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Abstract: In this study, we evaluated estimates and predictions of the PM2.5 (fine particulate matter)
concentrations and emissions in Xuzhou, China, using a coupled Lagrangian particle dispersion
modeling system (FLEXPART-WRF). A Bayesian inversion method was used in FLEXPART-WRF
to improve the emission calculation and mixing ratio estimation for PM2.5. We first examined the
inversion modeling performance by comparing the model predictions with PM2.5 concentration
observations from four stations in Xuzhou. The linear correlation analysis between the predicted
PM2.5 concentrations and the observations shows that our inversion forecast system is much better
than the system before calibration (with correlation coefficients of R = 0.639 vs. 0.459, respectively,
and root mean square errors of RMSE = 7.407 vs. 9.805 µg/m3, respectively). We also estimated
the monthly average emission flux in Xuzhou to be 4188.26 Mg/month, which is much higher
(by ~10.12%) than the emission flux predicted by the multiscale emission inventory data (MEIC)
(3803.5 Mg/month). In addition, the monthly average emission flux shows obvious seasonal variation,
with the lowest PM2.5 flux in summer and the highest flux in winter. This pattern is mainly due to the
additional heating fuels used in the cold season, resulting in many fine particulates in the atmosphere.
Although the inversion and forecast results were improved to some extent, the inversion system
can be improved further, e.g., by increasing the number of observation values and improving the
accuracy of the a priori emission values. Further research and analysis are recommended to help
improve the forecast precision of real-time PM2.5 concentrations and the corresponding monthly
emission fluxes.

Keywords: PM2.5; FLEXPART-WRF; real-time concentrations; inventory; Bayesian optimization method

1. Introduction

PM2.5 refers to atmospheric particulates with aerodynamic diameters less than 2.5 µm in ambient
air and is one of the six major atmospheric pollutants [1]. Although atmospheric PM2.5 particulates
account for a small proportion of the particles in the earth’s atmosphere, they have an important
impact on air quality, air visibility, the atmosphere radiation balance and precipitation [1,2]. China’s
rapid industrialization and urbanization have resulted in decreased air quality, especially in urban
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areas. Many cities have experienced severe haze pollution with exceedingly high PM2.5 levels [3–5].
The government has taken active measures to improve air quality. The implementation of these
measures requires pollutant emission inventory and prediction of PM2.5 concentrations.

Air quality forecasting is challenging. Air pollution has recently emerged as a major priority in
many urbanized and industrialized countries, as people are increasingly conscious of the effects of
airborne pollutant emissions on health and the environment. Research on air pollution forecasting
began in the 1960s. For example, to better prevent an increase in automobile exhaust pollution, Japan
began to predict nitrogen oxide concentrations in Jingdong and Osaka in December 1988, and the
Netherlands studied various forecasting techniques for air pollution forecasting in 1992. Furthermore,
air pollution forecasting is one of the requirements of the Air Quality Framework Directive
(2008/50/EC) and a key issue of the Clean Air for Europe (CAFE) program [6]. The atmospheric
diffusion model, pollution meteorology, pollution meteorological parameters and the relationship
between the pollution concentration and air pollution forecasts were initially studied at the first
national work conference on environmental protection in China in 1973 and successively in Beijing,
Shenyang, Lanzhou and other cities to carry out air quality forecasting research. The goals of air
quality forecasts are as follows: efficiently reduce population exposure to poor air quality and use
the forecast information to better protect people’s vital interests and make short-term prevention and
control plans.

Qualitative and quantitative models for predicting PM2.5 are described in an EPA document [7,8].
Air quality forecasting is not an easy task; many technologies have been developed to predict PM2.5

concentrations, and several initiatives have addressed the associated challenges [9]. Generally,
approaches for PM2.5 prediction can be classified into five categories: empirical models, fuzzy
logic-based systems, simulation models, data-driven statistical models, and model-driven statistical
learning methods. Recently, an increasing number of researchers have used 3-D high-frequency
mesoscale datasets obtained from dynamic models to drive air quality prediction models, and 3-D
atmospheric transmission models have been employed to simulate pollutant concentrations [8].
For instance, the WRF-Chem and CMAQ models have been used to evaluate the concentration
of surface-level PM2.5 and to provide reasonable information for energy conservation and emission
reduction plans. Generally, the predicted PM2.5 spatial patterns and temporal variations generally
agree with the observations at ambient monitoring sites [5]. Although PM2.5 research has made great
progress, many researchers have noted that predicting PM2.5 on an urban scale is still prone to error,
and many aspects need to be considered, such as the importance of an accurate representation of
the meteorological conditions [10], the importance of meteorological scales [11], the influences of
terrain resolution in complex topography scenarios [12,13], and accurate surface flux descriptions [14].
Because of the numerous influencing factors, regardless of the type of model used to predict air
quality, systematic model errors are inevitable [15–17]. To improve modeling performance, different
bias-correction techniques have been applied and examined [18–21]. For example, the artificial neural
network (ANN) method is powerful in terms of predicting daily average PM2.5 concentrations through
the combination of meteorological variables [22,23]; the multiplicative ratio adjustment technique is a
simple approach that effectively reduces the system error [18]; and the Kalman filter is a recursive,
linear, and adaptive method that has been used recently to improve air quality forecasts [20,24,25].

All the methods mentioned above mainly utilize past observations to revise the forecast values
without considering the pollution sources and have certain limitations. In this study, the Bayesian
inversion method is used to optimize the emission inventory of PM2.5 and to improve the forecast
accuracy. The forecasts were based on the coupled chemical transmission model (FLEXPART-WRF).
This model is a popular research model that has been used to simulate the transport of aerosols
(PM2.5), carbon monoxide (CO), and other atmospheric components. However, few studies have
focused on combining the FLEXPART-WRF model and the Bayesian inversion method to improve
the accuracy of the emission inventory and further improve the forecast accuracy of PM2.5 under
different meteorological physical parameterization schemes. To solve complex air pollution problems,
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an accurate air pollutant emission inventory is very important. Such an inventory can provide
fundamental information for understanding air pollution formation and help guide decision making
with respect to air pollution control. Recently, various air pollutant emission inventories have been
established at various scales. For example, the emission database for global atmospheric research
(EDGAR) was developed by scientists at the Netherlands Organization for Applied Scientific Research
(TNO) and the National Institute for Public Health and the Environment (RIVM). Zhang et al. (2009)
established an inventory of air pollutant emissions in Asia in 2006 to support the Intercontinental
Chemical Transport Experiment-Phase B (INTEX-B) [26]. The 2012 emission database based on China’s
multiscale emission inventory data (MEIC) developed by Tsinghua University is a highly representative
pollution emission inventory product in China. However, its coarse spatiotemporal resolution and
considerable uncertainty limits its application [27]. To fundamentally understand PM2.5 emissions and
solve pollution problems on a regional scale, a large amount of manpower and material resources are
needed. Therefore, optimization of the emission database is urgently required.

Thus, the main objectives of this paper are to optimize the primary PM2.5 emission inventory,
to increase the accuracy of the real-time PM2.5 concentration forecasting, and to calibrate the hourly
FLEXPART-WRF simulation system and monthly emission inventory using ground monitoring data
and the Bayesian optimization method. This model makes it possible to correct the spatiotemporal
variation in the PM2.5 emission flux.

This paper focuses on evaluating the performance of the Bayesian inversion method in improving
air quality forecasting using the FLEXPART-WRF modeling system at high resolutions over the domain
of Xuzhou, China. The model evaluation exercise covers the full year of 2016 and includes observations
from the 58 air quality monitoring stations in the study area. The results show that the Bayesian
optimization method can improve the prediction accuracy of the model.

The study area is introduced in Section 2.1. The data and model are described in
Sections 2.2 and 2.3, respectively. The inversion method used to improve the accuracy is described
in Section 2.4. The results and discussion are presented in Section 3, and the conclusion is given in
Section 4.

2. Methodology

2.1. Study Area

The research area of this study is Xuzhou city in Jiangsu Province, China, which covers an area of
11,258 square kilometers and had a total population of 8.76 million in 2017. Economic development
has been accompanied by serious pollution since the 1980s. Considering the impact of pollutants in
the surrounding area of the Xuzhou region, we selected Xuzhou city and its surrounding area as the
research area for inversion of the emission inventory (Figure 1). In view of the operation efficiency
of the model, the study scope cannot be too large. Therefore, the core research area should be kept
close to the center of the study area, so that the influence of surrounding area on the prediction can be
captured as much as possible.
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Figure 1. Borders of China (left); and DEM map of the study area (the highlighted area is the Xuzhou 
region) (right). The black and yellow lines on the base map represent the administrative boundaries 
and the highways, respectively. 
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2.2.1. Meteorological Data 

The numerical weather prediction model WRF Version 3.6 was employed to model the 
meteorological field at hourly time steps with nested domains with resolutions of 27 km, 9 km and 3 
km (Figure 2). The boundary values were acquired from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) reanalysis data (http://www.ecmwf.int) with a resolution of 28 km and 
a 6-hourly interval. These meteorological outputs were used to force the Lagrangian particle model 
FLEXPART [28]. 

 
Figure 2. The nested domains (1–3) used for downscaling. 

  

Figure 1. Borders of China (left); and DEM map of the study area (the highlighted area is the Xuzhou
region) (right). The black and yellow lines on the base map represent the administrative boundaries
and the highways, respectively.

2.2. Data Used

2.2.1. Meteorological Data

The numerical weather prediction model WRF Version 3.6 was employed to model the
meteorological field at hourly time steps with nested domains with resolutions of 27 km, 9 km
and 3 km (Figure 2). The boundary values were acquired from the European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis data (http://www.ecmwf.int) with a resolution of 28 km and
a 6-hourly interval. These meteorological outputs were used to force the Lagrangian particle model
FLEXPART [28].
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2.2.2. A Priori PM2.5 Emission Inventory

An a priori air pollutant emission inventory was acquired from the emission inventory of China
(i.e., MEIC, http://www.meicmodel.org/), which includes all major anthropogenic emission sources
in East Asia at a resolution of 0.25◦ × 0.25◦ (Figure 3). Major uncertainties in the PM2.5 emission data
in the MEIC inventory were mostly confined to the residential combustion and transportation sectors
because their activity data are not well reported through national and provincial statistical systems.
The total Xuzhou anthropogenic emissions of PM2.5 in 2010 were estimated to be 3803.5 Mg/month
based on the MEIC data.
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Figure 3. A priori PM2.5 emission inventory (MEIC). Year: 2010; Flux: Mg/month/0.1 × 0.1◦.
The black and yellow lines on the base map represent the administrative boundaries and the
highways, respectively.

2.2.3. Observations

Figure 4a shows the research area for inversion of the emission inventory. Red dots indicate the
locations of observation sites providing hourly PM2.5 concentration data following a quality control
assurance procedure that guarantees confidence in the use of these data. To identify and eliminate
data outliers, a data quality control algorithm was applied independently to the PM2.5 observations
for each observation site. This algorithm has the following components and thresholds [29]:

1. Daily constant value check. If MIN(PM2.5) = MAX(PM2.5) for a 24-h period, then the entire day
is eliminated.

2. Outliers check. Data over 500 µg/m3 are rejected.
3. Single spike. If the difference in PM2.5 concentration between the present hour (hi) and both the

previous hour (hi−1) and the following hour (hi+1) is greater than 50 µg m−3, the data for the
present hour (hi) are rejected.

http://www.meicmodel.org/
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4. Averaged spike. If the mean concentration over three consecutive hours (hi−1, hi, hi+1) is greater
than the data in the previous hour (hi−2) and the following hour (hi+2) by more than 80 µg m−3,
the data for hours (hi−1, hi, hi+1) are rejected.

In addition to the above quality control procedure, a check for frequently missing data at each
site was implemented. Following the above tests, approximately 25% of the data were eliminated.
An optimizing method was applied to the valid sites that remained, as shown by the red marks in
Figure 4b. The research area of Xuzhou contains four sites. For convenience, all the times referenced
hereafter are in Beijing Local Time (BLT).

Atmosphere 2018, 9, x FOR PEER REVIEW  6 of 17 

 

than the data in the previous hour (ℎ ) and the following hour (ℎ ) by more than 80 μg m , 
the data for hours (ℎ , ℎ , ℎ ) are rejected. 

In addition to the above quality control procedure, a check for frequently missing data at each 
site was implemented. Following the above tests, approximately 25% of the data were eliminated. An 
optimizing method was applied to the valid sites that remained, as shown by the red marks in Figure 
4b. The research area of Xuzhou contains four sites. For convenience, all the times referenced 
hereafter are in Beijing Local Time (BLT). 

 
Figure 4. Research area for inversion of the emission inventory (a); and the research area of Xuzhou 
containing four sites: Nongkeyuan, Huaita, Huanghexincun and Xinchengqu (b). 

2.3. Model Descriptions 

To analyze the corresponding transport of PM2.5 pollution, the coupled FLEXPART-WRF model 
was employed to calculate forward Lagrangian particle dispersion [5,30,31], driven by the 
meteorological variables modeled using the WRF model. The FLEXPART-WRF model has been 
applied and validated for mid-range and long-range transport cases [28,32–34]. Compared to an 
adjoint Eulerian model, the advantage of the LPDM is that no initial diffusion occurs due to the 
release of the adjoint tracer into a finite-size grid cell, which is independent of a computational grid 
and has, in principle, infinitesimally small resolution. The Lagrangian model has low computational 
costs. Furthermore, long-range transport can be simulated more accurately, as no artificial numerical 
diffusion occurs. In view of the simulation precision of the FLEXPART-WRF system, this system has 
been previously used for a variety of applications. For example, Srinivas et al. (2014) estimated 
radiation risk following the 2011 Fukushima nuclear accident using FLEXPART-WRF [35], and the 
model could reproduce observed deposited activity, albeit with some deviations related to model 
errors in wind and precipitation data from the WRF model. Gentner et al. (2014) used FLEXPART-
WRF in backward mode to determine the source–receptor relationship (SRR) of anthropogenic 
emissions of organic carbon [36]. Another advantage of FLEXPART-WRF model is that it can obtain 
the contribution rate of pollutants sources to the receptor points, which makes it possible to improve 
the accuracy of pollutant forecast using the Bayesian optimization method. However, research on 
PM2.5 using the FLEXPART model is considerably limited because the current version of FLEXPART-
WRF does not support the direct simulation of PM2.5 concentrations. Most studies are based on the 
off-line coupling of the FLEXPART-WRF model with the WRF-Chem model or the CMAQ model 
[37]. The emphasis and innovation of this study is to improve the prediction accuracy of PM2.5 by 
combining the FLEXPART-WRF model with the Bayesian optimization method. Considering the 
computing time cost and the characteristics of the FLEXPART-WRF model, the experiment design to 
simulate the pollutant particles as passive tracer air parcels without considering chemical reactions 
and dry deposition [38]. The chemistry and the dry deposition errors were treated as the errors of 
pollution sources. In this research, the spatial distribution of the SRR was determined by the 
Lagrangian particle dispersion model (FLEXPART-WRF). The SRR represents the contribution of 
each potential source for the receptors (observation sites). The forward simulation was adopted in 

Figure 4. Research area for inversion of the emission inventory (a); and the research area of Xuzhou
containing four sites: Nongkeyuan, Huaita, Huanghexincun and Xinchengqu (b).

2.3. Model Descriptions

To analyze the corresponding transport of PM2.5 pollution, the coupled FLEXPART-WRF
model was employed to calculate forward Lagrangian particle dispersion [5,30,31], driven by the
meteorological variables modeled using the WRF model. The FLEXPART-WRF model has been applied
and validated for mid-range and long-range transport cases [28,32–34]. Compared to an adjoint
Eulerian model, the advantage of the LPDM is that no initial diffusion occurs due to the release
of the adjoint tracer into a finite-size grid cell, which is independent of a computational grid and
has, in principle, infinitesimally small resolution. The Lagrangian model has low computational
costs. Furthermore, long-range transport can be simulated more accurately, as no artificial numerical
diffusion occurs. In view of the simulation precision of the FLEXPART-WRF system, this system
has been previously used for a variety of applications. For example, Srinivas et al. (2014) estimated
radiation risk following the 2011 Fukushima nuclear accident using FLEXPART-WRF [35], and the
model could reproduce observed deposited activity, albeit with some deviations related to model
errors in wind and precipitation data from the WRF model. Gentner et al. (2014) used FLEXPART-WRF
in backward mode to determine the source–receptor relationship (SRR) of anthropogenic emissions of
organic carbon [36]. Another advantage of FLEXPART-WRF model is that it can obtain the contribution
rate of pollutants sources to the receptor points, which makes it possible to improve the accuracy of
pollutant forecast using the Bayesian optimization method. However, research on PM2.5 using the
FLEXPART model is considerably limited because the current version of FLEXPART-WRF does not
support the direct simulation of PM2.5 concentrations. Most studies are based on the off-line coupling
of the FLEXPART-WRF model with the WRF-Chem model or the CMAQ model [37]. The emphasis
and innovation of this study is to improve the prediction accuracy of PM2.5 by combining the
FLEXPART-WRF model with the Bayesian optimization method. Considering the computing time cost
and the characteristics of the FLEXPART-WRF model, the experiment design to simulate the pollutant
particles as passive tracer air parcels without considering chemical reactions and dry deposition [38].
The chemistry and the dry deposition errors were treated as the errors of pollution sources. In this
research, the spatial distribution of the SRR was determined by the Lagrangian particle dispersion
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model (FLEXPART-WRF). The SRR represents the contribution of each potential source for the receptors
(observation sites). The forward simulation was adopted in this experiment, and each emission source
had a release rate of 5000 computational particles per hour. Concentrations were sampled on a
3-D output grid every 3 min and used for calculating hourly averages. The trajectories of individual
particles were computed using a zero-acceleration scheme, in which particle movements are dependent
on the grid-scale wind and the turbulent fluctuations as follows:

X(t + ∆t) = X(t) + v(X, t)∆t (1)

Equation (1) is accurate to the first order, and the trajectory equation is integrated as follows [30]:

dX
dt

= v[X(t)] (2)

where t is time, ∆t is the time increment, X is the position vector, and v = v + vt + vm is the wind
vector, which is composed of grid-scale wind v, turbulent wind fluctuations vt and mesoscale wind
fluctuations vm.

2.4. Inversion Method

2.4.1. Generating the Source–Receptor Relationship

In this study, the source of SRR has different meaning compared to the source stated by
Gentner et al. (2014) [36]. In the paper of Gentner et al. (2014), the source indicates petroleum industry
and dairy operations, while, in this paper, it refers to the location of the PM2.5 emissions. In the
present study, 30-day SRRs were determined by releasing 5000 particles per hour from the potential
sources. Here, the potential sources represent the potential locations. Considering the number of
emission sources and the lower speed of the serial method, the parallel method is adopted to run
the FLEXPART-WRF model. The contaminated area was divided into 30 pieces and run separately
and finally, the model results were merged, and the receptor contributions from each pollution source
were acquired. To apply the Bayesian optimization method, the potential source locations should be
consistent with the grid locations from the MEIC a priori inventory.

In this paper, when simulating the SRR and inverting the PM2.5 inventory, the first two months of
the results are not examined because this period corresponds to the typical spin-up period.

2.4.2. Construction Cost Function and Calculation

By combining the Bayesian inversion method and receptor observations, the PM2.5 emission and
the corrected real-time PM2.5 were obtained. The principle of inversion is to optimize the emission
flux density by minimizing the mismatch between observed and simulated concentrations. The basic
equation of the inversion approach can be written as follows:

ym = Mm×n · xn (3)

where M is the matrix of SRR, y is a vector of the PM2.5 concentrations (µg/m3) at a receptor, and x is
the emission flux vector (Mg/grid/month). The equation can be written as follows:

Mmn =


s11, s12, . . . ., s1n
s21, s22, . . . ., s2n

. . . . . . . . . . . . . . . . . . . . .
sm1, sm2, . . . ., smn

 (4)
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Ym =


y1

y2

. . . . . .
ym

 (5)

Xn = [x1, x2, . . . . . . .xn] (6)

where m is the time series of observations and n is the number of emission grids. Ym is a vector that
has m rows. Assuming that x̃ = x− xa and ỹ = yo −M · xa, where xa, x and yo are the a priori source
vector, a posteriori source vector and observation vector, respectively, the cost function is described as
follows [39,40]:

J = (Mx̃− ỹ)Tdiag
(

δ−2
0

)
(Mx̃− ỹ) + x̃Tdiag

(
δ−2

x

)
x̃ (7)

The best estimate x was obtained by solving the equation ∇x J(x) = 0 as follows:

x =
[

MTdiag
(

δ−2
o

)
M + diag

(
δ−2

x

)]−1
MTdiag

(
δ−2

o

)
(yo −Mxa) + xa (8)

where δo and δx represent the standard errors related to the observations and a priori values,
respectively. We are unable to precisely obtain the uncertainty information of each potential source
and observation site. Therefore, this study adopted the method from Stohl et al. (2009) to deal with the
uncertainty of greenhouse gases [40]. The potential source emission uncertainty is δxj = max(0.4xa

j , xa),
where xa

j and xa represent the emissions related to the potential source and MEIC average emission flux
over the study area, respectively, while observational uncertainty δo is consisted of the measurement
error as well as model errors. Because the model errors are difficult to estimate, the root mean square
(RMS) between the observed values and the priori simulated values at each site are used as the
uncertainty of observation. Considering that the flux cannot be negative, it needs to have a condition
min(x) ≥ 0. To reduce unrealistic emissions in the a posteriori inventory, the calculation was iterated
until all negative emissions were greater than or equal to 0.

2.4.3. Optimization According to the A Posteriori Inventory for Forecasting PM2.5

Finally, according to the a posteriori inventory, the simulation values were optimized to predict
the receptor PM2.5 concentrations.

ym+1

ym+2

. . . . . .
ym+t

 =


sm+1,1, sm+1,2, . . . ., sm+1,n
sm+2,1, sm+2,2, . . . ., sm+2,n

. . . . . . . . . . . . . . . . . . . . .
sm+t,1, sm+t,2, . . . ., sm+t,n




x1

x2

. . . . . .
xn

 (9)

where t represents the time series of the simulation in the future, which can be understood as the
number of hours.

Because of the dramatic changes in the PM2.5 concentrations in response to changes in tropospheric
meteorological factors, this paper considers only the contributions from source region-based SRR
calculations rather than background values.

2.5. Verification Statistics

The Pearson product-moment coefficient of linear correction is related to the degree of correlation
between two fixed distance variables.

The root mean square error (RMSE) is often used to evaluate model performance because it
quantifies the magnitude of the error in the model [41,42].
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In addition, the index of agreement (IOA) is used in the model evaluation. IOA is defined
as follows:

IOA = 1−
∑N

i=1 (C(m,i) − C(o,i))
2

∑N
i=1 (|Ĉ(m,i)|+ |Ĉ(o,i)|)

2 (10)

where i is the ith paired (model-observation) data point, N is the total number of paired data points,
and C(m,i) and C(o,i) are the ith modeled and observed mixing ratios, respectively. Ĉ(m,i) = C(m,i) − Co

and Ĉ(o,i) = C(o,i) − Co. Co is the mean observed mixing ratio. IOA specifies the degree to which the
observed deviations of Co correspond, in both magnitude and sign, to the predicted deviations of
Co. The value of IOA varies between 0.0 and 1.0, representing the limits of complete disagreement to
perfect agreement between the observations and simulations.

3. Results and Discussion

3.1. Evaluation of the Site Optimizations

For the remainder of the paper, we use observation data for a one-month period in the optimization
using the Bayesian optimization schemes. The use of such one-month time series observation
data can not only meet the forecast time requirements but also greatly improve the prediction
accuracy. Studies have shown that longer simulation times do not result in better reconstruction
of emission sources because of the rapid decrease in emission sensitivity and the increase in model
error. Table 1 summarizes the statistical measures of the model simulations using a priori and a
posteriori emission inventories relative to observations. The correlation coefficient R between the
observations and inversion results was ∼ 0.858, compared with that of ∼ 0.808 using the a prior
inventory. The values of RMSE were ~4.039 and ~8.648 µg/m3, respectively. The IOA is another metric
that can be used to assess improvements resulting from the application of the Bayesian method, and
the IOA increased on average by 21.45%. The Bayesian optimization method adequately removes the
systematic mean bias component. The unsystematic component can be reduced significantly through
the optimization method. The mean bias of the Bayesian inversion system is 53.2% less than that of the
raw results.

Table 1. Statistical analysis between the a posteriori and a priori inventories.

A Priori A Posteriori

Name R RMSE IOA R RMSE IOA

Huaita 0.638 11.716 0.445 0.719 4.575 0.738
Huanghexincun 0.905 7.371 0.837 0.957 4.018 0.901

Nongkeyuan 0.825 8.566 0.752 0.826 4.393 0.879
Xinchengqu 0.864 6.937 0.781 0.928 3.171 0.901

Figure 5 shows the comparison of the yearly mean diurnal variation of PM2.5 between simulation
and observation at four sites in Xuzhou. The simulations with inventory data originating from MEIC (a
priori inventory) agree well with the observations. Compared to the observations, the raw model tends
to overestimate PM2.5 at night for all four sites. The MEIC inventory data (a priori inventory) are largely
skewed towards highly positive PM2.5 errors, with average errors larger than 10–25 µg/m3. In contrast,
the optimization results are more consistent with the observation curve. The Bayesian optimization
method tends to bring the optimization values closer to the observations than the raw model forecasts.
In addition, the results show that, at nighttime and in the early morning, PM2.5 concentrations were
higher than at midday because, during the night and early morning, the boundary layer is generally
low in height and has weaker convection than during the daytime. However, the simulation deviation
is also large using the a priori inventory, which may not have considered the relatively low levels of
anthropogenic emissions from factories and motor vehicles in the evening.
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The optimization results are not always superior to those of the raw model. For example, the
optimization effect of the Huaita-Xuzhou observation site is not as good as the raw model values
at 2:00–5:00, although the difference is very small (Figure 5a). This discrepancy may be explained
by the fact that the optimization effect is affected not only by the emission inventory but also by the
meteorological conditions, the model errors and the pollution emergency event [10,14]. Overall, the
results of the Bayesian inversion system in this study are closer to the actual observations, and the
inversion emission inventory has greater credibility.Atmosphere 2018, 9, x FOR PEER REVIEW  10 of 17 
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observations at the four sites: (a) Huaita-Xuzhou; (b) Huanghexincun-Xuzhou; (c) Nongkeyuan-
Xuzhou; and (d) Xinchengqu-Xuzhou. The red line represents the simulation using the a priori
inventory, the black line represents the simulation using the a posteriori inventory, and the blue line
represents the observations and standard deviation (σ) of the observations. Year: 2016.

3.2. Evaluation of the Site Forecasts

The forecast values of three days from the a posteriori inventory calculated by the inversion
model were compared with observations at four sites in Huaita-Xuzhou, Huanghexincun-Xuzhou,
Nongkeyuan-Xuzhou and Xinchengqu-Xuzhou. Application of the Bayesian optimization method
produces PM2.5 forecast values that are much closer to the observation values than the raw model. The
raw model tends to have larger fluctuations than the observations on almost all days at these stations.
As shown in Table 2, the correlation coefficient R between the predicted and observed PM2.5 values
was improved using the inversion system, with values of ∼ 0.639 versus ∼ 0.459 after and before
using inversion, respectively. Accordingly, the values of RMSE were ~7.407 and ~9.805 µg/m3 after
and before calibration, respectively. The IOA for the forecasts increased on average by 16.14%. As
expected, the optimization method greatly reduced the systematic error, which was an improvement
over the raw model forecasts. However, Figure 6 reveals that, while the Bayesian method helped to
reduce the systematic errors in the model forecasts, some residual error still exists in the adjusted
forecasts. This residual error mainly caused by without considering chemical reactions that are affected
by meteorological factors and emissions, and these errors cannot be adequately resolved by the
inversion system.
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Table 2. Statistical Analysis Between a Posteriori and a Priori Inventories for Forecasting.

A Priori A Posteriori

Site R RMSE IOA R RMSE IOA

Huaita 0.288 10.188 0.535 0.593 6.277 0.762
Huanghexincun 0.687 9.208 0.804 0.771 6.157 0.852

Nongkeyuan 0.479 10.126 0.674 0.591 9.381 0.709
Xinchengqu 0.382 9.698 0.641 0.601 7.814 0.755

Figure 6 shows that the forecast values calculated from the a priori inventory were overestimated
to some extent. The forecast values from the a posteriori inventory, by contrast, not only exhibited an
improved correlation with observations but also corrected the system error. Comparisons for 17 August,
18 August and 19 August show that the model performed quite well on 17 August and 18 August.
However, the model for 19 August did not perform as well as that for 17 and 18August. Previous
research has suggested that poor forecast performance with the extension of the forecast time is
common among air quality models and may be caused by the difficulty in simulating stagnant weather
conditions [43]. This finding may be partially attributed to a combination of effects associated with
the current model grid resolution, which is not sufficient to resolve the highly variable meteorological
conditions, spatial and temporal variability in emissions, and, consequently, the evolution of the
chemistry leading to PM2.5 formation.
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Figure 6. Comparisons between observations and forecast values of PM2.5 concentrations in the time
series for the four sites: (a) Huaita-Xuzhou; (b) Huanghexincun-Xuzhou; (c) Nongkeyuan-Xuzhou; and
(d) Xinchengqu-Xuzhou The red line represents the forecast values using the a priori inventory, the
black line represents the forecast values using the a posteriori inventory, and the blue line represents
the observations. Year: 2016.

Other scholars have used different methods to improve the forecast accuracy of PM2.5.
For example, Borrego et al. (2011) evaluated the application of two bias-correction techniques, the
multiplicative ratio and the Kalman filter, to improve air quality forecasts [44]. Their statistics showed
that both bias-correction techniques improved the raw forecast skills, and the forecasts of PM2.5

improved significantly, with R values ranging from 0.5 to 0.64. The results confirm the advantage of
the application of bias-correction techniques for air quality forecasts. However, the Bayesian inversion
system, unlike the Kalman filter and multiplicative ratio methods, improves the forecasting accuracy
by optimizing the priori inventory rather than merely correcting model forecast values. Therefore, the
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Bayesian inversion system developed in this study can not only produce better prediction results but
also estimate a high-resolution emission inventory.

3.3. Analysis of the Emission Inventory

Figure 7 shows the spatial distribution of the PM2.5 a posteriori emission fluxes in March, June,
September and December, representing spring, summer, autumn and winter, respectively. The results
show that the emission of PM2.5 was significantly higher in winter than in summer due to fossil fuel
combustion for heating. In contrast, the fluxes of MEIC (Figure 3) and the monthly average calculated
by the inversion system (Figure 8a) show that the PM2.5 emission flux might be overestimated to
some extent by the a priori inventory in the heavy pollution area (Figure 9a), which may be related
to the recent prevention and control of pollution. However, a comparison of the a posteriori and
INTEX-B emission inventories (Figure 8b), which was conducted by the National Aeronautics and
Space Administration (NASA), shows that the a posteriori PM2.5 emissions are generally higher
than the INTEX-B emission flux (Figure 9b). One of the possible reasons for this finding is that the
INTEX-B emission inventory has a low spatial resolution and time lag. Overall, the spatial features
of the a posteriori values were generally consistent with the latest regional emission inventory in the
study areas.

Atmosphere 2018, 9, x FOR PEER REVIEW  12 of 17 

 

generally higher than the INTEX-B emission flux (Figure 9b). One of the possible reasons for this 
finding is that the INTEX-B emission inventory has a low spatial resolution and time lag. Overall, the 
spatial features of the a posteriori values were generally consistent with the latest regional emission 
inventory in the study areas. 

 
Figure 7. PM2.5 emission flux per month. Year: 2016; Flux: Mg/month/0.1 × 0.1°. The black and yellow 
lines on the base map represent the administrative boundaries and the highways, respectively. 

A comparison of PM2.5 emissions at a city level between a priori and a posteriori values is shown 
in Table 3 and Figure 10 (the a posteriori inventory and MEIC statistical values). Table 3 shows the 
adjustment for the a posteriori values (difference between a posteriori and a priori) for Xuzhou, 
Suqian, Hefei and Jining, where the inversion results were statistically 384.76 Mg/month and 451.50 
Mg/month larger than the a priori values in Xuzhou and Suqian, respectively. The statistics showed 
that the a posteriori PM2.5 emissions increase by 10.12% and 27.84% for Xuzhou and Suqian, 
respectively. However, the inversion results were smaller than the a priori values in Hefei and Jining 
by 561.41 Mg/month and 634.32 Mg/month, respectively, which showed that the a posteriori 
emissions decreased by 10.83% and 9.58%, respectively. The differences between a priori and 
posteriori can stem from three reasons: the errors of inversion system, a priori inventory errors and 
the effect of time lag. The a priori inventory was from the MEIC data of 2010, but the study period 
was 2016. The impact of time lag mainly refers to the changes in pollutant emissions caused by the 
rapid development of china’s economy [45]. During this period, the rapid growth of urbanization 
and rising consumption of fossil fuels increased the emissions of pollutant, while the implementation 
of industrial energy saving and emission reduction measures also reduced the emissions of pollutant 
in the meantime. 

Figure 7. PM2.5 emission flux per month. Year: 2016; Flux: Mg/month/0.1 × 0.1◦. The black and
yellow lines on the base map represent the administrative boundaries and the highways, respectively.

A comparison of PM2.5 emissions at a city level between a priori and a posteriori values is
shown in Table 3 and Figure 10 (the a posteriori inventory and MEIC statistical values). Table 3



Atmosphere 2018, 9, 428 13 of 17

shows the adjustment for the a posteriori values (difference between a posteriori and a priori) for
Xuzhou, Suqian, Hefei and Jining, where the inversion results were statistically 384.76 Mg/month and
451.50 Mg/month larger than the a priori values in Xuzhou and Suqian, respectively. The statistics
showed that the a posteriori PM2.5 emissions increase by 10.12% and 27.84% for Xuzhou and Suqian,
respectively. However, the inversion results were smaller than the a priori values in Hefei and Jining by
561.41 Mg/month and 634.32 Mg/month, respectively, which showed that the a posteriori emissions
decreased by 10.83% and 9.58%, respectively. The differences between a priori and posteriori can stem
from three reasons: the errors of inversion system, a priori inventory errors and the effect of time lag.
The a priori inventory was from the MEIC data of 2010, but the study period was 2016. The impact
of time lag mainly refers to the changes in pollutant emissions caused by the rapid development of
china’s economy [45]. During this period, the rapid growth of urbanization and rising consumption of
fossil fuels increased the emissions of pollutant, while the implementation of industrial energy saving
and emission reduction measures also reduced the emissions of pollutant in the meantime.Atmosphere 2018, 9, x FOR PEER REVIEW  13 of 17 
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Table 3. Difference between a posteriori and a priori values.

Name A Posteriori (Mg/Month) A Priori (Mg/Month) Difference (%) *

Xuzhou 4188.26 3803.5 10.12
Suqian 2073.54 1622.04 27.84
Hefei 4623.47 5184.88 −10.83
Jining 5987.45 6621.77 −9.58

* Difference = (a posteriori − a priori)/a priori.
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Figure 10. Statistical results of PM2.5 emission flux for a priori and a posteriori values in Xuzhou,
Suqian, Hefei and Jining.

Figure 11 shows the trends of monthly PM2.5 for the cities of Xuzhou, Jining, Hefei, and Suqian in
2016. The PM2.5 emission is lower in the summer and higher in the winter because abundant heating
fuel is needed in the winter, which produces many fine particulates in the atmosphere. However, the
PM2.5 emissions increase to some extent due to the large-scale burning of crops straw in the summer
harvesting season. The obvious deviations of the PM2.5 emission flux at certain locations in the diagram
could be partly attributed to the failure to account for chemical transformation, and the corresponding
SRR might exclude the emission signal associated with open biomass burning sources.
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4. Conclusions

In this study, the emission inventory and real-time PM2.5 concentration in Xuzhou are inverted by
the Bayesian optimization method based on tower observations. The general feature of the inversion
results is that the a posteriori values are consistent with the latest MEIC emission inventory, and the
prediction accuracy is greatly improved. The R and RMSE values between the observations and the
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forecast values were improved by approximately 39.2% and 24.5%, respectively, using the inversion
system. However, the present results imply that the PM2.5 emissions in the Xuzhou region might be
significantly underestimated by bottom-up statistical methods. In general, the present PM2.5 emission
inventory inversion implies a 10.12% increase between 2010 and 2016 in Xuzhou. Although our
analysis suggests that the Bayesian method can significantly reduce the systematic errors, the relative
improvements of the real-time PM2.5 forecast values from the application of this method were limited
in terms of the temporal extent of the forecast. The inversion approaches still have considerable
uncertainties due to the limited observation sites and the method limitations. Our future work will
involve an assessment of inversion accuracy by including multiple sites in Xuzhou, and the seasonal
variation will be addressed using a long-term observation dataset. At present, this study only verified
the posteriori inventory is better than the a priori inventory for improving the forecast accuracy of
PM2.5. We also need to combine the models of WRF-Chem and CMAQ for further verification.

In the applications presented in this study, the Bayesian optimization method is applied only at
discrete points of the monitors. The extension of these methods for the development of optimized
spatial map forecasting surface-level PM2.5 distributions is an area for further research.
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