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Figure S1: Time series of ozone (O3), black carbon (BC), relative humidity (RH), temperature 
(Temp), wind speed (WS), and wind direction (WD) observed during this campaign. 
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Figure S2: Representative spectra for the commonly observed submicron particle types observed 

by the ATOFMS: sea salt-no negatives, biomass burning, elemental carbon/organic carbon 

(ECOC), elemental carbon (EC), organic carbon (OC), and shipping emissions. 

Description of Particle Types Measured by ATOFMS: 

Fresh sea salt particles are characterized by intense sodium (23Na+) and sodium chloride cluster 

peaks (81, 83Na2Cl+, 58NaCl-, 93, 95, 97NaCl2
-), while aged sea salt particles contain nitrate peaks 

(46NO2
-, 62NO3

-) that replace chloride when fresh sea salt particles are reacted heterogeneously 



S3 
 

with gaseous nitrogen oxides [1, 2]. Marine biogenic particles, not shown in Figure S2, contain 

internal mixtures of intense 24Mg+ and 40Ca+ with organic carbon peaks [1]. Sea salt-No Negatives 

contain positive ions indicative of sea salts, including 108Na2NO3
+ and 165Na3SO4

+ that are 

characteristic of sea salts that have undergone heterogeneous reactions, but lacked negative ions 

indicating the presence of tightly bound liquid water [3]. Sea salt-EC particles, not shown in Figure 

S2, are sea salt particles internally mixed with elemental carbon. Elemental carbon (EC) is 

characterized by long chain elemental carbon peaks in both the positive and negative ion spectra 

(e.g., 12C+, 36C3
+, 48C4

+,…Cn
+, etc.) while organic carbon (OC) typically lack intense elemental 

carbon ions and are characterized by organic fragments instead (e.g., 27C2H3
+, 39C3H3

+, 43C2H3O+) 

[4]. OC measured during this campaign contained ion peaks indicative of aromatic compounds 

typically derived from secondary processing of vehicle exhaust and industrial emissions (e.g., 

51C4H3
+, 63C5H3

+, 77C6H5
+) [5-7], indicating an anthropogenic rather than a biogenic source. 

Amines, not shown in Figure S2, contain OC markers and intense ion peaks at 59(CH3)3N+, 

86(C2H5)2NCH2
+, and 118(C2H5)3NOH+ [8-10]. ECOC particles contain a few intense elemental 

carbon peaks that do not extend to high m/z and OC ion peaks. Biomass burning particles are 

characterized by an intense potassium and potassium salt peaks at 39K+, 113K2Cl+, 140K2NO3
+, 

213K3SO4
+ and sulfates and nitrates [11-13]. No Positives-Sulfate particles are likely highly acidic 

particles that lack positive ion spectra and contain 97HSO4
- and 195H2SO4HSO4

- [14]. Dust particles, 

not shown in Figure S2, are characterized by alkali, alkali earth and transition metals including 

7Li+, 27Al+, 40Ca+, 56Fe+ and silicates [15, 16]. Shipping emissions contain OC markers and intense 

peaks at 51V+, 67VO+, and 56Fe+ in addition to sulfates [17].  
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Figure S3: Determinations of κ for each supersaturation, including uncertainty. Error bars were 

generated by calculating κ based on total concentrations from the SMPS and the CPC as described 

in the text. 

 

Description of Particle Types Measured by ATOFMS: 

Systematic biases in the total particle counts from the CPC and the integrated size distribution 

from the SMPS were accounted for and used to calculate uncertainty associated with κ at each 

supersaturation. In general, particle counts from the CPC and SMPS tracked each other very well; 

however, some differences in counts exist, namely when the overall particle counts are low. κ was 

calculated for both particle counting methods and for the mean between the two methods. This 

method was used to calculate the average value of κ and its uncertainty for each measurement 

interval. Results from this uncertainty calculation are shown in Figure S3 as error bars. 

Uncertainties are typically lower than day-to-day and diurnal variations in κ reported in this work.  
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Figure S4: Average SMPS particle size distributions observed during each air mass transport 

type. 

 

 

 



S6 
 

Figure S5: Time series of Dcrit and fCCN (the fraction of activated particles) taken at 0.10% (red 

line), 0.17% (orange line), 0.29% (yellow line), 0.51% (green line), and 0.71% (blue line) 

supersaturation. 

 

Figure S6: Observed temporal chemistry for submicron (top panel) and supermicron (bottom 

panel) particles. Data is presented as hourly averages. 
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