differences in spatial support may introduce another uncertainties
when directly comparing between model results and observations [70]. Tadić and Michalak reported
that different spatial support can lead to differences exceeding 0.5 ppm even for co-located CO2

observations [70]. To roughly estimate the uncertainty raised from the spatial support, we compared
the differences between the XCO2 of GOSAT/ACOS (or TCCON sites) and the spatially averaged
XCO2 of GOSAT/ACOS (or TCCON sites) in a 2◦ × 2.5◦ grid which is in line with the horizontal
resolution of GEOS-Chem CO2 results.

From Figure 14, the differences (standard deviation) between GOSAT/ACOS XCO2 observations
and the corresponding averaged XCO2 (at a 2◦ × 2.5◦ grid) ranged from 0–0.3 ppm and mostly
distributed at 0–0.05 ppm. To some extent, these differences can be deemed as the impact of spatial
support. To further understand the impact of averaged XCO2 at 2◦ × 2.5◦ grids, we recalculated
the correlation, averaged bias and RMSE between GOSAT/ACOS and GEOS-Chem at GOSAT
footprint scale (using averaging kernels but no spatial support was considered) and 2◦ × 2.5◦ scales
(using averaging kernels and then calculating the average), respectively, using data of 2010 on the
global land. Table 5 shows that the correlation (R) is less affected by the effect of spatial support,
while the mean bias and RMSE can be impacted by different spatial support.
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the corresponding averaged XCO2 at 2◦ × 2.5◦ grids on the global land in 2010.

Table 5. Comparison between XCO2 from GEOS-Chem and GOSAT/ACOS in 2010. It is noted that
comparison of averaged XCO2 between GEOS-Chem and GOSAT/ACOS observations at 2◦ × 2.5◦

grids was conducted after using averaging kernels.

XCO2 R Bias RMSE

GEOS-Chem-ACOS
(using averaging kernels and NO average) 0.54 0.52 2.08

GEOS-Chem-ACOS
(using averaging kernels and then averaged) 0.53 0.38 1.83

Similarly, 14 TCCON sites were also used to estimate the uncertainties of the spatial support
and they include Lamont, Park Falls, Bialystok, Orleans, Garmisch, Bremen, Sodankylä, Ny-Ålesund,
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Izaña, Eureka, Karlsruhe, Wollongong, Darwin, Lauder. From Figure 15, the differences (standard
deviation) between XCO2 at 14 TCCON sites and averaged XCO2 at 2◦ × 2.5◦ grids mainly ranged
from 0–1.4 ppm and mostly distributed at 0–0.1 ppm. This result indicates that different spatial support
may bring relatively large uncertainties when directly comparing TCCON sites and GEOS-Chem.
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Figure 15. The frequency histogram of differences (standard deviations) between TCCON XCO2 (14
sites) and the corresponding averaged XCO2 in 2010 at 2◦ × 2.5◦ grids.

Also, the correlation, averaged bias and RMSE between XCO2 from TCCON sites and GEOS-Chem
in 2010 (Figure 16 and Table 6) were also calculated, which is similar to that of GOSAT/ACOS and
GEOS-Chem. Similar to the comparison between GEOS-Chem and GOSAT, from Figure 16 and Table 6,
we can see that the correlation is not affected by the spatial support, while the bias and RMSE is
slightly affected.
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Table 6. Comparison between XCO2 from GEOS-Chem and TCCON sites in 2010.

XCO2 R Bias RMSE

GEOS-Chem-TCCON
(using averaging kernels and no average) 0.87 −0.41 1.06

GEOS-Chem-TCCON
(using averaging kernels and average) 0.87 −0.40 1.17

By comparing Figures 14 and 15, it is revealed that the impact of spatial support is more obvious
for TCCON sites than that of GOSAT/ACOS measurements when comparing with GEOS-Chem
results. This may be due to the spatial support of GOSAT/ACOS is more close to that of GEOS-Chem
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than TCCON. Furthermore, the correlation analysis between GEOS-Chem and TCCON sites
(or GOSAT/ACOS) indicates that the spatial support has no obvious effect on the correlation coefficient.
However, the mean bias and RMSE is indeed influenced by spatial support. Therefore, the uncertainties
from spatial support should be pay enough attention in the future, especially for comparison with
TCCON XCO2 point observations.

6. Conclusions

Global atmospheric CO2 concentrations were effectively simulated by a global 3-D chemical
transport model (GEOS-Chem) during the years of 2009–2011 and compared with XCO2 data from
the GOSAT satellite, CarbonTracker CO2 modeling system and TCCON measurements in this study.
The results indicate that the modeled XCO2 from GEOS-Chem shows overall good consistency with
GOSAT/ACOSv7.3, CarbonTracker, but the GEOS-Chem model overestimates XCO2 values compared
with the GOSAT/ACOSv7.3 XCO2 retrievals at most regions, particularly in the SH and the high
latitude of the NH.

The results also show that the monthly averaged XCO2 of GEOS-Chem generally underestimate
XCO2 as compared to CarbonTracker, although they have a similar seasonal cycle. The discrepancies
between the two models may be originated from a different transport model or the assimilation of
observation in CarbonTracker. However, obvious overestimated XCO2 from GEOS-Chem was found
at the high latitudes of the Northern Hemisphere in JJA as compared with CarbonTracker or TCCON
sites, which indicates that large uncertainties in GEOS-Chem over these regions probably because of
the influences of atmospheric transport model and local flux. This phenomenon has been also reflected
by comparison with GOSAT/ACOS.

Overall, although the simulated CO2 from GEOS-Chem are in a good agreement with the
GOSAT/ACOS retrievals, CarbonTracker and TCCON measurements, the discrepancies between
them are considerable, e.g., the underestimation effect of XCO2 in GEOS-Chem model, probably due to
lack of constraints from measurements and affected by prior biosphere flux in model. Also, the obvious
overestimated XCO2 in the high latitude of the NH in JJA is needed to be concerned. Future work
will need to assimilate observation data, e.g., GOSAT/ACOS or OCO-2, into the GEOS-Chem
model to further optimize the CO2 fluxes. These comparisons and analysis also indicated that
GOSAT/ACOSv7.3 retrievals could underestimate the XCO2. The uncertainties in satellite observations
are necessary to quantify for further estimations of their assimilation into model systems. Furthermore,
the uncertainties from spatial support should be carefully considered when inter-comparison among
different observations and models.
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