
atmosphere

Article

Combined Effects of Synoptic-Scale Teleconnection
Patterns on Summer Precipitation in Southern China

Chao Wang 1,2 and Lijuan Wang 1,*
1 Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research

Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and
Evaluation of Meteorological Disasters (CIC-FEMD)/Science and Technology Innovation Team on Climate
Simulation and Forecast, Nanjing University of Information Science & Technology, Nanjing 210044, China;
wangchao19900615@163.com

2 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
* Correspondence: wljfw@163.com; Tel.: +86-025-5873-1186

Received: 2 March 2018; Accepted: 16 April 2018; Published: 19 April 2018
����������
�������

Abstract: Using ERA-Interim daily reanalysis and precipitation data, the combined effects of East
Asia-Pacific (EAP) and Silk Road (SR) teleconnection patterns on summer precipitation in Southern
China were investigated on synoptic to sub-monthly timescales. Combined EAP and SR patterns
lead to more persistent and extreme precipitation in the Yangtze River Valley (YRV) and exhibit an
obvious zonal advance between the South Asia High (SAH) and Western Pacific Subtropical High
(WPSH) prior to its onset. During typical combined events, an overlap between the SAH and WPSH
remains in a favorable position for Persistent Extreme Precipitation (PEP). Furthermore, SR-induced
acceleration of the westerly jet stream and extra positive vorticity advection provide persistent
upper-level divergence for YRV precipitation. An anomalous EAP-related cyclone/anticyclone pair
over East Asia induces enhanced low-level southwesterlies to the northern anticyclone flank and
northerlies from the mid-latitudes, advecting anomalously abundant moisture toward the YRV,
resulting in clear moisture convergence. Moreover, the strong ascent of warmer/moister air along
a quasi-stationary front may be crucial for PEP. During decay, the SAH and WPSH diverge from
each other and retreat to their normal positions, and the strong ascent of warmer/moister air rapidly
weakens to dissipation, terminating PEP in the YRV.
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1. Introduction

Variations of East Asian summer monsoon circulation are particularly complicated, owing to
the existence and persistence of summer teleconnection patterns, including the well-known East
Asia-Pacific (EAP)/Pacific-Japan (PJ) and Silk Road (SR) teleconnection patterns, recognized as the
most dominant modes and most influential teleconnection patterns of the boreal summer [1,2].

The EAP teleconnection pattern tends to be confined and propagates northward along the East
Asian coast in both the lower and middle troposphere, with the poleward propagation of Rossby waves
triggered by anomalous cumulus convection over the western Pacific warm pool [3,4]. This meridional
pattern reflects three key systems: the Okhotsk high, the Mei-Yu front, and the Western Pacific
Subtropical High (WPSH) [5]. The other teleconnection trapped along the upper-level westerly
jet, spanning the Eurasian continent along approximately 40◦ N, is the so-called SR teleconnection
pattern, which tends to be geographically fixed and has the characteristics of a stationary Rossby wave
train [6–8]. Ding and Wang [8,9] argued that this zonal pattern can be viewed as part of a circumglobal
teleconnection pattern in the mid-latitude circulation of the Northern Hemisphere.
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In addition, these two major patterns exert substantial influence on the East Asian summer
monsoon circulation [3,10]. Circulation anomalies related to positive (negative) phases of the EAP
pattern lead to summer floods (droughts) in Southern China [11,12]. Subsequently, various studies
have considered the EAP pattern as an effective predictor of climate anomalies, focusing on its influence
on the East Asian summer monsoon climate on inter-annual to inter-decadal timescales [12,13]. On the
other hand, the SR pattern contributes to the formation of the Bonin high, the WPSH, and the Mei-Yu
front, influencing the precipitation around the Asian jet regions [6,14,15]. The positive (negative) phases
of the SR pattern can trigger upper-level cyclonic (anticyclonic) anomalies and strong divergence
(convergence) in the mid-latitudes over East Asia, with more (less) rainfall in Southern China [16].
Subsequent studies have indicated that this circumglobal pattern can significantly affect climate and
weather over a broad area, including but not limited to East Asia and the latitudes of the Asian jet
stream. For example, it may also induce precipitation anomalies over Europe, Japan, Northern China,
and the Indian Monsoon regions [16–19].

Recently, many studies have emphasized the coexistence and interaction of the EAP and SR
patterns in summertime by analyzing monthly fields [20,21]. On the one hand, the SR pattern can
enhance anomalous ascent and trigger convective activity around the Philippine Sea, forcing the
EAP pattern. With the favorable configuration of the Asian jet, the wave energy propagation related
to the SR pattern can stimulate anticyclonic disturbances over mid-latitude East Asia, favoring the
preservation of the EAP pattern [21]. On the other hand, their interaction tends to induce more
extreme climate and weather events over East Asia. Ogasawara and Kawamura [22] indicated that
this combination leads to more extreme hot/cold events near Japan than a single teleconnection
pattern. In particular, concurrent behavior between them plays an important role in affecting the
inter-annual variability of East Asian summer precipitation. Hsu and Lin [23] noted that the EAP and
SR patterns result in different precipitation patterns along the East Asian coast, and Kosaka et al. [24]
highlighted the relationship between summer Mei-Yu-baiu precipitation anomalies and these two key
teleconnection patterns on inter-annual timescales.

According to these previous studies, such a combination may result in extraordinary anomalous
features of the East Asian summer monsoon circulation. This study aims to explore the effects of the
combined EAP and SR patterns on summer precipitation in Southern China. EAP-related precipitation
over Southern China mainly occurs in the positive phase of the EAP (EAP+) pattern [25]. However, less
precipitation related to the negative phase over the eastern coastal region of China may be triggered
by tropical cyclones/typhoons and their remnants over the western North Pacific [26]. Mechanisms of
typhoon-induced precipitation are very complicated, with few similarities between individual cases,
so they are not discussed in this study. In addition, during EAP-related precipitation events, the SR
pattern (SR+) generally tends to be in the positive phase [27,28]. Thus, the EAP and SR teleconnection
patterns refer to EAP+ and SR+ patterns in this study.

Although some attention has been paid to the coexistence and concurrent behavior of the EAP
and SR teleconnection patterns on inter-annual to inter-decadal timescales [20,22–24], the combined
effects or influences of these two key patterns on summer precipitation in Southern China on synoptic
to sub-monthly timescales have rarely been reported. The distinction of the climate effects on summer
rainfall between combined and single patterns cases are also worth exploring. This work attempts to
explore the following issues. Firstly, do EAP+ and SR+ patterns coexist invariably? Secondly, how
do the effects of the combined and single patterns on summer precipitation in Southern China differ?
Thirdly, how does the combination influence rainfall? The rest of the paper is arranged as follows:
Section 2 describes the data and methods; Section 3 introduces the definition of typical combined
and single patterns; Section 4 investigates combined and separate effects on summer precipitation in
Southern China; and Section 5 summarizes the key conclusions.
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2. Data and Methods

2.1. Data

Daily meteorological datasets derived from the European Centre for Medium-Range Weather
Forecast (ECMWF) Re-Analysis (ERA-Interim) during 1979–2015 were used in this study, including
geopotential height (gpm), horizontal wind (m s−1), air temperature (K), specific humidity (g kg−1),
and vertical p-velocity (Pa s−1), with a horizontal resolution of 2.5◦ × 2.5◦ and 17 regular vertical
pressure levels [29,30]. This observational dataset is available online at https://www.ecmwf.int/.
The months of June to August (JJA), 1979–2015, were selected as the study period.

Also employed were daily precipitation data obtained from China’s Ground Precipitation
0.5◦ × 0.5◦ Gridded Dataset (version 2.0) covering the land areas of China for the same period,
which is produced by the National Meteorological Information Center of China (Available online:
http://cdc.cma.gov.cn/) [31]. Particularly, data is not available for the islands in the South
China Sea and Taiwan at this time. Based on the daily precipitation records of 2472 national
meteorological stations, the spatial interpolation method of thin-plate spline was used to generate
gridded precipitation data and eliminate the effects of topography, thus ensuring that the spatial
distribution of interpolated precipitation is very close to that of the actual precipitation [32].

2.2. Methods

The main statistical tools used in this study included composite analysis and the ordinary
Student’s t-test. Only the results of the composite analysis satisfying the criteria to at least the
0.05 level were deemed statistically significant. According to the suggestion of Grumm and Hart [33],
a 21-day binominal filter (10 days on either side of a specific day) was first applied to the daily
data, which is an effective method for identifying typical synoptic to sub-monthly scale circulation
patterns [25], aiming to highlight the daily variability of each variable. Secondly, based on the period
of 1979–2015, the daily climatological mean value and standard deviation (σ) of each variable were
calculated using the above smoothed daily data. Compared with using unsmoothed single-day values,
the climatological mean value and standard deviation appear more stable. Finally, the normalized
anomaly of a variable on a specific day was calculated as follows: the corresponding climatological
daily mean was first subtracted to retain the majority of the synoptic signal, and the value was divided
by the corresponding climatological daily standard deviation.

Based on the daily data, the indices of the EAP and SR teleconnection patterns (referred to as the
EAPI and SRI, respectively) on synoptic to sub-monthly timescales were defined as follows [20]:

EAPI = [Z∗500(125◦ E, 20◦ N)− Z∗500(130◦ E, 37.5◦ N) + Z∗500(130◦ E, 62.5◦ N)]/3 (1)

SRI = [Z∗200(65◦ E, 40◦ N)− Z∗200(100◦ E, 40◦ N) + Z∗200(130◦ E, 40◦ N)]/3 (2)

where Z∗200 and Z∗500 indicate the 200 hPa and 500 hPa normalized geopotential height anomalies,
respectively. The atmospheric diabatic heating rate (Q) was estimated by the apparent heat source
calculated according to the widely-used scheme deduced by Yanai et al. [34], which takes the form of:

Q = cp

[
∂T
∂t

+
→
V · ∇hT +

(
p
p0

)R/cp

ω
∂θ

∂p

]
(3)

where cp, T, and R denote the specific heat of dry air at constant pressure, air temperature, and the

gas constant for dry air, respectively, p0 = 1000 hPa,
→
V is the horizontal vector winds, θ the potential

temperature, ω the vertical p-velocity, p the pressure, and ∇ is the isobaric gradient operator.

https://www.ecmwf.int/
http://cdc.cma.gov.cn/
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3. Combined Effects of Teleconnection Patterns on Summer Precipitation in Southern China

Both the EAP and SR teleconnection patterns are dominant modes in the boreal summer [2].
This study aims to investigate and distinguish the separate and combined effects of these two key
teleconnection patterns on precipitation in Southern China. Based on the EAPI and SRI, the typical
single EAP, single SR, and combined EAP/SR patterns are first defined and identified (for simplicity,
these will be referred to as EAP-S, SR-S and EAP/SR-C patterns, respectively).

3.1. Definition and Identification of Typical Events

Typical examples of single and combined patterns are extracted by the EAPI and SRI.
For convenience, day 0 denotes the start date of the typical events, and day (n) represents the
day prior to (negative) and after (positive) the start date in this study.

A typical EAP-S (SR-S) event must meet the following three criteria simultaneously: (1) the value
of EAPI (SRI) must be greater than +1.0σ (less than −1.0σ) for at least three consecutive days; (2) the
value of SRI (EAPI) should be greater than −0.5σ (less than +0.5σ) and less than +0.5σ (greater than
−0.5σ) during the specific event; and (3) the 500 hPa (200 hPa) height anomalies corresponding to the
three basic anomaly centers in Equation (1). (Equation (2)) should be distributed as ‘+, −, +’ (‘−, +,
−’). Moreover, the criteria of the typical EAP/SR-C events include the following: (1) the EAPI must be
greater than +1.0σ for at least three consecutive days and the SRI must be less than −1.0σ for at least
three days during the specific event; and (2) the 500 hPa (200 hPa) height anomalies corresponding to
the three anomaly centers in Equation (1). (Equation (2)) should be arranged as ‘+, −, +’ (‘−, +, −’).

Based on the above criteria, typical EAP-S, SR-S, and EAP/SR-C events will be identified for
investigating the effects on summer extreme precipitation in Southern China. Extreme precipitation
of at least three days’ duration is usually associated with long-lived anomalies in the large-scale
circulation patterns [35]. To ensure an adequate sample size of identified cases, relaxed threshold of
duration is necessary for identification [36]. Considering the relatively short persistence of extreme
precipitation periods in Southern China, three consecutive days are therefore adopted as the minimum
duration [25]. Relatively larger thresholds of duration (for example, five consecutive days) would lead
to fewer samples of typical events. Besides, the threshold of three consecutive days has widely been
accepted as the typical duration in previous studies [25,28].

The numbers of the typical EAP-S, SR-S, and EAP/SR-C events obtained from the daily indices
are 17, 11, and 21, respectively. The year, start date, and end date of the identified typical events
are displayed in Table 1. The results show that EAP/SR-C events prevail most frequently during
early to mid-summer, but both EAP-S and SR-S events tend to be more significant during mid-to-late
summer. In addition, identification of typical SR-S events indicates that Silk Road teleconnection
patterns can exist and persist alone without the occurrence of EAP teleconnection patterns on synoptic
to sub-monthly timescales. This means that the EAP and SR patterns do not coexist invariably.
Of particular note is that the EAP/SR-C events tend to occur more frequently than both the EAP-S
and SR-S events. As previously reported [24,25], the EAP teleconnection pattern and SR teleconnection
pattern usually coexist in boreal summer, especially in June and July, which seems to confirm our
finding. In fact, the relatively small sample size of single events may be attributed to the strict selection
criteria of typical single events, aiming to eliminate the influence from the other pattern thoroughly.
For example, it is possible that in some cases of identifying the EAP-S events, though EAP pattern
appears and persists for at least three consecutive days, but the intensity of SR pattern fails to satisfy
the criteria of ‘a typical EAP-S event’, a daily SRI reaching −0.5σ or less during this period. However,
the adoption of −1.0σ would yield large sample size (about 35).

Composite indices and the horizontal structures of EAP-S, SR-S, and EAP/SR-C patterns are
displayed in Figure 1. The results show that the EAP/SR-C events are simultaneously characterized
by an anomalous north-south well-organized EAP pattern with an EAPI of more than +1.0σ, and an
upper-level SR pattern along the Asian jet stream with a SRI of less than −1.0σ in the zonal direction
(Figure 1a). In contrast, the combination tends to persist for a longer period (from day 0 to day 7) than
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single events (from day 0 to day 4). This implies that the interaction and coexistence between EAP and
SR patterns may favor their own development and persistence [25].

Table 1. The years, start dates, and end dates of single EAP (EAP-S), single SR (SR-S), and combined
EAP and SR (EAP/SR-C) events.

No.
EAP-S SR-S EAP/SR-C

Year Start Date End Date Year Start Date End Date Year Start Date End Date

1 1979 2 July 4 July 1982 7 July 9 July 1979 8 June 11 June
2 1980 24 July 31 July 1985 29 June 1 July 1982 24 June 28 June
3 1980 13 August 15 August 1990 10 June 14 June 1983 5 July 10 July
4 1982 18 July 24 July 1992 8 August 13 August 1985 11 June 13 June
5 1983 27 June 30 June 1994 11 June 17 June 1987 9 June 16 June
6 1986 6 July 9 July 1997 11 June 15 June 1988 16 June 19 June
7 1991 4 July 10 July 1997 4 August 6 August 1989 16 June 21 June
8 1993 14 July 21 July 2000 18 July 20 July 1991 19 June 25 June
9 1998 19 July 1 August 2002 7 July 17 July 1992 7 June 19 June

10 1998 24 August 31 August 2005 10 June 21 June 1993 2 June 5 June
11 1999 14 July 18 July 2009 23 August 25 August 1995 23 June 28 June
12 2011 21 August 23 August 2010 22 June 24 June 1996 17 June 20 June
13 2012 10 July 14 July 2013 16 June 20 June 1998 9 June 18 June
14 2014 11 July 16 July - - - 1999 18 June 20 June
15 2014 10 August 12 August - - - 2000 6 June 11 June
16 2015 10 June 13 June - - - 2002 12 June 18 June
17 2015 30 June 3 July - - - 2006 8 June 16 June
18 - - - - - - 2009 10 June 17 June
19 - - - - - - 2010 5 July 12 July
20 - - - - - - 2012 8 June 13 June
21 - - - - - - 2014 9 June 16 June
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Figure 1. Composite indices of (a) EAP/SR-C; (b) EAP-S; and (c) SR-S patterns. The numbers of 
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anomalies at 200 hPa (contours are from −120 dagpm to 120 dagpm with interval of 20 dagpm) of (d) 

Figure 1. Composite indices of (a) EAP/SR-C; (b) EAP-S; and (c) SR-S patterns. The numbers
of X-coordinates represent the days leading (negative) and lagging (positive) the start date.
Composite averaged normalized height anomalies at 500 hPa (shading) and averaged geopotential
height anomalies at 200 hPa (contours are from −120 dagpm to 120 dagpm with interval of 20 dagpm)
of (d) EAP/SR-C; (e) EAP-S; and (f) SR-S patterns. The dotted filled shadings denote that normalized
height anomalies are statistically significant at the 0.05 level.
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Both wave trains can be clearly identified in the composite distribution of height anomalies at 500
hPa and 200 hPa (Figure 1d). A marked mid-latitude negative height anomaly centered from the coastal
areas of eastern China to Japan can be detected in these three different patterns. Notably, enhanced and
zonally-elongated negative height anomalies occur during EAP/SR-C events, which may be considered
an overlap between the EAP and SR teleconnection patterns on synoptic to sub-monthly timescales.

3.2. Spatial Distribution of Precipitation in Southern China

Teleconnection patterns have a tremendous influence on summer rainfall in Southern China [11,
16]. Using the identified typical cases, their different effects on precipitation in Southern China are
investigated in this section. Figure 2 shows the spatial distribution of accumulated precipitation in
Southern China during typical EAP-S, SR-S, and EAP/SR-C events. The results reveal very different
intensities and locations of accumulated precipitation. For typical EAP/SR-C events, accumulated
precipitation of more than 200 mm can be observed in the Yangtze River Valley (YRV, 114–120◦ E,
25–30◦ N), which is significantly higher than for the EAP-S and SR-S events. Typical EAP-S events
are characterized by intense precipitation centered in the Yangtze-Huai River Valley (YHRV, 114–120◦

E, 28–33◦ N), with accumulated precipitation of more than 150 mm (Figure 2b). As for SR-S events,
accumulated precipitation of more than 100 mm is predominantly located in the coastal areas of
southeast China (Figure 2c), with less rainfall in the YHRV and YRV.

Atmosphere 2018, 9, x FOR PEER REVIEW  6 of 20 

 

EAP/SR-C; (e) EAP-S; and (f) SR-S patterns. The dotted filled shadings denote that normalized height 

anomalies are statistically significant at the 0.05 level. 

Both wave trains can be clearly identified in the composite distribution of height anomalies at 

500 hPa and 200 hPa (Figure 1d). A marked mid-latitude negative height anomaly centered from the 

coastal areas of eastern China to Japan can be detected in these three different patterns. Notably, 

enhanced and zonally-elongated negative height anomalies occur during EAP/SR-C events, which 

may be considered an overlap between the EAP and SR teleconnection patterns on synoptic to 

sub-monthly timescales.  

3.2. Spatial Distribution of Precipitation in Southern China 

Teleconnection patterns have a tremendous influence on summer rainfall in Southern China 

[11,16]. Using the identified typical cases, their different effects on precipitation in Southern China 

are investigated in this section. Figure 2 shows the spatial distribution of accumulated precipitation 

in Southern China during typical EAP-S, SR-S, and EAP/SR-C events. The results reveal very 

different intensities and locations of accumulated precipitation. For typical EAP/SR-C events, 

accumulated precipitation of more than 200 mm can be observed in the Yangtze River Valley (YRV, 

114–120° E, 25–30° N), which is significantly higher than for the EAP-S and SR-S events. Typical 

EAP-S events are characterized by intense precipitation centered in the Yangtze-Huai River Valley 

(YHRV, 114–120° E, 28–33° N), with accumulated precipitation of more than 150 mm (Figure 2b). As 

for SR-S events, accumulated precipitation of more than 100 mm is predominantly located in the 

coastal areas of southeast China (Figure 2c), with less rainfall in the YHRV and YRV. 

 

Figure 2. Spatial distributions of total accumulated precipitation (units: mm) in Southern China of (a) 

EAP/SR-C; (b) EAP-S; and (c) SR-S events; (d) Daily normalized domain-averaged precipitation in 

the region-1 (114–120° E, 25–30° N, red line for EAP/SR-C events), region-2 (114–120° E, 28–33° N, 

blue line for EAP-S events), and region-3 (114–118° E, 22.5–27.5° N, black line for SR-S events) from  

day −10 to day 10. The numbers of X-coordinate in Figure 2d represent the same meaning of that in  

Figure 1. 

There is a distinct difference in the positions of the accumulated precipitation; thus, three key 

regions are selected to calculate the normalized regional averaged precipitation. The evolution of 

domain-averaged normalized precipitation in region-1 (114–120° E, 25–30° N), region-2 (114–120° E, 

28–33° N), and region-3 (114–118° E, 22.5–27.5° N) reflects the temporal variation features of rainfall 

during typical EAP/SR-C, EAP-S, and SR-S events, respectively (Figure 2d). Daily normalized 

domain-averaged precipitation in the region-1 with a standard deviation ( ) of more than 1.0 

persists from day −1 to day 6 during EAP/SR-C events. The extreme precipitation cases in this study 

are identified based on 1.0  or greater of daily normalized domain-averaged precipitation in the 

YRV (region-1), and Persistent Extreme Precipitation (PEP) events refer to cases composed of at 

Figure 2. Spatial distributions of total accumulated precipitation (units: mm) in Southern China of (a)
EAP/SR-C; (b) EAP-S; and (c) SR-S events; (d) Daily normalized domain-averaged precipitation in the
region-1 (114–120◦ E, 25–30◦ N, red line for EAP/SR-C events), region-2 (114–120◦ E, 28–33◦ N, blue
line for EAP-S events), and region-3 (114–118◦ E, 22.5–27.5◦ N, black line for SR-S events) from day −10
to day 10. The numbers of X-coordinate in Figure 2d represent the same meaning of that in Figure 1.

There is a distinct difference in the positions of the accumulated precipitation; thus, three key
regions are selected to calculate the normalized regional averaged precipitation. The evolution of
domain-averaged normalized precipitation in region-1 (114–120◦ E, 25–30◦ N), region-2 (114–120◦ E,
28–33◦ N), and region-3 (114–118◦ E, 22.5–27.5◦ N) reflects the temporal variation features of rainfall
during typical EAP/SR-C, EAP-S, and SR-S events, respectively (Figure 2d). Daily normalized
domain-averaged precipitation in the region-1 with a standard deviation (σ) of more than 1.0 persists
from day −1 to day 6 during EAP/SR-C events. The extreme precipitation cases in this study are
identified based on 1.0σ or greater of daily normalized domain-averaged precipitation in the YRV
(region-1), and Persistent Extreme Precipitation (PEP) events refer to cases composed of at least
three consecutive days with extreme precipitation [28,36]. Accordingly, this indicates the occurrence
of summer PEP in the YRV during EAP/SR-C events. Furthermore, the identification based on
1.0σ may reflect 40–50 mm day−1 or greater in the precipitation center at an individual station
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level [25]. Although 40–50 mm day−1 is not particularly extreme in the YRV during monsoon season,
the accumulated amount of over 200 mm, due to its long duration, is highly likely to trigger a severe,
large-scale flood within just a few days.

In contrast, during typical EAP-S events, daily normalized domain-averaged precipitation of
more than 1.0σ is detected during the period from day 0 to day 4, with a relatively shorter duration
than EAP/SR-C events. Within region-3, daily normalized domain-averaged precipitation of more
than 1.0σ is not clearly observed during SR-S events, indicating the relatively weaker precipitation
intensity. This implies that the combination of EAP and SR patterns may have a more effective
contribution to precipitation in Southern China than the single events. The absence of intense
precipitation during typical SR-S events suggests that the EAP pattern seems to be an essential factor
for extreme precipitation in Southern China, and the SR pattern cannot cause extreme precipitation
in Southern China directly [6,13,22]. However, the SR pattern may contribute to the development
and preservation of the EAP pattern [21], and the combination of EAP and SR patterns may provide
favorable conditions for persistent rainfall in Southern China, inducing PEP.

It has to be stated that the combination of EAP and SR teleconnection patterns indeed represents
only one of the favorable factors responsible for such prolonged extreme precipitation events in
the YRV. Figure 3 presents the temporal variation of summer extreme precipitation cases and the
occurrence frequencies of PEP events within the YRV in each summer (JJA) of 1979–2015. Accordingly,
113 extreme summer precipitation cases can be extracted from the 129 days accumulated by all the
identified EAP/SR-C events (Table 1), which account for about 28.2% of the 401 total summer extreme
precipitation days in the YRV during 1979–2015. Furthermore, during the summers with the typical
EAP/SR-C events, more than 40% summer extreme precipitation cases are related to the identified
EAP/SR-C events, except for the summers of 1985, 1995, and 1999.
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Figure 3. Days of extreme precipitation cases (red rectangle) and occurrence frequencies of PEP events
(blue rectangle) within the YRV (region-1, 114–120◦ E, 25–30◦ N) in each summer (JJA) during 1979–2015.
The percentage of summer extreme precipitation cases associated with the EAP/SR-C events to the
total summer extreme precipitation cases are marked on each specific year.

In addition, these 21 typical EAP/SR-C events account for about 30.9% of the total 68 PEP
events in the YRV during 1979–2015. Of particular note is that the remaining 71.8% summer extreme
precipitation cases and 69.1% PEP events are not absolutely exempt from influences of the combination.
It is possible that, although the EAP and SR teleconnection patterns can also be detected in some
PEP cases, their intensities are not as conducive as their counterparts in these 21 typical EAP/SR-C
events, and fail to satisfy the criterion of ‘a typical combined event’. Thus, the contribution of weak
or even obscure combinations in triggering PEP events may be relatively smaller compared with the
counterpart of the identified typical EAP/SR-C events in Table 1. Consequently, these 21 identified
typical EAP/SR-C events are more suitable for investigating the possible mechanisms of summer
PEP in the YRV. Furthermore, considering the diversity and complexity of underlying mechanisms
responsible for summer PEP in the YRV [25], this percentage may highlight the importance of the
combination in inducing summer PEP events in the YRV.
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4. Corresponding Anomalous Circulation Patterns

Composite analyses reveal the different intensities and positions of precipitation in these three
patterns. Particularly, Persistent Extreme Precipitation (PEP) in the YRV is clearly observed during
typical EAP/SR-C events. In this section, corresponding anomalous circulation patterns, moisture
conditions, and vertical motions are further explored to verify the marked differences in precipitation
among the three patterns. Finally, a schematic diagram of anomalous circulation patterns related to
PEP during EAP/SR-C events will be presented.

4.1. Upper-Level Divergence

In the upper troposphere, prior to the onset of EAP/SR-C events, large-scale circulation is
characterized by the eastward extension of the South Asia High (SAH, 1250 dagpm-contours, black
dashed lines in Figure 4), which can be traced back to day−10 (Figure 4). By day−4, the east boundary
of the SAH reaches 125◦ E and remains around the coastal areas of China for several days.

North of the SAH, due to the development of mid-latitude negative height anomalies of more than
1.0σ below normal, the upper-level westerly jet (shadings in Figure 4) gradually displaces equatorward
and remains in the region immediately north of the YRV and east of Japan. Uccellini and Kocin [37]
indicated that the accelerating westerly jet can cause upper-level divergence in the entrance region. It
is notable that the YRV is located beneath the southern section of the westerly jet.
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Figure 4. Composite 200 hPa horizontal wind anomalies (vector, units: m s−1), normalized height
anomalies (contours are ±0.5, ±1.0, ±1.5, ±2.0 standard deviation, blue for negative and red for
positive) and zonal wind speed (shading, units: m s−1) in EAP/SR-C events from day −2 to day 8 with
interval of 2 days (a–f). The thick dashed lines (1250 dagpm-contour) portray the activities of the SAH
at 200 hPa.

From day 0 onward, an anomalous mid-latitude cyclone originates from eastern China to
Japan. During the following four days, as the SAH extends east of 120◦ E, strong northerlies prevail
upstream of the YRV. The anomalous mid-latitude cyclone embedded in these northerlies strengthens
substantially, with a zonally elongated structure. Thus, deepening of the anomalous mid-latitude
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cyclone results in a sharper meridional height gradient from the YRV to the vicinity of Japan (blue
contours in Figure 4), stimulating further acceleration of the westerly jet, which can significantly
enhance and maintain upper-level divergence throughout the EAP/SR-C events [38]. An anomalous
cyclone/anticyclone/cyclone pattern can be clearly identified along the Asian jet during the period
from day 0 to day 6, which indicates the formation and preservation of the Silk Road teleconnection
pattern related to the EAP/SR-C events.

Figure 5 presents the corresponding distribution of divergent winds and vorticity at 200 hPa
during the EAP/SR-C events. It shows anomalous upper-level divergence (vectors) over the YRV, with
a more significant positive velocity potential center (red contours), which originates from southeastern
China and begins to migrate eastward from day 2 onward. Holton [39] noted that extra positive
vorticity can also trigger upper-level divergent winds. Correspondingly, positive vorticity (blue
contours) advection toward the regions of divergence by means of the northerlies related to the
anomalous mid-latitude cyclone in the upper troposphere maintains the upper-level divergence from
day 0 to day 6. From day 6 onward, with the deceleration of the westerly jet, both the divergence and
positive velocity potential centers shift to the east of 130◦ E and weaken slightly due to dissipation of
positive vorticity advection from mid-latitudes, which is corresponding to the termination of PEP in
the YRV (Figure 2d).
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Figure 5. Composite 200 hPa divergent components of wind field (vector, units: m s−1), velocity
potential (red contours are from 2 × 106 to 10 × 106 m2 s−1 with interval of 2 × 106 m2 s−1) and
positive vorticity (blue contours are from 2 × 10−6 to 6 × 10−6 s−1 with interval of 2 × 10−6 s−1) in
EAP/SR-C events from day −2 to day 8 with interval of 2 days (a–f). The letters ‘D’ represent the
centers of upper-level divergence.

Upper-level divergence, in particular, is not evident during either EAP-S or SR-S events, due to
the relatively weaker westerly jet. Divergent winds and significant positive velocity potential cannot
be clearly observed during these events (figure not show). Moreover, upper-level divergent winds
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may be highly beneficial for the development of ascending motion responsible for PEP in the YRV
during EAP/SR-C events [30,35], which will be discussed in Section 4.3.

4.2. Anomalous Circulation in the Middle Troposphere

Prior to the onset of typical EAP/SR-C events, the most significant feature of the large-scale
circulation at 500 hPa is the gradual westward extension of the WPSH, which can be traced back to
day −10 (Figure 6). During the following four days, the westward extension of the WPSH accelerates
obviously. By day −4, the western boundary of the WPSH reaches 120◦ E. Concurrently, the SAH
stretches eastward, encountering the western boundary of the WPSH. A similar zonal advance between
the SAH and WPSH has been widely used as an important precursor for precipitation during boreal
summer in various studies [40–42]. During EAP/SR-C events, an overlap between the WPSH and SAH
remains over the coastal region of southeastern China for several days. From day 6 onward, the WPSH
and SAH diverge from each other in opposite directions and retreat to their normal positions, reflecting
the decay of PEP in the YRV.
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Figure 6. Composite 500 hPa geopotential heights (black contours are from 552 to 588 dagpm with
interval of 4 dagpm) and daily precipitation (shading, units: mm) in EAP/SR-C events from day −10
to day 8 with interval of 2 days (a–j). The thick black dashed lines (1250 dagpm-contours) and thick
black solid lines (588 dagpm-contours) portray the activities of the SAH at 200 hPa and the WPSH at
500 hPa related to EAP/SR-C events (red lines are for EAP-S events). The green lines represent the
mid-latitude trough.
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In addition to the concurrent anomalous behavior of the WPSH and SAH, an anomalous
mid-latitude trough forms above the downstream area of the YRV from day 0, consistent with the
mid-latitude action center of the EAP pattern [5]. Subsequently, the mid-latitude trough deepens
substantially, thereby steering the northerlies from the mid-latitudes towards the YRV, contributing to
southward intrusion of cold/dry air from mid-latitudes in the middle troposphere [35].

Similarly, a distinct zonal advance between the WPSH and SAH can also be identified during
EAP-S events (red lines in Figure 6), and both the WPSH and SAH displace more to the north than
during EAP/SR-C events, providing favorable conditions for precipitation in the YRV (Figure 2b).
However, from day 2 onward, the WPSH and SAH depart from each other towards the opposite directions.
Owing to a relatively shorter duration of the overlap between these two key systems related to EAP-S
events, precipitation persists for a shorter period (from day 0 to day 4) than during combined events.
As for SR-S events, the SAH remains in its normal position, and the relatively weaker WPSH remains in
an unfavorable position for precipitation (Figure 7c), resulting in less rainfall in Southern China [41].
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Figure 7. Composite averaged horizontal wind anomalies at 500 hPa (vector; units: m s−1) and
anomalous U-wind at 200 hPa (shading; units: m s−1) of (a) EAP/SR-C; (b) EAP-S; and (c) SR-S events.
The dashed contours (1250 dagpm-contour) and thick black contours (588 dagpm-contours) denote the
activities of the SAH at 200 hPa and WPSH at 500 hPa. The letters ‘C’ and ‘A’ represent anomalous
cyclone and anticyclone, respectively.

This analysis indicates that such a coupling of the EAP and SR teleconnection patterns plays
a vital role in the zonal advance and preservation between the WPSH and SAH, resulting in a
stronger-than-normal precipitation increase in the YRV. This reveals that their combined effect on
precipitation is more efficient than that of a single pattern [23,24]. Moreover, the obvious zonal advance
between the SAH and WPSH occurs in both EAP/SR-C and EAP-S events. The absence of concurrent
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behavior between them in SR-S events (Figure 7c) implies that EAP teleconnection patterns are an essential
factor for zonal advance between these two key systems, favoring the development of precipitation [25].

4.3. Low-Level Moisture Transport and Vertical Motion

In the lower troposphere, an anomalous cyclone/anticyclone pair (‘C/A’ in Figure 8a) related to
EAP/SR-C events can be identified along the East Asian coast, shifting westward and strengthening
simultaneously from day −4 onward (Figure 9). By day −2, the western boundary of the anomalous
low-latitude anticyclone reaches west of 125◦ E. During typical EAP/SR-C events, owing to the further
intensification and westward extension of the WPSH, the greatly enhanced low-level southwesterlies
to the northern flank of the low-latitude anticyclone advect anomalously abundant moisture toward
the YRV, resulting in a more significant moisture flux with a magnitude anomaly more than 1.0σ

above normal. This diagnosis of moisture conditions during EAP/SR-C events indicates that moisture
transport is primarily ascribed to the anomalous anticyclone associated with the westward-extended
WPSH, rather than the southwesterlies from the Bay of Bengal [43].
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Figure 8. Composite averaged wind anomalies at 850 hPa (vector; units: m s−1), normalized anomalies
of total moisture flux (shading, with interval of 0.5 standard deviation) and the convergence of
moisture flux (red contours are from −3 × 10−8 to −6 × 10−8 s−1 with interval of −3 × 10−8 s−1) in
(a) EAP/SR-C; (b) EAP-S; and (c) SR-S events. Time-latitude cross-section (115–125◦ E) of moisture
flux (shading, with interval of 0.5 standard deviation) and moisture flux convergence (black dashed
contours are from −2 × 10−8 to −6 × 10−8 s−1 with interval of −2 × 10−8 s−1) in (d) EAP/SR-C; (e)
EAP-S; and (f) SR-S events from day −10 to day 10.
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Figure 9. Composite 850 hPa horizontal wind anomalies (vector, units: m s−1) and normalized
anomalies of total moisture flux (shading, with interval of 0.5 standard deviation) in EAP/SR-C events
from day −10 to day 8 with interval of 2 days (a–j). The thick black lines (588 dagpm-contours) portray
the activities of the WPSH at 500 hPa.
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Moreover, accompanying development of the anomalous mid-latitude cyclone are northerlies
from mid-latitudes (45◦ N), which prevail in the upstream of the YRV and strengthen significantly
from day 0 onward, steering the low-level cold and dry air required by the frontogenesis into the
YRV [25]. Accordingly, the confluence between southwesterlies to the northern flank of the low-latitude
anticyclone and these northerlies induces enhanced moisture convergence over the YRV during
EAP/SR-C events (Figure 8d). The time-latitude section shows that both the moisture flux with a
magnitude anomaly more than 1.0σ above normal, and strong moisture convergence in the YRV can
persist from day 2 to day 8. Such accumulation and preservation of the moisture flux and convergence
satisfy the moisture supply for PEP.

As reported previously, relatively marked humidity and temperature gradients are widely used to
depict the Mei-Yu front [28,42]. Within the strong moisture convergence region, a thick and moist layer
(indicated by the specific humidity in Figure 10) forms in the lower troposphere (below 600 hPa) from
day −2 onward, with a significantly enhanced temperature gradient in the northern YRV, resembling a
quasi-stationary Mei-Yu front. Subsequently, the moist layer tends to be thicker. During EAP/SR-C
events, the quasi-stationary front persists over the YRV for a longer period, providing unstable
conditions for PEP.
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Figure 10. Latitude-pressure cross-section (115–125◦ E) of specific humidity (contours are from 6 to 20 g
kg−1 with interval of 2 g kg−1) and normalized temperature anomalies (shading; every 0.5 standard
deviation) in EAP/SR-C events from day −2 to day 8 with interval of 2 days (a–f). The dotted filled
shadings denote that the normalized temperature anomalies are statistically significant at the 0.05 level.
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Similar abundant moisture is primarily transported by anomalous low-level southwesterlies
during EAP-S events, with a similar moisture convergence center in the YRV, which is characterized
by a moisture flux with a magnitude more than 1.0σ above normal to the northern flank of the
WPSH. However, the WPSH weakens rapidly and retrogrades to its normal position, decelerating
the southwesterlies. In contrast to the long duration of the significant moisture flux and strong
moisture convergence during EAP/SR-C events, due to the weakening of southwesterlies [43], both
the moisture flux and convergence within region-2 rapidly weaken to dissipation during EAP-S
events (Figure 8e), terminating the precipitation process. Correspondingly, the daily normalized
domain-averaged precipitation of 1.0σ above normal shows a relatively shorter duration (from day 0
to day 4). This may explain why EAP-S events cannot induce PEP in Southern China. Owing to the
relatively weaker WPSH and the absence of an anomalous low-latitude anticyclone during the SR-S
events, the southwesterlies originating from the Bay of Bengal account for moisture transport to the
coastal areas of southeastern China (Figure 8c). This implies that the anomalous anticyclone/cyclone
pair associated with the EAP teleconnection pattern is an essential factor for moisture transport in the
YRV [25,43].

Such strong moisture convergence may enhance atmospheric instability and local ascent [44].
During EAP/SR-C events, such leading moisture convergence triggers an important characteristic of
vertical motion, with pronounced ascent around the anomalously abundant moisture flux areas along
the quasi-stationary front (Figure 11). From day 0 onward, anomalous descents are also observed
to the immediate south and north of the YRV. In addition, a well-organized wave-like pattern of
anomalous Q (shading) with reverse signs can be identified over East Asia, consisting of heating
anomalies in the YRV between 25◦ N and 30◦ N (region-1 in Figure 2a), and cooling anomalies in
the regions immediately south and north of the YRV. The diabatic heating anomalies and vertical
velocity display almost out-of-phase variations, with the pronounced ascent of warm and moist air
prevailing well over the YRV, and the descent of cold air between 10◦ N and 22.5◦ N in the coastal areas
of southeast China. Currently, these above-mentioned ascending and descending motions, low-level
strong southwesterlies to the northern flank of the WPSH (Figure 9), and upper-level northerlies to the
northeast periphery of the SAH (Figure 4), form an anomalous thermal-inducing vertical circulation
cell over East Asia [28,45]. This vertical circulation cell may be highly beneficial for the development
and preservation of precipitation in the YRV [25,28]. From day 2 onward, although the descent to
the north of 35◦ N shows a sharp decrease due to the dissipation of diabatic cooling anomalies, the
anomalous vertical circulation cell maintains its strong ascent over the YRV throughout the EAP/SR-C
events, contributing to the persistence of extreme precipitation.

During the decay of EAP/SR-C events, with the eastward retreat and weakening of the WPSH, the
anomalous anticyclone/cyclone pair shifts eastward and rapidly weakens to dissipation, indicating the
disappearance of EAP pattern, which therefore weakens the southwesterlies required by the moisture
transportation [38]. Consequently, both the anomalously abundant moisture transport towards the
YRV and the corresponding moisture convergence vanish simultaneously from day 6 onward, resulting
from the dissipation of the southwesterlies. In addition, the well-organized tripole structure of Q
anomalies fades away gradually, and the diabatic heating anomalies disappear in the YRV, leading to a
decay of the ascent along the quasi-stationary front [28]. Thus, these factors result in the termination of
PEP in the YRV.
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Figure 11. Latitude-pressure cross-section (115–125◦ E) of vertical p-velocity (contour; units: hPa s−1)
and significant anomalies of diabatic heating rate (shading; units: K day−1) in EAP/SR-C events from
day −2 to day 8 with interval of 2 days (a–f). The dotted filled shadings denote that the anomalies of
diabatic heating rate are statistically significant at the 0.05 level.

5. Discussion and Conclusions

In this study, the combined effects of the East Asia-Pacific (EAP) and Silk Road (SR) teleconnection
patterns on summer precipitation in Southern China were investigated using ERA-Interim reanalysis
daily data and daily precipitation from China’s Ground Precipitation 0.5◦ × 0.5◦ Gridded Dataset
(V2.0) on synoptic to sub-monthly timescales. The main conclusions are summarized as follows, with
a schematic diagram (Figure 12).

Typical event characteristics of single EAP (EAP-S), single SR (SR-S), and combined (EAP/SR-C)
patterns were identified based on the daily indices. The results revealed marked differences among
the three types of events according to both their spatial distribution and precipitation intensities in
Southern China. Persistent Extreme Precipitation (PEP) was identified in the Yangtze River Valley
(YRV) during EAP/SR-C events, with daily normalized domain-averaged precipitation of more than
one standard deviation for several days. Furthermore, the precipitation intensity of EAP/SR-C events
was much stronger than that of single events.
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Figure 12. Schematic diagrams for circulation anomalies of typical EAP/SR-C events responsible for
PEP in the YRV. The letters ‘C’ (blue shadings) and ‘A’ (red shadings) represent the anomalous cyclone
and anticyclone, respectively. The black solid lines at 200 hPa and 500 hPa denote the boundary of
the South Asia High and western Pacific subtropical high. The thick black line at 200 hPa denotes
the Asian jet Axis. Mid-latitude trough at 500 hPa is indicated by the green line. The red arrows
represent northerly flows from mid-high latitudes. Bold black line with three triangles denotes the
stationary front in the YRV. Green arrow at 850 hPa represents the transport of abundant moisture flux.
The ascent and descent are presented as red and blue dashed lines. The dashed blank arrows portray
the propagation of these key systems.

These differences are closely associated with the different anomalous circulation patterns of
different events [25,42]. In the upper troposphere, prior to the onset of EAP/SR-C events, the westerly
jet is gradually displaced equatorward and tends to remain to the immediate north of the YRV.
Correspondingly, the YRV is located beneath the southern section of the westerly jet entrance region,
where strong divergence exists (at 200 hPa in Figure 12). During typical EAP/SR-C events, with the
development of the SR pattern, the intensification of an anomalous cyclone at mid-latitudes over East
Asia contributes to further acceleration of the westerly jet and stronger upper-level divergence [37].
Meanwhile, the South Asia High (SAH) extends eastward of 120◦ E, inducing northerly flows to
the northeast of the SAH, which prevail upstream of the YRV. The anomalous mid-latitude cyclone
embedded in these northerlies promotes positive vorticity advection toward the immediate north
of the YRV. Extra positive vorticities therefore trigger the eastward progression and preservation of
upper-level divergent winds throughout the EAP/SR-C events, which provide favorable ascent for
PEP [39].

The middle troposphere is characterized by a distinct zonal approach and advance between the
SAH and Western Pacific Subtropical High (WPSH) prior to the onset of EAP/SR-C events (at 200 hPa
and 500 hPa in Figure 12). Subsequently, both the SAH and WPSH remain in favorable positions
for the development and preservation of precipitation [41,42]. Although a similar zonal advance
between these two key systems can also be identified before and during typical EAP-S events, the SAH
and WPSH rapidly retreat to their normal positions, which may inhibit the development of PEP.
As for SR-S events, these two key systems always remain in unfavorable positions for precipitation in
Southern China.
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In the lower troposphere, an anomalous cyclone/anticyclone pair related to the EAP
teleconnection pattern results in strong southwesterlies from low-latitudes [45], advecting anomalously
abundant moisture toward the YRV for several days during EAP/SR-C events, resulting in a more
significant moisture flux with a magnitude anomaly more than 1.0σ above normal compared to single
events (at 850 hPa in Figure 12). Meanwhile, northerly flows from the mid-latitudes, steered by the
deep trough, prevail in the middle troposphere, promoting the southward intrusion of cooling/dry air
from mid-high latitudes required by the frontogenesis into the YRV [43]. Therefore, the confluence of
northerlies and southwesterlies contributes to stronger moisture convergence, enhancing atmospheric
instability and local ascent [25,28]. Moreover, the well-organized pattern of anomalous diabatic heating
(Q) maintains an anomalous thermal-inducing vertical circulation cell to the immediate south of the
YRV. The strong ascent of warm/moist air along a quasi-stationary front persists throughout EAP/SR-C
events, providing favorable and unstable conditions for PEP in the YRV [28].

After EAP/SR-C events, the decay of EAP and SR patterns weakens the anomalous mid-latitude
cyclone, and the SAH retreats to its normal position, inducing the eastward movement of upper-level
divergence. Subsequently, this divergence rapidly weakens to dissipation. Furthermore, the WPSH
and SAH diverge from each other in opposite directions, and the low-level anticyclone/cyclone
pair vanishes, with the decay of the southwesterlies required by moisture transport toward the YRV.
Therefore, ascending motion along the quasi-stationary front in the YRV is largely suppressed and
ultimately turns into a descending motion. Accordingly, such unfavorable conditions lead to the
termination of PEP.

This study reveals that the EAP pattern is a key factor in inducing summer extreme precipitation
in Southern China on the synoptic to sub-monthly timescales, and the SR pattern cannot cause extreme
precipitation in Southern China directly. According to the above composite analyses, the SR pattern
may contribute to the development and maintenance of the EAP pattern, thereby affecting the extreme
precipitation indirectly. Particularly, the coexistence and combination of the EAP and SR patterns
leads to summer persistent extreme precipitation in the YRV. Based on the interaction between these
two teleconnection patterns, it is quite possible to take synoptic-scale patterns as precursors for the
summer extreme precipitation in Southern China. As such, additional attention needs to be paid to the
formation mechanism and prediction of this combination.
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