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Abstract: Large-Eddy Simulations (LES) corresponding to four convective intensive observation
periods of Sagebrush Phase 1 tracer experiment were conducted with realistic boundary conditions
using Weather Research and Forecast model (WRF). Multiple nested domains were used to
dynamically downscale the conditions from domain with grid size of 24 km to local scales with
grid size of 150 m. Sensitivity analysis of mesoscale model was conducted using three boundary
layer, three surface layer and two micro-physics schemes. Model performance was evaluated by
comparing the surface meteorological variables and boundary layer height from the mesoscale runs
and observed values during tracer experiment. Output from mesoscale simulations was used to drive
the LES domains. Effect of vertical resolution and sub-grid scale parameterizations were studied by
comparing the wind speed and direction profiles along with turbulent kinetic energy at two different
heights. Atmospheric stability estimated using the Richardson number and shear exponent evaluated
between 8- and 60-m levels was found to vary between weakly unstable to unstable. Comparing
the wind direction standard deviations coupled with the wind speeds showed that the WRF-LES
underestimated the wind direction fluctuations for wind speeds smaller than 3-ms−1. Based on the
strengths of convection and shear, WRF-LES was able to simulate horizontal convection roll and
convective cell type features.

Keywords: dynamic downscaling; WRF-LES; convective conditions; Sagebrush tracer experiment
Phase 1; reanalysis data

1. Introduction

With increased solar forcing on the earth’s surface in the afternoon, air inside the lower part of
atmosphere gets heated due to surface heating resulting in the formation of a Convective Boundary
Layer (CBL). Turbulent processes inside CBL range across various scales, from microscale (O(10 m))
to mesoscale, effectively mixing the scalars and pollutants trapped within the boundary layer.
Understanding microscale atmospheric boundary layer (ABL) processes is crucial for applications
such as air quality modeling, transport and dispersion of airborne agents or hazardous material. With
continuous advances in computational technology, use of high-fidelity fluid dynamic models such as
Large Eddy Simulations (LES) to model the local scale ABL has become more practical. Pioneering
studies [1–4] have used LES to reproduce atmospheric turbulence inside ABL using multiple grid
points in horizontal and vertical directions. Later studies (e.g., Moeng [5], Nieuwstadt et al. [6]) were
successful in reproducing the turbulent motions inside CBL using LES approach. However, most LES
studies related to CBL were limited to idealized conditions, i.e., using periodic boundary conditions,
homogenous surface properties and user-given surface fluxes. This limits the applicability of LES
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for complex or real-world scenarios where inhomogeneity in horizontal makes the inflow turbulent
fluctuations different than those at the outflow boundary [7]. One way to address this issue is to use
the large scale forcings from the mesoscale numerical weather prediction (NWP) models to drive
the LES either by nesting the LES domain inside the NWP model or by providing the boundary
conditions to LES at specified time steps. However, this methodology is sensitive to the capabilities of
the NWP model to effectively downscale the conditions from mesoscale to microscale. The Advanced
Research version of Weather Research and Forecast (WRF-ARW, hereafter WRF) [8] is one such
model that can handle the process of downscaling from mesoscale to microscale. WRF model can
have multiple nested domains with different grid spacing that can run simultaneously. Studies (e.g.,
Moeng et al. [7], Mirocha et al. [9], Kirkil et al. [10]) have used WRF-LES in idealized conditions for
convective ABLs and showed that WRF-LES can capture most of the turbulent features occurring at
microscale. Talbot et al. [11], Chu et al. [12] and Cuchiara and Rappenglück [13] have used nesting
approach in WRF to simulate a realistic ABL by downscaling from a grid spacing of 10 km (mesoscale)
to 100 m (WRF-LES). Talbot et al. [11] and Cuchiara and Rappenglück [13] have further reduced the
horizontal grid resolution to 50 m, whereas Chu et al. [12] showed that WRF-LES works reasonably
with the resolution of 100 m.

The methodology of dynamic downscaling from mesoscale to microscale requires careful attention
of various aspects: type of parameterizations used in mesoscale runs to characterize the turbulence
inside the PBL, resolution at which the transition from mesoscale to microscale occurs and the sub-grid
model used in microscale runs. In a mesoscale model, such as WRF, turbulence inside the ABL is
fully parameterized using a 1-D Planetary Boundary Layer (PBL) scheme. In LES, a sub-grid scale
(SGS) model is used to resolve the most energetic eddies while eddies smaller than the grid size
are parameterized. Several studies [14–16] have shown that, for resolutions between mesoscale and
microscale, i.e., the transition resolution treated as “grey-zone” or “terra-incognita” [17], neither 1-D
PBL schemes nor LES-SGS models could resolve the turbulent features accurately. 1-D PBL schemes
have shown acceptable performance in capturing the mean (smooth) flow characteristics inside the
grey-zone resolutions [18,19], but performs poorly in capturing the fluctuations [11]. This poses an
additional challenge when the mesoscale simulations with grey-zone resolution are used to drive the
LES. If the inflow conditions from grey-zone domains does not have enough fluctuations to pass on
to LES, it takes time for turbulence to build inside the LES domain. To avoid this, Mirocha et al. [20]
has showed that nesting a fine-LES inside a coarser-LES is superior to nesting a fine-LES inside the
mesoscale domain. This way the turbulence starts building inside the coarser-LES before it is passed
on to the fine-LES.

To reduce the model bias at mesoscale level itself, nudging process is available in WRF [21].
Observational nudging is the process of adjusting the model values towards the surface and upper-air
observations. This is achieved by feeding the surface and sounding observational data available
from Meteorological Assimilation Data Ingest System (MADIS) into a WRF program called as
Objective Analysis (OBSGRID). MADIS, developed by National Oceanic Atmospheric Administration
(NOAA) Earth System Research Laboratory, collects surface and upper air observational data
from several sources, and performs quality control for the data that is accessible to public
(https://madis.ncep.noaa.gov). The initial and boundary conditions for the WRF model can be
improved by subjecting the initial datasets to objective analysis process [21]. Several studies [22–28]
have used different configurations for nudging at various levels and show that nudging has improved
the model performance considerably. Lo et al. [22] has observed that nudging improves the generation
of realistic regional-scale patterns by the model. Otte [23], Ngan et al. [24], Gilliam et al. [25] and
Rogers et al. [26] have observed the improvement in Air Quality predictions when the background
meteorological fields were generated by nudging the available observations. Ngan et al. [27] and
Li et al. [28] have observed that performing nudging even when using re-analyses datasets significantly
improved the wind direction predictions that are crucial for atmospheric transport and dispersion.
Another challenge of running the LES for realistic ABL is the lack of observations to validate the model
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performance in regards of mixing and stability parameters. As fine-scale LES runs are computationally
expensive, the domain size is often limited to few kilometers (usually <5 km) and having high
frequency observations at multiple heights within that range is only possible during tracer field
experiments or field campaigns designed to study the effect of local atmospheric turbulence on tracer
dispersion. Sagebrush tracer experiment [29] is one such campaign with database of turbulence and
standard meteorological measurements spanning across a 3200-m domain and at multiple heights.
During October 2013, the Field Research Division of the Air Resource Laboratory (ARLFRD) of NOAA
conducted a tracer field experiment, which is designated as Project Sagebrush Phase 1 (PSB1, [29]).
Each day of the experiment conducted is designated as Intensive Observation Period (IOP) and five
such IOPs were conducted. Out of five IOPs conducted, IOP3 conditions were near-neutral to neutral
with calm winds during the morning hours and strong winds during the afternoon hours [29]. All other
IOPs have weakly-unstable to unstable atmospheric conditions. The day of IOP1 was mostly sunny
with cirrostratus haze and weak winds (<2 ms−1). Days of IOP2, IOP4 and IOP5 were mostly sunny
with moderate to strong (2–6 ms−1) southwesterly winds.

While the existing studies shed light on limitations and use of WRF-LES, to the authors’ knowledge
there has not yet been a study which simulated the detailed ABL conditions during a tracer field
experiment using LES scales. The objectives of present study were:

i To simulate high-resolution ABL conditions during the Sagebrush Tracer Experiment-Phase 1
using real-world dynamic downscaling in WRF-LES; and

ii To assess the performance of WRF model to produce outputs that can be used as input for LES
scale tracer simulations.

We evaluated the model performance subjected to different parameterizations used in mesoscale
runs and SGS models used in LES simulations. The structure of the paper is as follows: we first describe
the methodology followed with a short description of the Sagebrush tracer experiment and WRF model
configuration in Section 2. Sensitivity analysis in mesoscale and microscale simulations is presented in
Section 3 along with the final LES results. Summary and conclusions are given in Section 4.

2. Methodology

2.1. Sagebrush Tracer Experiment Phase 1

Sagebrush tracer experiment Phase 1 was conducted in relatively flat plain with an elevation of
1500 m above mean sea level near Idaho National Laboratories (INL). The experiment was conducted
during the afternoon hours on five days of October 2013. Each day of the experiment was designated
as an Intensive Observation Period (IOP). SF6 tracer was continuously released for a duration of 2.5-h
during each IOP and measurements were taken across the sampling network during the last 2-h of
the release. Extensive meteorological measurements were made near to the release location and at
locations across the sampling network. For more details about the experiment setup and instruments
used, the reader is referred to [29,30]. IOP3 was excluded from this study as the atmospheric conditions
are not similar to the remaining IOPs. The day of IOP1 was mostly sunny with cirrostratus haze and
weak winds (<2 ms−1) that are not aligned with most of the SF6 sensors on the sampling network. Days
of IOP2, IOP4 and IOP5 were mostly sunny with moderate to strong (2–6 ms−1) southwesterly winds.

2.2. WRF Model Configuration

The Advanced Research version of WRF model (version 3.9.1) was configured with multiple
nested domains as shown in Figure 1a,b. Domains D01, D02, D03 and D04 were nested with feedback
turned “on” and were used for mesoscale simulations. Domains D05 and D06 were used for LES
runs. The horizontal resolution for the mesoscale domains was 24.38 km (D01), 12.15 km (D02),
4.05 km (D03), 1.35 km (D04) and for LES domains was 450 m (D05) and 150 m (D06). The model
top was considered at 100 hPa. Two vertical resolution configurations were used in the study;
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Figure 1c shows the vertical resolution changes in the first 2500 m. The coarser-in-vertical-LES
simulations have a total of 69 levels with 22 levels inside the ABL. The finer-in-vertical-LES have a
total of 99 levels with 40 levels inside the ABL. The first grid point in both LESs is at 3.65 m above
ground. Table 1 gives the summary of WRF model domains and respective physics options used.
The output from the inner most mesoscale domain D04 was saved at a frequency of 10 min and
was used as the initial and boundary conditions (IBC) for LES domain D05. The output from D05
LES was saved every 10 min and was used as IBC for the finer LES domain D06. The LES and
mesoscale simulations were run separately, meaning there was no feedback from the LES domains
to the mesoscale domains. All the mesoscale runs were initialized at midnight (00 MST) of the day
before the actual IOP day and were run for a period of 24 h. Meteorological initial and boundary
conditions for D01 were obtained from three different datasets provided by National Centers for
Environmental Predictions (NCEP). The first dataset is North American Regional Reanalysis (NARR),
which has a horizontal resolution of 32 km and were updated every 3 h. The second dataset is
North American Mesoscale Forecast System Analyses (NAM), which has a horizontal resolution of
12 km and were updated every 6 h. The third and final dataset is Rapid Refresh Analyses (RAP)
which has a horizontal resolution of 13.5 km and updated every 1 h. The intention of selecting
these datasets was not only to see the performance of reanalysis/analysis products, but also to see
the model performance when the IBCs were updated at different frequencies. Apart from the IBCs,
various parameterization schemes can be selected inside WRF model to simulate the PBL dynamics.
Table 2 gives the list of all cases simulated in this study to understand the sensitivity of WRF model for
respective physics schemes. Simulations were prepared with combination of three PBL schemes (Yonsei
University scheme-YSU, Mellor–Yamada–Janjic scheme-MYJ and Mellor–Yamada–Nakanishi–Niino 2.5
level scheme-MYNN2.5), three surface layer schemes (Revised MM5 Monin–Obukhov scheme-RMO,
Monin–Obukhov–Janjic scheme-MOJ and Mellor–Yamada–Nakanishi–Niino scheme-MYNN) and two
microphysics schemes (Morrison 2-Moment scheme-M2M and Kessler scheme-Kessler). Observational
(also known as station) nudging and objective analysis (OA) were performed on the IBCs used
for mesoscale domains (D01, D02 and D03) using the surface and sounding data from MADIS.
Observational data from MADIS was obtained in little_r format and fed to OBSGRID, which generated
the additional files required for observational nudging. No nudging was performed within PBL
and surface levels, following the study of Gilliam et al. [25], who showed that surface nudging
induced additional bias in wind speed during convective conditions. Ngan et al. [31] recently used
dynamically-downscaled mesoscale WRF modeled meteorological fields during PSB1 to perform
dispersion simulations in HYSPLIT [32].

Table 1. WRF model configuration for mesoscale and LES domains.

D01 D02 D03 D04 D05 D06

Horizontal grid size (km) 24.38 12.19 4.06 1.36 0.45 0.15
Grid Points 70 × 70 100 × 100

IBC NARR/RAP/NAM D04 D05
PBL Scheme YSU/MYNN2.5/MYJ None
Time Step (s) 27 9 3 1 1/6 1/16

Nesting - 2-way 1-way
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(a) (b)

(c)
(d)

Figure 1. (a) Mesoscale simulation domains configured in WRF, the innermost domain is D05. (b) LES
domains configured in WRF, the innermost domain is D06. The black arcs shown in innermost domain
in (b) represent the SF6 tracer sampling network and the red square represent the release location.
(c) Vertical resolution of coarse and fine LES runs simulated in this study. (d) Part of domain D06
showing the locations of Wind profilers, Grid 3 Tower (GRI) and Release location during PSB1. The blue
dots represent the 3D sonic anemometers used at a radial distance of 3200 m from release location.

Table 2. Combinations of WRF mesoscale simulations parameterizations included in the sensitivity analysis.

Case ID IBC PBL Scheme Surface Layer Scheme Microphysics Scheme IOP Tested

Meso1 NARR

MYNN2.5
RMO

Kessler

IOP1

Meso2 NAM
Meso3 RAP
Meso4 NARR

M2MMeso5 NAM
Meso6 RAP
Meso7 NARR MOJ M2M
Meso8 NARR MYNN M2M
Meso9 NARR

YSU RMO

KesslerMeso10 NAM
Meso11 RAP
Meso12 NARR

M2MMeso13 NAM
Meso14 RAP
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Table 2. Cont.

Case ID IBC PBL Scheme Surface Layer Scheme Microphysics Scheme IOP Tested

Meso15 NARR MYJ MOJ M2M
Meso16

NARR
MYNN2.5

RMO

M2M IOP2
Meso17 MOJ
Meso18 MYNN
Meso19 YSU RMO
Meso20 MYJ MOJ

3. Results

3.1. WRF Mesoscale Sensitivity Tests

The performance of WRF model subjected to different initial and boundary conditions was
validated using three different datasets (Table 1). In addition, with each dataset, the three most
commonly used different PBL schemes and two different microphysics schemes were used. The three
PBL schemes tested were Yonsei University PBL scheme (YSU, [33]), Mellor–Yamada–Nakanishi–Niino
2.5 level scheme (MYNN2.5, [34]) and Mellor–Yamada–Janjic (MYJ, [35]). PBL schemes in WRF only
work with certain Surface layer schemes. YSU scheme was used with Revised MM5 Monin–Obukhov
scheme (RMO) and MYJ scheme was used with Monin–Obukhov–Janjic scheme (MOJ). MYNN2.5
PBL scheme can be used with multiple surface layer schemes. It was tested with RMO, MOJ and
MYNN surface layer scheme. The main purpose of PBL scheme was to distribute the surface fluxes
and to take care of the boundary layer growth. MYJ and MYNN2.5 PBL schemes estimate the
boundary layer growth by Turbulent Kinetic Energy (TKE) prediction; these were treated as local
schemes, whereas YSU PBL scheme is a non-local scheme, which estimates the PBL height based on
the entrainment and mixing. The two microphysics schemes tested were Kessler ([36]) and Morrison
2-moment (M2M) ([37]). All sensitivity tests were performed on the mesoscale domains of IOP1.
All parameterization combinations used for the sensitivity study are listed in Table 2. WRF mesoscale
outputs from domain D04 were compared against the observations from the surface measurements
made during PSB1. The statistical measures (definitions given in Appendix A), namely mean bias
(MB, range = −∞ to +∞), root mean square error (RMSE, range = 0 to +∞), index of agreement (IOA,
range = 0 to 1) and mean absolute error (MAE, range = 0 to +∞), were calculated over the period of
IOPs (i.e., 2.5 h) for model’s performance. MB tells the overall bias of the model while MAE tells how
close the model results were compared to the actual observations. RMSE tells the deviations of model
errors and IOA gives a single value that can assess the capability of the model. The ideal value for MB,
RMSE and MAE is 0, while for IOA is 1.

3.1.1. Surface Meteorological Variables

The 2-m temperature (T2m), 10-m horizontal wind speed (U10m) and direction (UDir10m) were
calculated as diagnostic variables in WRF mesoscale simulations. The performance statistics of each
mesoscale parameterization choice was tested using the metrics given in Equations (A1)–(A4) of
Appendix A. Tables A1–A3 give the model performance for T2m, U10m and UDir10m. The observed
values were taken from the measurements at GRI Tower during PSB1 and WRF simulated values were
taken as horizontally averaged over a grid size of 3 × 3 near the GRI Tower location in WRF model.

Of all combinations tested, the first 15 cases (i.e., Meso1–Meso15) were used to identify the
model parameters that yield lowest errors during IOP1 and the last five were used to re-evaluate
the schemes that performed best during the first 15 cases. The reason for this additional test was
because of very low wind speeds during IOP1 while IOPs 2,4 and 5 have moderate wind speeds.
In addition, wind directions during IOP1 were more dynamic and inhomogeneous in horizontal [29].
As shown in Tables A1–A3, runs initialized with NARR dataset gave the least errors and highest index
of agreement. Simulation Meso12 gave the lowest MB (−0.7 ◦C), RMSE (1.56 ◦C) and MAE (1.51 ◦C)
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while Meso15 provided the lowest RMSE (1.56 ◦C) and highest IOA (0.88) when 2-m temperatures
were compared. All the WRF simulations (Meso1–Meso15 and Meso16–Meso20) underestimated
the 2-m temperature, meaning that WRF model has cold-bias, which is consistent with other studies
(e.g., [38,39]). For 10-m wind speeds, all parameterizations consistently overestimated the wind speed
with Meso12 having the lowest MB (0.22-ms−1), MAE (0.48-ms−1) and highest IOA (0.82). Meso15
has the lowest RMSE (0.61-ms−1) for 10-m winds. For 10-m wind direction, Meso12 performed better
with the lowest MB (−14.52◦), MAE (28.38◦) and RMSE (31.54◦). Meso15 has the highest IOA (0.78).
The most sensitive control variable in WRF simulations is the IBC dataset, after which PBL scheme
gives the most variations in the results. Comparing simulations Meso1 with Meso4 or Meso9 with
Meso12 showed that M2M microphysics scheme performed better keeping all other options the same.
The effect of surface layer scheme is seen for mesoscale simulations during IOP2. Meso16, Meso17 and
Meso18 were tested with same PBL scheme but with three different surface layer schemes (RMO, MOJ
and MYNN). Out of the three surface layer schemes tested, MYNN PBL scheme performed best with
MYNN surface layer scheme. The effect of PBL scheme was studied by comparing the simulations
Meso8, Meso12 and Meso15. As shown in Tables A1–A3, all three PBL schemes performed similarly,
with either YSU scheme or MYJ scheme giving the lowest errors and highest index of agreement. This
was observed for IOP2 simulations as well, where Meso18, Meso19 and Meso20 performed better than
Meso16 and Meso17. The spatial distribution of wind speed across the domain was also dependent
on the parameterization used. Figure 2 shows the 2.5-h time-averaged surface wind contours with
wind direction barbs drawn at every other third grid point for selective meso cases during IOP1. Runs
initialized with NAM datasets showed the most variability in 10-m wind speed across the domain,
while runs initialized with NARR datasets showed the least variability. The wind directions differed
largely based on the IBC used for meso runs. NAM runs have the wind blowing from the south. NARR
runs have the winds blowing from the east and northeast. RAP runs have the 10-m winds blowing to
the west and northwest.

3.1.2. PBL Heights

WRF simulated PBL heights were compared against the values observed from the radiosonde
launches during IOP1 and IOP2. Radiosonde balloons were launched before the release of tracer and
after the end of last sampling period [29]. Runs initialized with NARR dataset could simulate the PBL
height reasonably as seen from Figure 3. The effects of other parameterizations such as surface layer
scheme and microphysics scheme on the development of PBL height were not significant.

In all simulations, WRF model underestimated the PBL height with runs Meso7, Meso8, Meso12
and Meso15 giving the difference of around 200 m with the observed PBL height. The highest difference
of >600 m was observed in PBL height for simulations with YSU PBL scheme and Kessler microphysics
scheme (Figure 3a). During IOP2 (Figure 3b), the difference in PBL height was around 150–200 m for
all simulations (Meso16–Meso20).
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Figure 2. The 10-m horizontal wind speed contours over the domain D04 for selective mesoscale cases
during IOP1. Gray arrows represent normalized wind vectors drawn at every other third grid point.
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(a)

(b)
Figure 3. PBL height simulated by WRF mesoscale runs during: (a) IOP1; and (b) IOP2. The observed
values correspond to the mixing heights estimated from the radiosonde launches during IOP1 and IOP2.

3.1.3. Meteorological Conditions without Nudging

To know the effect of OA, five simulations were performed without nudging the boundary
conditions. The cases selected for these simulations were Meso4, Meso7, Meso8, Meso12 and Meso15
as they were initialized with NARR dataset and used M2M micro-physiscs scheme, which gave
better performance, as shown in Tables A1–A3 and Figure 3. The performance metrics presented in
Section 3.1.3 were used to estimate the model performance for cases with no nudging performed and
the results are presented in Tables A4–A6. Overall, the model performance improved in terms of
increase in IOA, and decrease in MB, RMSE and MAE, as shown in Tables A1–A6. OA improved the
IOA by 7–11% for T2m, 8–15% for U10m, and 11–19% for UDir10m. Similar improvements in IOA for
temperature and wind speed, after performing OA, were observed by Li et al. [28] who simulated the
meteorological conditions during the 2013 Deriving Information on Surface conditions from Column
and Vertically Resolved Observations Relevant to Air Quality Texas campaign; and by Ngan et al. [24]
who simulated the meteorological conditions during the Air Quality Study campaign in Texas in
2006 . In addition, the PBL height predictions improved (not shown) for the nudged cases especially
towards the end of IOP. Based on these results and from the studies mentioned above, performing OA
is recommended to improve model performance especially if the model fields are intended to be used
for studies, such as transport and dispersion.

Following the sensitivity analysis of surface meteorological variables and PBL height, Meso12
and Meso15 were considered as the best ensemble of WRF parameterizations. Subsequent LES runs
made in this study were based on the boundary conditions from mesoscale parameterizations used in
Meso12 case.
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3.2. LES Simulation Results

After finalizing the mesoscale parameterizations, mesoscale simulations were carried out for
remaining IOPs 4 and 5. LES runs were initialized 2 h before the actual tracer release during individual
IOPs and the simulations were run for 6 h. Thus, IOP1 was initialized at 1200 MST, while IOPs 2
and 5 were initialized at 1030 MST and IOP4 was initialized at 1130 MST. Two sensitivity tests were
performed on the innermost LES domain. The first test varied the vertical resolution of the model
for IOPs 1,2 and 4. The second test was conducted for IOP5 to see the effect of SGS models used
in WRF-LES.

3.2.1. Effect of Vertical Resolution

The ability of WRF model to accurately predict the profiles inside the CBL depends on the vertical
resolution and number of levels inside the boundary layer [11]. Thus, two vertical resolutions were
tested in this study for the LES runs during IOPs 1, 2 and 4. The Coarser-LES has a total of 69 levels
in the tropopause with 22 levels below 1300 m. The fine-LES had a total of 99 levels with 40 levels
below 1300 m. The first grid point in both coarse-LES and Fine-LES was at 3.65 m from ground.
The vertical resolution change with height and the difference between coarse-LES and fine-LES vertical
resolution is shown in Figure 1c. Vertical profiles of 2.5-h time-averaged horizontal wind speed
from coarse- and fine-LES were compared against the measured profiles from Atmospheric Research
and Technology (ART) Radio Acoustic Sounding System (RASS) wind profiler and Atmospheric
Systems Corporation (ASC) SOnic Detection And Ranging (SODAR) located inside the tracer sampling
network. Figure 4a,b shows the comparison between the horizontal wind speed profile from coarse
and fine-LES runs with that of measured profiles from SODAR and RASS profiler. As shown in
Figure 4a, the effect of vertical resolution is minimum during IOP1 and IOP2, while the coarse-LES
winds during IOP4 are larger than the fine-LES winds. Both coarse- and fine-LES were unable to
capture the subtle shear observed between 125 m to 160 m. In addition, there is a discrepancy among
the SODAR and RASS profiler readings near 160 m. For all IOPs, the first level measurement of RASS
profiler at 160 m was significantly less than the SODAR readings at almost the same height. This was
attributed to the fact that RASS profiler readings less than 5 ms−1 are suspect [29]. Figure 4c shows
the comparison between the wind directions simulated by coarse- and fine-LES and measured values
from RASS profiler. Although RASS profiler wind speed values are suspect below 5 ms−1, the wind
directions measured by RASS were in general agreement with those measured by other sensors like
SODAR. Wind direction results varied significantly based on the vertical resolution for IOP1 (Figure 4).
This difference, although small, exists in IOP2 and IOP4. As shown in Figure 4c, wind direction change
near 200 m and again at 700 m during IOP1 was well captured by LES. During IOP2, observed wind
directions from RASS profiler were poorly organized above 1000 m, while the LES simulated winds
were nearly constant.

To know the effect of vertical resolution, friction velocity (u∗), planetary boundary layer height (zi)
and Monin–Obukhov length (L) were calculated and compared against the observed values (Figure 5).
“zi observed” was estimated as the average between the values obtained from the two radiosonde
launches, one before the tracer release and another after the tracer release, during each experiment [29].
“zi simulated” was estimated as the location of maximum vertical gradient of potential temperature [40].
u∗ in WRF was estimated by the surface layer scheme as:

u∗ =
κU

ln( z
z0
)− ψm(

z
L , z0

L )
(1)

where κ is von-Karaman constant, U is the wind speed at the lowest model level, z is the height of the
lowest model level, z0 is the roughness height, and L is the Monin–Obukhov Length scale calculated as:

L =
−ρacpu3

∗T
κgQo

(2)
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where ρa, cp, T are density, specific heat and surface temperature of air, g is the gravitational constant
and Qo is the vertical heat flux. As shown in Figure 5, the difference among u∗, zi and L simulated was
reduced in fine resolution LES.

(a)

(b)

(c)

Figure 4. Horizontal Wind Speed profiles of 2.5-h time-averaged from coarse- (red-dash) and fine-LES
(solid) runs compared against: the SODAR readings (a); and RASS wind profiler (b). (c) Wind direction
profiles of 2.5-h time-averaged compared against the RASS wind profiler. The black dotted lines
represent the 30-min averaged wind profiles.
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(a)

(b)

(c)

Figure 5. Comparison of 2.5-h averaged (a) friction velocity (u∗), (b) PBL height (zi), and (c)
Monin–Obukhov length (L) between the observed values and values calculated from coarse- and
fine-LES at GRI tower. The PBL height observed values were averaged from the before and after
radiosonde balloon flights released during the experiments; for more information on Radiosonde
launches refer to [29].

3.2.2. Effect of SGS Mixing Parameters

As mentioned above, the SGS model used in LES dictates the amount of turbulence that is
resolved. WRF-LES has two eddy-viscosity based SGS models: a 3-D TKE-based model (SGS1) that
uses a prognostic equation for TKE and a 3-D Smagorinsky model (SGS2) that uses the standard
Smagorinsky approach. The SGS viscosity in WRF is dependent on a diffusion constant, which is
related to the TKE coefficient (ck) in SGS1 and Smagorinsky coefficient (cs) in SGS2, respectively.
Keeping in mind the limited computational resources, two additional cases were run for IOP5 with
both SGS models using the default values for corresponding SGS coefficients (i.e., ck = 0.15 and
cs = 0.25). Mirocha et al. [9] and Mirocha et al. [20] have showed that use of Non-linear Backscatter
Analysis (NBA [41]) yields results for coarser LES runs that are similar to high resolution LESs. While
NBA model accounts for momentum fluxes, SGS models in WRF provide the scalar fluxes. Although
computationally expensive, NBA accounts for the reverse cascade of energy from smaller to larger
eddies and thus is useful when running LES at resolutions greater than 100 m. Not many studies exist
that have used NBA in real-world convective conditions with either of the SGS models in WRF. Green
and Zhang [42] has used NBA for the first time to model the Hurricane Katrina, which includes both
shear and buoyancy effects. They were able to simulate the turbulence structures at a resolution of
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333.33 m. Recently, Mirocha et al. [43] has used the NBA accompanied by 3-D TKE SGS model to
test the sensitivities of WRF-LES for idealized neutral and convective conditions. The 10-min time
averaged TKE values observed at 4- and 60-m were compared against the two SGS models simulated
in the study. Figure 6a,b shows the time variation of TKE evaluated at 3.65 and 62 m in LES. TKE from
SGS2 run at 4 m was almost half of the observed value for most of the time (1230–1400 MST). TKE
from SGS1 run was underestimated closer to the surface but was in good agreement at 60 m. The peak
magnitude of TKE at 4 m (=2.67 m2s−2) and 60 m (=3.51 m2s−2) during IOP5 was observed around
1330–1340 MST. SGS1 model TKE at 4 m and 60 m for the 10-min average from 1330 to 1340 MST were
1.17 m2s−2 and 1.91 m2s−2, respectively. SGS2 model TKE at 4 m and 60 m for the 10-min average
from 1330 to 1340 MST were 2.24 m2s−2and 2.8 m2s−2, respectively. Overall, SGS1 performed better
relative to SGS2.

(a)

(b)

Figure 6. The 10-min averaged (a) 4-m and (b) 60-m TKE calculated from LES run using 3D
TKE SGS model (SGS1) and Smagorinsky SGS model (SGS2), compared against the 3D Sonic
anemometer measurements.

3.2.3. Surface Meteorology

The 10-min averaged temperature at 2-m, horizontal wind speed and direction at 10-m near the
GRI Tower were compared against the respective area averaged values from WRF-LES simulations.
Figure 7 shows the temporal variation of the surface meteorological variables during the 2.5 h of
individual IOPs conducted. IOP1 winds are low (<2 ms−1) and are not aligned in the direction of
the tracer sampling network. WRF-LES was able to simulate the variations in wind speed and wind
direction, especially from 1500 to 1600 MST during IOP1.
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Figure 7. Variation of 2-m temperature (2m Temp, top row), 10-m wind speed (U, middle row) and
direction (UDir, bottom row) during 2.5 h of individual IOPs of PSB1.

IOPs 2 and 5 have moderate winds with values ranging from 2-ms−1 to 4-ms−1 from both LES
and measured values. LES underestimated the wind directions by 20◦ during IOP2 but performed
better during IOPs 4 and 5. There is no significant difference between the LES 2-m temperature and the
observed values in all IOPs simulated. Figure 8 gives the wind rose comparison between the observed
and LES simulated 15-m horizontal winds averaged over the Mesonet stations available within 16-km
(≈10-mi) radius from the tracer release location. Distributed nature of wind directions during IOP1
shows the horizontal inhomogeneity [29], which was captured by the LES, although LES simulated
winds were more towards south-southwest, while the observed wind directions were from southwest.
In addition, the observed direction of maximum wind speed during IOP1 was from southwest, while
the LES simulated the maximum winds from the east. Wind directions and magnitudes simulated in
IOPs 2,4 and 5 were well captured by LES, as shown in Figures 7 and 8.

3.2.4. Stability and Turbulence Statistics

Atmospheric stability during PSB1 was estimated based on Richardson number (Ri) and shear
exponent (α) (estimated as in [19]) that were calculated from the 10-min averaged LES wind speed and
temperatures at 8- and 60-m heights. Ri evaluates the buoyant and shear tendencies inside the ABL
making it a suitable parameter to estimate the stability. Ri becomes 0 for neutral, >0 for stable and <0
for unstable atmosphere. In the case of highly unstable atmosphere, due to the strong mixing within
the ABL, wind speed profiles are well-mixed making α very small. Ri and α together gives the strength
of unstable atmosphere. Figure 9 shows the comparison of Ri and α between the LES simulations and
observed values. For all IOPs simulated, Ri was negative meaning that the atmosphere was unstable.
α was used to further identify the degree of atmospheric instability. Stability during PSB1 varied
from unstable to weakly unstable for IOPs considered in the study. Ri during IOP1 and IOP2 varied
between −0.5 and −40, while the values during IOP4 and IOP5 varied between −4 and −10. α during
IOP1 varied greatly, from +0.2 to −0.2 while the values for remaining IOPs were between 0.2 and
0. Considering Ri and α values, the stability during IOP1 and IOP2 was varied between unstable to
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weakly unstable, while for IOP4 and IOP5 the stability was consistently weakly unstable. Similar
values of α were simulated in our previous study [19], where the shear and buoyancy dominated
unstable atmosphere had α values ranging from 0.12 to 0.04. Shear-buoyancy convective conditions
studied in [19] were similar to IOPs 4 and 5 in the present study. While IOPs 1 and 2 resemble
the α values simulated for pure buoyant convective atmosphere, meaning the atmospheric stability
was unstable to highly unstable. The stability criteria mentioned by us gave the same conclusions
as Finn et al. [29] and Finn et al. [30] who used Pasquill–Gifford wind direction standard deviation
method to estimate stability during PSB1.

Figure 8. Wind Rose comparison between (a) observed and (b) LES simulated 15-m wind directions.
From left to right: IOP1, IOP2, IOP4 and IOP5.

Figure 9. The 10-min averaged (a) Richardson number (Ri) and (b) Shear exponent (α) calculated based
on the wind and temperature readings at 8 and 60 m.

Figure 9 also shows the variations of surface sensible heat flux (HFX) during the IOPs. HFX
during IOP1 was weak and varied from 0.06 to 0.01 mKs−1. HFX during IOPs 2, 4 and 5 was greater
than IOP1 and varied between 0.06 to 0.2 mKs−1. Profiles of time averaged Turbulence Intensity
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(TI = σv/U) and TKE were evaluated at GRI tower location in LES and were compared against the
observed values from 3D sonic-anemometers (Figure 10a,b). TI from LES was almost constant from
surface for IOPs 2, 4 and 5, while an increase in TI at around 30-m was simulated during IOP1. During
IOP1, at 60 m the TI observed was greater than the near-surface values and was not captured by
LES, meaning the modeled fluctuations in horizontal wind speed were underestimated. However,
this was not the case during rest of the IOPs, where the TI modeled was in good agreement with the
observed values with a small difference near the surface. Similar to TI (except for IOP1), TKE profiles
from the LES model were well mixed above 40 m. As shown in Figure 6, TKE near the surface was
underestimated by LES during IOPs 2, 4 and 5.

(a)

(b)

Figure 10. The 2.5 h time averaged: (a) turbulence intensity profile up to 100 m; and (b) TKE profile up
to 100 m during IOPs 1, 2, 4 and 5. Black dots represent the observed values from 3D sonic-anemometers
positioned on the GRI tower during PSB1.

Standard deviations from the mean wind direction (σθ) are critical for dispersion applications
as the horizontal spread of the pollutants or tracers depends on it [44]. Wind direction standard
deviations estimated from 10-min averaged winds were compared against the observed values from
GRI tower (Figure 11). Observed standard deviations during IOP1 and IOP2 were high compared to
IOP4 and IOP5. LES simulated σθ were underestimated for wind speeds less than 3 ms−1, as shown
in Figure 11a,b. For wind speed greater than 3 ms−1, as was the case during IOP4 and IOP5, LES
simulated σθ were within the range of the observed values for IOP4 and were underestimated by
approximately 10◦ during IOP5.
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Figure 11. Comparison of wind direction standard deviation with wind speed during: (a) IOP1;
(b) IOP2; (c) IOP4; and (d) IOP5. White boxes represent the observed values from GRI and COC towers
during PSB1 and black dots represents the LES values.

3.2.5. Stability Parameter Scaling and Convective Features

Monin and Obukhov [45] has developed a similarity theory in which the atmospheric stability
can be determined by a non-dimensional stability parameter, ζ = z/L . z is the vertical altitude
above ground and L is the Monin–Obukhov length scale. The Obukhov length is positive for stable
stratification, negative for unstable stratification and zero for neutral stratification. L represents
the height beyond which buoyancy forces dominate the mechanical (shear) forces. The shear and
buoyant productions of turbulent kinetic energy in the boundary layer can be compared from the
ratio of friction velocity (u∗) to convective velocity scale (w∗ estimated as in [19]). Thus, the 10-min
averaged turbulence velocity scale ratio (u∗/w∗) was studied against the stability parameter, as shown
in Figure 12.

Figure 12. Ratio of friction velocity and convective velocity (left axis, black) and TKE (right axis, red)
plotted against the stability parameter for all IOPs simulated. Solid dots indicate observed values of
(black) and (red). White circles indicate LES simulated (black) and TKE (red). Dashed line is the power
law fit between and observed, solid line is the power law fit from LES data.

Both the observed and simulated data followed the scaling between the stability parameter and
turbulence velocity scale ratio. There was little to no scatter in the data from the LES simulations,
which can be attributed to the fact that the surface layer scheme used in WRF was the Revised
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Monin–Obukhov scheme. The 10-min averaged TKE was also studied against the stability parameter
(Figure 12). While no scaling was observed between the TKE and stability parameter, the interplay
between the buoyant and mechanical productions was in such a way that the total TKE (which is the
sum of buoyant and mechanical productions) varied largely between 0.2 and 2.5 m2s−2. The fact that no
scaling exists between TKE and stability parameter makes it impractical to use TKE alone for classifying
the atmospheric stability. Wharton and Lundquist [46] have used TKE ranges together with parameters
like Ri and α to identify the atmospheric stability and to further classify the unstable atmospheric
conditions. From TKE values observed at 80 m, Wharton and Lundquist [46] have proposed that
moderately unstable conditions were characterized by TKE in the range of 1.0–1.4 m2s−2, and strongly
unstable conditions exists when TKE >1.4-m2s−2. The 10-min averaged TKE values observed during
IOP1 of PSB1 and respective LES simulated values were less than 0.5-m2s−2, yet the atmospheric state
for IOP1 was characterized earlier as unstable based on Ri and values, as discussed in Section 3.2.1.
Finn et al. [29] also concluded that the stability during IOP1 was unstable based on values observed.
TKE values for remaining IOPs were in the range of 0.8–2.5 m2s−2. The stability classification discussed
for IOPs 2-,4- and 5 in this study is in good agreement with that of Finn et al. [29], but contradicts
the stability classification in [46]. One possible reason for this difference could be that the study
area considered in [46] has an elevation of near-sea level with rolling-grassland type land cover
and experiences some marine boundary layer influences, whereas the study region for PSB1 has an
elevation of approximately 1500 m above sea-level with most of the land covered with sagebrush
and grass. Site characteristics such as that of PSB1 were present in the work of St Martin et al. [47],
who studied the performance of wind turbines based on the atmospheric stability and turbulence
conditions. The 74-m observed TKE values in [47] range from 1 to 15 m2s−2 and the authors classified
the atmosphere as stable for TKE < 3.0 m2s−2. Based on these studies, TKE ranges that can be used to
classify the atmospheric stability appear to be site-specific. Thus, using metrics such as u∗/w∗ , Ri, α

or −zi/L to understand the atmospheric stability increases the robustness of analysis.
After evaluating the atmospheric stability in the boundary layer, knowledge of large-scale

turbulent motions (organized convective features) will help in understanding the vertical transport
of fluxes and scalars within the boundary layer [48]. In addition, presence of horizontally organized
convective rolls may induce a meandering effect on plumes released in atmosphere [49–51]. Figure 13
shows the 10-min averaged vertical velocity contours overlapped with 10-min averaged wind vectors
with wind speed normalized. The black square represents the release location and the black circles
represent the 3-D sonic anemometers located at 3200-m arc radius during PSB1.

Figure 13. The 10-min averaged vertical velocity contours at 0.5 zi during (from left): (a) IOP1; (b) IOP2;
(c) IOP4; and (d) IOP5. Normalized wind vectors show the 10-min averaged wind direction across the
PSB1 site. Start time for the 10-min average period is given on top of each sub-figure. Black square
represents the tracer release location during PSB1 and the black circles represent the sonic anemometers
on the 3200-m arc radius from release location.
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Studies (e.g., [49,52,53]) have shown that convective rolls can form in the boundary layer under
combined conditions of moderate to strong sensible heat flux and winds. Such conditions were
simulated during IOPs 2, 4 and 5 of PSB1. As shown in Figure 13b–d, organized roll-like structures
were present at the study area of PSB1 during IOPs 2, 4 and 5, while convective cell type structures were
present during PSB1. These results are consistent with findings of Lemone [49] and LeMone et al. [54]
and observations reported by Weckwerth et al. [55], who suggested that convective roll formation
occurs with the mean wind speed in the CBL greater than 3 ms−1, which was the case for the IOPs
2, 4 and 5 from the LES model. As for IOP1, larger stability parameter and low wind speeds in the
CBL did not favor the formation of roll features; instead, convective cell type structures were observed
from the vertical velocity contours, as shown in Figure 13a.

4. Summary and Conclusions

ABL conditions during Sagebrush tracer experiment were simulated at LES spatial and temporal
scales using dynamic downscaling methodology in WRF. Five nested-mesoscale domains with grid
resolutions ranging from 24 km to 1.3 km and two nested-LES domains with grid resolutions of 450 m
and 150 m were simulated. Further reduction of grid resolution was not deemed necessary as the
region covered is mostly flatland and does not have any features that can impact the wind field. Output
from the mesoscale simulations was used to drive the LES. Sensitivity of WRF model performance to
the initial and lateral boundary conditions, physics schemes and sub-grid scale models was evaluated.
Mesoscale simulations were conducted with multiple PBL schemes, microphysics and surface layer
schemes (Table 2). Sensitivity analysis following the metrics explained in Section 3.1 showed that
NARR dataset with YSU PBL scheme coupled with Revised Monin–Obukhov surface layer scheme
and Morrison-2nd-moment microphysics performed best. Model performance was improved with
nudging the boundary fields through OA. Significant improvement was observed in wind direction
predictions after the nudging (Table A3).

Although there exists no “thumb-rule” to use either mesoscale or LES at “terra-incognita”
resolutions, we used LES at a grid resolution of 450-m, thus the turbulence started building up
before the finest LES domain of 150-m resolution. Two vertical resolutions were tested inside the
LES domains. Wind speed and wind direction profiles were compared against the observed values
from SODAR and RASS during PSB1. Having 44 levels inside the boundary layer improved the
model performance, especially with wind direction profiles (Figure 4c). Two SGS models (3D TKE
and Smagorinsky) with NBA turned “on” were tested inside the LES domains. Comparing the time
variation of TKE near surface (4-m) and at 60-m with the observed values during 2.5-h of PSB1 showed
that both SGS models in WRF underestimated the TKE at 4-m. This might be avoided by using
a dynamic sub-grid model, as suggested in previous studies [20].When using LES framework for
dispersion applications, it is crucial to capture the mixing and stability conditions inside ABL. We
compared the friction velocity, PBL height and Monin–Obukhov length against the measured values.
Stability during the IOPs was estimated from Richardson number and shear exponent evaluated based
on wind speed and temperatures between 4- and 60-m. IOPs 1 and 2 were unstable to weakly unstable,
while IOPs 4 and 5 were consistently weakly unstable. Turbulence intensity and TKE profiles were well
mixed 40-m above ground. Although rare, standard deviation of wind speed directions in the range of
70◦–100◦ were observed during IOPs 1 and 2 for wind speeds less than 3-ms−1 and in the range of
10◦–40◦ for IOPs 4 and 5. LES simulated wind direction standard deviations were underestimated for
wind speeds less than 3-ms−1 and were in good agreement during IOPs 4 and 5. Wang and Jin [56] also
observed the not-so-satisfactory performance of WRF model for wind speeds smaller than 2.5-ms−1 in
their mesoscale runs.

In summary, this study shows the use of multiple nested domains to downscale the real boundary
conditions from mesoscale resolutions to LES scales. A detailed description of ABL conditions during
Sagebrush tracer experiment are given including the parameters that are critical for tracer dispersion
studies. With proper selection of parameterizations, WRF model can be used to deliver the necessary
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initial and boundary conditions required for LES runs. Future study will be performed to validate the
tracer dispersion properties from the experiments using the meteorological fields obtained from the
ABL simulations.
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Appendix A

Statistical metrics evaluated for sensitivity analysis of mesoscale WRF runs are listed below.
Xsimulated is the LES simulated variable, Xobserved is the observed value and n is the number of points
considered for the evaluation. In this study, 5-min averaged values were compared during the 2.5-h of
the tracer release during PSB1, making n = 30.

MB =
∑n

i=1(Xsimulated − Xobserved)

n
(A1)

RMSE =

√
∑n

i=1(Xsimulated − Xobserved)2

n
(A2)

IOA = 1− ∑n
i=1(Xsimulated − Xobserved)

2

∑n
i=1(|Xsimulated − Xobserved|+ |Xobserved − Xobserved|)2

(A3)

MAE =
∑n

i=1 |Xsimulated − Xobserved|
n

(A4)

Table A1. Statistical measures for 2-m temperature in mesoscale simulations performed. Bold values
represent the best values.

Case T2m

MB (◦C) RMSE (◦C) IOA MAE (◦C)

Meso1 −2.02 2.87 0.72 2.01
Meso2 −3.51 3.92 0.75 3.12
Meso3 −2.69 3.04 0.71 3.02
Meso4 −0.87 1.72 0.78 1.71
Meso5 −1.97 2.51 0.67 2.51
Meso6 −1.34 1.98 0.81 1.97
Meso7 −0.88 1.66 0.78 1.64
Meso8 −1.17 1.93 0.82 1.90
Meso9 −2.05 2.97 0.70 2.96

Meso10 −3.71 4.13 0.63 4.12
Meso11 −1.07 1.71 0.77 1.69
Meso12 −0.70 1.56 0.86 1.51
Meso13 −1.82 2.41 0.81 2.40
Meso14 −1.84 2.48 0.76 2.47
Meso15 −0.79 1.56 0.88 1.58
Meso16 −0.42 1.33 0.77 1.13

http://www.tacc.utexas.edu
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Table A1. Cont.

Case T2m

MB (◦C) RMSE (◦C) IOA MAE (◦C)

Meso17 −0.53 1.36 0.72 0.85
Meso18 −0.37 1.33 0.81 0.84
Meso19 −0.33 1.03 0.84 0.75
Meso20 −0.47 1.38 0.68 0.85

Table A2. Statistical measures for 10-m wind speed in mesoscale simulations performed. Bold values
represent the best values.

Case U10m

MB (ms−1) RMSE (ms−1) IOA MAE (ms−1)

Meso1 1.06 0.72 0.63 0.65
Meso2 0.79 0.78 0.65 0.71
Meso3 1.09 1.28 0.62 1.13
Meso4 0.30 0.63 0.57 0.60
Meso5 0.47 1.02 0.70 0.85
Meso6 0.27 0.85 0.67 0.72
Meso7 0.73 0.95 0.71 0.83
Meso8 0.30 0.71 0.79 0.61
Meso9 0.56 0.86 0.66 0.70

Meso10 0.42 0.80 0.74 0.65
Meso11 0.32 0.67 0.73 0.58
Meso12 0.22 0.63 0.82 0.48
Meso13 0.50 0.96 0.68 0.79
Meso14 0.33 0.84 0.81 0.72
Meso15 0.24 0.61 0.81 0.50
Meso16 0.38 0.87 0.79 0.73
Meso17 0.41 0.93 0.80 0.75
Meso18 0.36 0.85 0.83 0.72
Meso19 0.45 0.83 0.86 0.60
Meso20 0.31 1.26 0.83 0.62

Table A3. Statistical measures for 10-m wind direction in mesoscale simulations performed. Bold
values represent the best values.

Case UDir10m

MB (◦) RMSE (◦) IOA MAE (◦)

Meso1 −23.56 40.52 0.69 31.58
Meso2 −30.56 44.05 0.58 37.52
Meso3 −37.34 50.99 0.57 43.97
Meso4 −18.38 59.30 0.72 30.15
Meso5 −33.12 66.70 0.63 48.75
Meso6 −41.69 53.66 0.68 43.35
Meso7 −28.06 48.77 0.71 36.15
Meso8 −17.96 35.61 0.75 31.93
Meso9 −24.66 52.35 0.71 39.58

Meso10 −22.63 47.35 0.73 36.85
Meso11 −24.60 42.84 0.60 41.39
Meso12 −14.52 31.54 0.76 28.38
Meso13 −25.49 53.38 0.63 43.55
Meso14 −36.06 51.82 0.60 47.27
Meso15 −16.81 34.50 0.78 30.03
Meso16 −29.22 28.95 0.73 27.21
Meso17 −23.48 33.68 0.76 31.52
Meso18 −24.48 26.26 0.80 26.09
Meso19 −26.51 25.64 0.83 25.20
Meso20 17.01 31.16 0.78 26.91
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Table A4. Statistical measures for 2-m temperature in mesoscale simulations performed without nudging.

Case UDir10m

MB (◦) RMSE (◦) IOA MAE (◦)

Meso4-No-OA −1.69 2.13 0.72 2.10
Meso7-No-OA −1.28 1.82 0.73 1.91
Meso8-No-OA −1.73 2.21 0.76 2.11

Meso12-No-OA −1.17 1.91 0.80 1.70
Meso15-No-OA −0.85 1.92 0.79 1.88

Table A5. Statistical measures for 10-m wind speed in mesoscale simulations performed without nudging.

Case UDir10m

MB (◦) RMSE (◦) IOA MAE (◦)

Meso4-No-OA 0.37 0.78 0.48 0.74
Meso7-No-OA 0.92 1.15 0.64 0.91
Meso8-No-OA 0.39 0.92 0.71 0.42

Meso12-No-OA 0.31 0.72 0.76 0.65
Meso15-No-OA 0.33 0.82 0.75 0.72

Table A6. Statistical measures for 10-m wind direction in mesoscale simulations performed without nudging.

Case UDir10m

MB (◦) RMSE (◦) IOA MAE (◦)

Meso4-No-OA −30.81 71.32 0.65 41.70
Meso7-No-OA −40.72 61.25 0.56 51.42
Meso8-No-OA −28.57 46.72 0.59 41.51

Meso12-No-OA −30.33 41.82 0.68 39.84
Meso15-No-OA −35.07 50.12 0.63 43.29
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