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Abstract: The aim of this research is to present a weather-based forecasting system for apple fire blight
(Erwinia amylovora) and downy mildew of grapevine (Plasmopara viticola) under Serbian agroecological
conditions and test its efficacy. The weather-based forecasting system contains Numerical Weather
Prediction (NWP) model outputs and a disease occurrence model. The weather forecast used is
a product of the high-resolution forecast (HRES) atmospheric model by the European Centre for
Medium-Range Weather Forecasts (ECMWF). For disease modelling, we selected a biometeorological
system for messages on the occurrence of diseases in fruits and vines (BAHUS) because it contains
both diseases with well-known and tested algorithms. Several comparisons were made: (1) forecasted
variables for the fifth day are compared against measurements from the agrometeorological network
at seven locations for three months (March, April, and May) in the period 2012–2018 to determine
forecast efficacy; (2) BAHUS runs driven with observed and forecast meteorology were compared
to test the impact of forecasted meteorological data; and (3) BAHUS runs were compared with field
disease observations to estimate system efficacy in plant disease forecasts. The BAHUS runs with
forecasted and observed meteorology were in good agreement. The results obtained encourage
further development, with the goal of fully utilizing this weather-based forecasting system.

Keywords: fire blight; downy mildew; disease modelling; numerical weather prediction

1. Introduction

Providing food to the growing population of the world requires agricultural production with
minimized environmental, pest, and disease risks. Fire blight (Erwinia amylovora) and downy mildew
(Plasmopara viticola) diseases have been the cause of massive yield losses in orchards and vineyards
worldwide. Plasmopara viticola (Berk. & M.A. Curtis) Bed. and De Toni, the downy mildew of
grapevine, is the obligate biotrophic oomycete that attacks the green parts of the host plant leaves,
clusters, and young fruit [1]. It has two developing stages: (1) the primary sexual stage, consisting
of oospores, which are a source of the inoculum for primary downy mildew infection [2–4]; and (2)
the secondary asexual stage, when infection results from sporangia-containing asexually produced
zoospores [5,6]. During the winter months, oospores are present in the top soil layers and leaf debris.
Increased temperature and rain events in the spring allow their germination in a macrosporangium
that releases zoospores responsible for primary infections on grape leaves and clusters [7]. After the
primary infection, if the environmental conditions are favorable, then a secondary infection can start.
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Erwinia amylovora (Burrill 1882) [8], an epiphytic bacterial pathogen, is the causal agent of fire
blight in the Rosaceae family. One of the most disease-sensitive host phenological phases is flowering.
During flowering, the cells of Erwinia amylovora multiply on the flower surface and can be washed
inside the flower to the hypanthium, where infection occurs [9,10]. From the flower surface, pathogens
can be spread by pollinating insects [11], but once inside, pathogens are spread internally within the
host plant.

Damage caused by fire blight and downy mildew has been so severe that the chemical industry has
been focused on producing highly efficient products for disease control. As environmental awareness
is increasing, new systems for optimizing and minimizing chemical control are being developed,
mostly through the use of warning systems based on meteorological observations and disease models
of varying complexity [12–14]. Several models for messages of downy mildew occurrence have
been developed based on agrometeorological conditions and the phenology of both the host and
the pathogen [15–17]. Fire blight models have been developed based on the impact of temperature
on bacterial growth [17,18] and downy mildew models on the impact of temperature on incubation
period duration [12].

Weather data that are commonly used as inputs for plant disease prediction models include
air temperature, precipitation, relative humidity, and duration of leaf wetness [13]. These data
are either observed or forecasted using Numerical Weather Prediction (NWP) models. Real-time
pests and disease decision-support systems commonly use real-time observations from automatic
weather stations (AWSs) [14–18]. Real-time meteorological data and calibrated disease models
can provide accurate outputs, but without the possibility of disease forecasting if they are not
equipped with complex dynamic models. During the last 30 years, some attempts have been made to
introduce weather forecasting in plant disease modelling [19], but the topic was not exploited enough,
and systems that utilize real short-term weather forecasts created by operational running NWP models
are still very rare [18,20,21].

The development of weather-based warning systems able to predict plant disease appearance
is closely related to the performance of high-resolution NWP models. The high resolution of an
NWP model enables forecasting of small temporal (1 to 5 days) and spatial (orchard) scale biological
processes, such as those related to infection development. Since almost all disease models are diagnostic
and driven by meteorological conditions, predictions of disease appearance can be made by using
weather forecasts as meteorological data inputs. It is hence possible to predict the time of appearance,
the duration of incubation periods, and the risk level depending on the original disease model in use.
The benefits of weather-based warning systems are evident at all levels from local (farms) to global
(environmental) scales.

The weather-based warning system presented in this paper consists of two models: (a) a
high-resolution forecast (HRES) atmospheric model, operationally run by the European Centre for
Medium-Range Weather Forecasts (ECMWF) [22]; and (b) a biometeorological system for messages
on the occurrence of diseases in fruits and vines (BAHUS) [23,24]. Outputs from the HRES model
were used as input data for the BAHUS model. In order to test the operational efficacy of the system,
we used the fifth day of the forecast according to the World Meteorological Organisation (WMO)
recommendations [25] as an optimal time window for field operations. BAHUS was chosen as a
multidisease system.

2. Experiments

2.1. Weather-Based System Design

The system is designed to be prognostic and simple from the start. In order to provide forecasted
weather data for input, a high-resolution 10-day forecast (HRES) atmospheric model with a resolution
of 9 km is used. The advantage of this system is the 10-day time step and connection to ensemble
forecasting by ECMWF [26]. The chosen NWP model, HRES, allows use of weather forecasting with
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different integration periods (10 days or less). For the purpose of this study, only temperature and
precipitation from the 00:00 run every 3 h for the fifth day of the forecast is used. The fifth day is chosen
over the first or third day forecast following recommendations of the WMO about the dissemination of
model results and time that farmers need to prepare and act on disease appearance [25]. The forecast
data are obtained in the form of gridded meteorological data for the grid point closest to the selected
geographical location.

BAHUS requires average daily temperature and daily precipitation for downy mildew (BAHUS-P)
and daily temperature, maximal daily temperature, and daily precipitation for fire blight forecasting
(BAHUS-E). Daily temperature and precipitation are calculated from 8 HRES output values for the
fifth day, and maximum temperature is taken as a maximum of 8 temperature values, because disease
models require daily values as input.

For the purpose of downy mildew suppression, it is necessary to detect the exact time of the
primary infection outbreak. In BAHUS-P, the start of the downy mildew primary infection is described
by its preferred environmental and biological conditions, also known as the 3–10 rule. The 3–10 rule is
a general spray rule that defines the conditions for primary infection: (1) the air temperature is above
10 ◦C, (2) more than 10 mm of rain has fallen within 48 h, and (3) the shoot length in the vineyard
is at least 10 cm [12]. In the case of Serbian agroecological conditions, the 3–10 rule is modified by
increasing the base temperature from 10 to 12 ◦C. The duration of incubation is determined by 3
methods in BAHUS. In this study, we chose the Milers method, which gave the best results in previous
testing [23,24]. In the Milers method, the end of incubation is defined by air temperature and the
Milers curve, which gives the accumulation of degree-days (DD). BAHUS-P runs are performed after
the dates of phenological conditions are met and observed in the field (10 cm for the shoot length).

BAHUS-E is composed of environmental requirements for apple blossom infection as given
by Steiner [27] together with Mills’s degree-day [28] and the MaryblytTM algorithm [24,29,30].
The MaryblytTM algorithm is based on an accumulation of degree-days (DD) and degree-hours
(DH), which are defined as the number of degrees over the base temperature during 1 day and 1 h,
respectively [28,31]. BAHUS-E runs started on the first day of flowering (Biologische Bundesanstalt,
Bundessortenamt and Chemical industry (BBCH) 61, beginning of flowering: approximately 10% of
flowers open [32]) and ended 30 days later. The time step of 20 days was selected because flowers
fading and majority of petals fallen were not given for all locations, and the apple flower is known to
last for 2–3 weeks in Serbian agroecological conditions [33].

The current system setup includes: (a) selected locations, (b) fifth day of the HRES weather forecast
(-HRES), (c) observed weather data (-O), and (d) phenological stage of the plant. After the system run,
BAHUS-P output was the occurrence of downy mildew primary infection, while BAHUS-E output
was the risk of apple blossom fire blight infection, described as none, low, moderate, or high [23,27].
Both model outputs, driven by observed (-O) and forecast (-HRES) weather data, were compared
to examine the impact of weather forecasts on disease appearance prediction. Results obtained
were compared with field disease observations to estimate system efficacy in fire blight and downy
mildew prediction.

2.2. HRES Data

The HRES atmospheric model is a product of the ECMWF that is created twice a day with a
resolution of 9 km. The forecast is produced at 3 h intervals for the first 144 h and every 6 h until
240 h, with base times of 00:00 and 12:00 UTC. From the first run at 00:00, we used the fifth day of the
forecast [22,26]. The HRES model accuracy tends to change after day 5 (Appendix A). Additionally,
by using only one forecasting day, we ensured that it was comparable to the observed meteorology.
HRES air temperature and precipitation data are taken as the primary meteorological set for the
BAHUS model run. The model numerical point is chosen as the one geographically closest to the
location of the AWS in the field. For modelling purposes, we used linear interpolation to obtain
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the hourly temperature from the 3 h data. The accuracy of the forecast was tested for the most host
disease–sensitive times of the year, i.e., March, April, and May, in 2012–2018.

The accuracy of the forecast was evaluated using: (1) coefficient of determination (r2),
(2) Root-Mean-Square Error (RMSE) and BIAS, and (3) coefficient of correlation (C); normalized
standard deviation (σN) and RMS are presented on a Taylor diagram. The r2 gave the answer to
the question: How well did the forecast values correspond to the observed values? The RMSE and
BIAS were calculated, since r2 does not take forecast BIAS into account and forecasts with large errors
can have very high r2, and to answer the question: What is the average magnitude of the forecast
errors? The Taylor diagrams were added for deeper insight into the specific location forecast on the
monthly level.

2.3. Agrometeorological Observations

The agrometeorological network is a part of the Forecasting and Reporting Service of Plant
Protection (Prognozno-Izveštajne Službe (PIS) zaštite bilja) in Serbia. The network consists of 166 AWSs,
69 in the Vojvodina region and 97 in central Serbia, placed in the field to measure micrometeorological
conditions of the plant canopy. The standard setup of the PIS AWS consists of the following sensors:
air temperature, relative humidity, soil temperature, precipitation, and leaf wetness. Network AWSs are
regularly maintained according to the manufacturer’s (Pesl or Campbell Scientific/Davis) instructions.
Micrometeorological data from the PIS network are freely available online. For the purpose of this study,
temperature and precipitation were obtained for the locations where disease appearance was observed
during the 2012–2018 period. The location details are given in Table 1. Observed meteorological data
were used to analyze the efficacy of the NWP in predicting meteorological conditions for plant disease
appearance in the Vojvodina region.

Table 1. Selected automatic weather stations in the PIS agrometeorological network.

Location Location
Index Latitude Longitude Altitude (m) Plant Stand Working

Period

Vršac VV 45.10520 21.31680 128 vineyard 2012–2018
Bački

Vinogradi BV 46.13060 19.86036 90 orchard 2012–2018

Čerević CE 45.21419 19.65564 66 orchard 2012–2018
Gospođinci GO 45.42805 19.99114 – orchard 2013–2018

Bela Crkva BC

(Until
23.3.2015
44.914732)
44.90808

(Until
23.3.2015
21.403472)
21.41201

82 orchard 2013–2018

Veliki
Radinci VR 45.02917 19.65222 66 orchard 2013–2018

Divoš DI 45.09842 19.47272 125 orchard 2013–2018

The BC AWS was shifted to an apple orchard close to the Nera River in March 2015. The new
location was 4 km from the previous location.

2.4. Disease Observation

Within the PIS network, monitoring of disease and pest appearance and development was
performed daily or twice a week, depending on pathogen characteristics and favorable weather
conditions for harmful organism appearance. Observations of fire blight and downy mildew were
conducted in all orchards and vineyards of the PIS network, with a focus on early primary infections.
Once disease symptoms were observed and meteorological conditions were suitable for disease
development, adequate treatments were proposed. The presence of fire blight was confirmed at 6
locations in 3 years where observations were made.
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For the comparison study, the following data were selected from the PIS biological observation
database: (a) dates of observed appearance and infection potential for both diseases (Tables 2 and 3);
(b) dates when phenological conditions of host plants, for both model runs, were satisfied (Tables 2
and 3); and (c) dates of primary (or possibly first secondary) infections of grape downy mildew (Table 2).
Because the time between primary and secondary infections of downy mildew can be very short and
symptoms of primary infection are difficult to observe due to a commonly low level of infection, it was
hypothesized that the observed symptoms corresponded to the first secondary infection.

Table 2. Date when phenological conditions are satisfied (10 cm shoot length in the vineyard) and
observed symptoms of downy mildew.

Location Variety
(Treated, yes/no)

Phenological
Conditions Satisfied

Observed
Symptoms

VV Šasla (no) 16.05.2012 01.06.2012
VV Burgundac (yes) 23.05.2013 05.06.2013
VV Šasla (no) 20.04.2014 19.05.2014
VV Šasla (no) 02.05.2015 04.06.2015
VV Šasla (no) 02.05.2016 20.05.2016
VV Šasla (no) 05.05.2017 06.06.2017
VV Župljanka (no) 18.04.2018 21.06.2018

The monitoring of flower fire blight is very difficult because it resembles physiological drying of
flowers, and the first reliable symptoms appear 1–2 weeks after the petals fall or on the tips of shoots
by forming a “shepherd’s crook.” Fire blight observation data are given in Table 3.

Table 3. Dates of apple flowering and observations of first symptoms of fire blight. BBCH, Biologische
Bundesanstalt, Bundessortenamt and Chemical.

Location Flowering Date (BBCH 61, 10% of Flowers Open) Symptoms Observed

BV 19.04.2018 29.05.2018
CE 13.04.2018 20.05.2018
VR 16.04.2018 10.05.2018
BC 16.04.2015 26.05.2015
DI 23.04.2015 05.06.2015
GO 02.04.2014 07.05.2014

3. Results

3.1. HRES Outputs

The efficacy of the model depends on the quality of the input data. Therefore, a comparison of the
model’s temperature and precipitation forecast for the fifth day against the measured data at seven
locations for March, April, and May (MAM) during the 2012–2018 period was performed. A qualitative
analysis of the obtained results is based on the coefficient of determination, r2 (Figure 1) (Tables S1.1
and S1.2 in Supplementary Material 1), RMSE, and BIAS (Figure 2 and Supplementary Table S1.3) are
calculated using observed and forecasted daily temperatures and precipitation. Additionally, to make
site- and season-specific analyses of temperature and precipitation forecasting, the Taylor diagrams
are used to graphically summarize how closely a variable (or a set of variables) matches observations
(Figure 3). The similarity is quantified in terms of their correlation (C), centered RMS difference,
and the amplitude of their variations (represented by normalized standard deviation, σN) [34].
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partly related to a shift of the AWS to a nearby location with very specific local microclimate strongly 
affected by the Nera River and mountains on its right bank in Romania. 

Figure 1. Comparison between observed (TOBS) and predicted daily air temperatures in ◦C by
high-resolution atmospheric forecast model (HRES) (THRES) for selected locations during March,
April, and May (MAM) 2012–2018.

In all locations, the r2 for daily average temperature was above 0.7, while in 39% of cases it was
above 0.9. The lowest values of r2 were obtained for the BC and CE locations (0.7 and 0.81, respectively).
Overestimation of forecasted temperature at the DI location (Figure 1) for only six days (day of year
(DOY) 135–141) significantly reduced overall statistics for 2013 at this location (r2 = 0.81). Values of
RMSE and BIAS calculated without those six days (DOY 135–141) were significantly lower (4.34 ◦C
and −0.31 ◦C, respectively).

The calculated RMSE and BIAS values are quite uniform during the MAM period at all selected
locations except DI in May 2013 and BC in 2016 and 2017 (Figure 2). RMSE variation among locations
is particularly pronounced in April, while the lowest differences can be noticed in May.

High correlation of σN close to 1 and RMS difference around 0.5 ◦C or less for daily temperature
were observed at all locations during the examined period (Figure 3). The exception was the BC
location with a slightly lower correlation coefficient in March and April 2016 and 2017 and May
2017 and higher RMS around 0.7 ◦C (Figure 3). Seasonality was noticed with highly clustered data,
with high correlation and σN in March and April. A less clustered picture in May with high σN but
a much wider spectrum of correlation values and RMS higher than 0.7 ◦C may have been the result
of spring 2015 meteorological conditions at almost all locations, which are not presented in HRES
(Supplementary Material 2).
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Figure 2. RMSE and BIAS of daily air temperature for selected locations during MAM 2012–2018.

Deviations obtained for the DI location in May 2013 (Figure 1) correspond with very low
temperatures measured in the orchard from DOY 133–149. High deviations in the BC location were
partly related to a shift of the AWS to a nearby location with very specific local microclimate strongly
affected by the Nera River and mountains on its right bank in Romania.
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Figure 3. Taylor diagram for daily temperature in (a) March, (b) April, and (c) May for selected
locations during 2012–2018.

Noticed seasonality and variation in the calculated parameters from March to May might be
related to the impact of plant development on orchard micrometeorological conditions and air
temperature variation in the height of fruit tree crowns, where air temperature sensors are typically
installed. Intensive plant development can cause significant variation in canopy air temperature
with respect to outside of the plant canopy, while in the case of the formed canopy, this variation
is negligible. Depending on the variety, intensive apple leaf development took place at the end of
March and during April, while in May, the crown was commonly closed, which explains the increase
in RMS difference.

The overall analysis of measured and forecasted daily precipitation in Vojvodina indicates that
typically, the HRES model underestimates the amount of precipitation (except for BC in 2013 and BV in
2016) (Figure 4). Coefficient of determination, r2, of daily precipitation ranged from 0.02 (BV in 2017) to
0.42 (BC in 2013) (Table S1.2, Supplementary Material 1). RMSE and BIAS of the precipitation increase
from April (average: RMSE = 4.57 mm, BIAS = −0.23 mm) to March (average: RMSE = 5.82 mm,
BIAS = −0.56 mm) to May (average: RMSE = 7.98 mm, BIAS = 0.19) (Figure 5). The main cause of the
observed deviation patterns was the frequency of convective precipitation, which increased near the
late spring and beginning of summer, i.e., in the warmer part of the year. Differences among locations,
more pronounced in May than in March, were also related to convective precipitation and its highly
diverse spatial distribution [35]. Extreme values of RMSE in 2014 at numerous locations were the
result of excessive precipitation (50% of the meteorological stations registered exceeded thresholds for
extreme precipitation) in that year in Serbia [36] (Supplementary Material 3).

The Taylor diagrams for daily precipitation indicate significant discrepancies among seasons and
locations (Figure 6). Data were not clustered, and it was difficult to determine at which location the
precipitation was better forecasted, because the situation changed from month to month and year to
year. The normalized standard deviation was smaller or greater than 1, C was between 0.1 and 0.9,
and the RMS was within 2 mm for the whole period. It is interesting to observe that in May 2014,
when the amount of precipitation in Vojvodina was well above normal, the C was between 0.75 and
0.9 for all locations and RMS was below 0.7 mm. High C, low RMS, and low σN indicate that the
precipitation variations were not of the right amplitude. In this case, the timing was right but the
amount of precipitation was not.
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3.2. BAHUS Simulation Results

3.2.1. Downy Mildew, BAHUS-P

BAHUS-P was run using observed (-O) and forecasted (-HRES) temperature and precipitation
for the location VV. The calculated and observed dates of infection are presented in Figure 7. On the
incubation axes, 0 means the start of the incubation period and 3 is the end of the period. Model runs
were conducted for part of the year (after the dates given in Table 2) when phenological conditions were
met (10 cm shoot length). The obtained results show that BAHUS-P-HRES offered incubation period
simulations that corresponded to the results obtained from BAHUS-P-O and orchard observations.
The most important result was that whenever the disease was observed, BAHUS-P-HRES indicated it
as well, with differences of a few days in some years. The ends of the first BAHUS-P-HRES primary
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infection incubations were as follows (BAHUS-P-HRES/observed): 2012, 150/153; 2013, 149/153; 2014,
128/139; 2015, 145/155; 2016, 147/141; 2017, 134/157; 2018, 136/172. Early triggering of the model
with HRES data in 2012, 2014, and 2017 occurred because of the temperature difference. This difference
was quantified with positive BIAS in May (Figure 2). The early triggering in 2018 occurred because of
poor forecasting in terms of precipitation amount, but also the first symptoms were observed very late
in the year, on day 172. This late observation also indicates that it was not primary but first secondary
infection that was observed.Atmosphere 2018, 9, x FOR PEER REVIEW  12 of 18 
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Figure 7. BAHUS-P runs with (a) observed (OBS; o) and forecasted meteorology (HRES; x) on days
when phenological conditions for disease development were met for primary infection (10 cm shoots;
orange triangles) and disease was observed (green squares); (b) observed and predicted temperature
(TOBS, THRES) and precipitation (POBS, PHRES) in the same period at VV location.

3.2.2. Fire Blight, BAHUS-E

BAHUS-E was tested in the six orchards for six years when disease was observed. The observations
of fire blight are used only for the location selection, not for testing, because the observations were
made after flowering, when bacteria have infected other plant organs.

The results from the model run with observed (-O) and forecasted (-HRES) showed good
agreement between no risk = 0, low risk = 1, medium risk = 2, and high risk = 3 conditions
(Figure 8a). At location GO in 2014, the air temperature was very low after flowering, and both
runs showed an increased risk after 30 days. In 2015, at location BC, there was good risk response with
BAHUS-E-O, but late response from BAHUS-E-HRES due to the lower forecasted temperatures at the
beginning of May (Supplementary Material 4). In 2018, at locations CE, VR, and BV, BAHUS-E-O and
BAHUS-E-HRES gave very similar results, showing the significance of the predicted temperatures
over precipitation (Figure 8b).
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Figure 8. BAHUS-E runs with observed (OBS; o) and forecasted (HRES; x) temperature and
precipitation at the time of apple flowering (start of flowering is shown with orange vertical lines
and symbols) for all locations with (a) no risk = 0, low risk = 1, medium risk = 2, and high risk =
3; and (b) observed and forecasted values of average daily temperature (Ta), maximal temperature
(Tmax), and precipitation (P) for the selected time period.

4. Discussion

The described weather-based warning system design includes use of ECMWF HRES forecasts
as meteorological input data for the BAHUS disease model. Particular procedures and models were
selected to test the efficacy of HRES and BAHUS in forecasting the appearance of primary infection
of grapevine downy mildew and risk of fire blight on apple flowers. BAHUS was selected because
it includes previously developed and tested algorithms for both diseases. The comparison between
results from different downy mildew and fire blight models was difficult to perform, since models
are calibrated for specific locations or regions and driven by different meteorological data. Several
studies have argued that a slight disease overestimation, as presented in this weather-based warning
system, is preferable, since this could later induce a reduction in the number of treatments [37–40].
The importance of the meteorological data quality changes based on the model type and sensitivity.
Most of the disease prediction models are temperature-sensitive and have thresholds in descriptions
of humidity or precipitation [41]. Therefore, errors in input air temperature produce bigger differences
in the model outputs [42]. The same study showed that BIAS of +/−1 ◦C in the air temperature data
has a smaller impact than observed variance around the average BIAS [42].

The results from previous research on the use of NWP in disease appearance forecasting for
apple scab led to the same results as those presented here, i.e., NWP output accuracy was not strictly
correlated with good disease prediction [43,44].

A comparison between OBS datasets and fifth-day HRES outputs was made in order to assess
the quality of the forecasted air temperature and precipitation. The procedure for evaluating forecast
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quality was used according to several studies and recommendations [45–47]. The RMSE and BIAS
of the HRES air temperature at all locations and for all years was in the same limits as the results
presented in the ECMWF technical report [48] and calculated for Belgrade 2017 (Appendix A) for the
fifth day. A change of lead time can improve the quality of the forecast but reduce the time window
for application of chemical treatment. The error analysis of air temperature showed larger RMSE and
BIAS in April, when vegetation is rapidly changing. The overestimation of the HRES temperatures
was not confirmed in other studies, which used much shorter lead times [49].

The results from the comparison of the sums of 24 h precipitation were not sufficient. The results
from the comparison between fifth-day HRES and OBS precipitation gave very low r2, while RMSE
(M: 5.8 mm, A: 4.7 mm, M: 7.2 mm) and BIAS were within the boundaries confirmed by other
studies [50–52]. RMSE and bias were higher in May than in other months. The reason for this
difference was rising frequency of convective precipitation in the warmer part of the year. In [50] the
RMSEs calculated for different lead times of forecasted precipitation showed a rise above 10 mm for
both winter and summer after day 5. From the NWP model point of view, it is difficult to forecast in
locations close to but not on mountains, particularly when grid elements consist of both flat terrain
and mountains. In that case, forecast accuracy highly depends on parameterization of subgrid-scale
processes. This was the case for the BC location; all other AWS locations are on flat, relatively
uniform terrain.

The errors in HRES precipitation were not evident in BAHUS-P or BAHUS-E runs, because both
models were triggered by rain events in two days, and in that case, it is important that the sum
of precipitation is higher than the model limit. BAHUS-P and BAHUS-E runs with observed and
forecasted meteorological data showed better agreement at some locations. The results also confirm
that additional downscaling of the HRES model outputs are not necessary for this proposed system.
Nevertheless, improvement of the weather input data in the BAHUS model can only increase the
system’s prediction capability [49]. The presented results clearly justify the use of the selected models
in the proposed system. Integrated disease–weather models have been successful in practical use [39],
and making them even more flexible and open will only increase their efficacy and forecasting capacity.

Following the NWP modelling strategy in relation to ensemble forecasting, adopted crop [53,54]
and disease models can also drive weather-based disease warning systems to integrate ensemble
forecasting. In that case, several disease models will be run with the same initial conditions and
weather conditions. Systems such as BAHUS, designed to allow users the opportunity to choose
among algorithms, can be the starting point for ensemble disease forecasting.

5. Conclusions

The results show the high capacity of the presented weather-based warning system to forecast
disease development with selected BAHUS algorithms and HRES weather forecasting. A comparison
between the average daily temperatures and the sum of precipitation calculated from observed hourly
values and values given by HRES every 3 h showed the following:

- The results for March–May in 2012–2018 at seven locations showed the high quality of the
predicted temperature for the fifth day.

- The temperature-driven algorithms in BAHUS performed very well; the predicted amount of
daily precipitation had errors, since it was the fifth day of the forecast and the uncertainties
associated with precipitation were high.

- The large errors in the daily sum of precipitation did not affect BAHUS results significantly, since
both disease algorithms require the sum of precipitation over the threshold value for two days.

With these results, the system can also be used to assess meteorological conditions favorable for
disease appearance at locations where meteorological observations are not available. The advantage of
this system is its flexibility in producing different time-scale forecasting from a 10-day HRES forecast.
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The disadvantage is similar to other systems; for example, the need for observed phenological data
such as the date of apple flowering.

The results show great potential for the presented weather-based system. The BAHUS-P driven
by HRES triggered downy mildew incubation in the period before first observed symptoms in all
seven years. BAHUS-E was more sensitive to the meteorological data, since the model itself is more
complex. The results from BAHUS-E were still very close to the forecasts made with observed daily air
temperature and daily sum of precipitation.

The next step is to couple phenological models based on temperature sums for grapevine and
apple development with the presented weather-based system to create a fully operational plant
protection warning system for fire blight and downy mildew. The application of such a coupled system
would improve the production of apples and grapes by lowering the amount of chemical treatments
and acting at the right time. Based on the presented results, we will consider the operational aspects of
the proposed system.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/9/12/484/s1.
1. Table S1.1 Temperature values of r2 received from linear fits; Table S1.2 Precipitation values of r2 received from
linear fits; Table S1.3 Root-mean-square error (T–RMSE, P–RMSE) and BIAS (T–BIAS, P–BIAS) for temperature
and precipitation; 2. Figure S2.1 Observed daily air temperature in May during the period 2012–2018; 3. Table S3.1
Monthly sum of precipitation at the selected AWSs in the period 2012–2018.; 4. Figure S4.1 Observed and predicted
temperatures in 2015 at the different locations, with a focus on BC.
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Appendix A

The quality of the HRES forecast based on lead time is verified by the Republic Hydrometeorological
Service of Serbia for Belgrade station during its regular operational practice. The change is presented
by calculating root-mean-square error (RMSE), mean average error (MAE), and mean error for 2017
for 2 m air temperature (Figure A1) and maximal air temperature (Figure A2). Both parameters show
significant quality change after day 5 (D + 4 in the figures).
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